
Dialog Learning in Conversational CBR

Mingyang Gu and Agnar Aamodt
Department of Computer and Information Science, NorwegianUniversity of Science

and Technology, Sem Saelands vei 7-9, N-7491, Trondheim, Norway
Email: {mingyang, agnar}@idi.ntnu.no

Abstract

Conversational Case-Based Reasoning (CCBR) provides a
mixed-initiative dialog for guiding users to refine their prob-
lem descriptions incrementally through a question-answering
sequence. In this paper, we argue that the successful dialogs
in CCBR can be captured and learned in order to improve the
efficiency of CCBR from the perspective of shortening the
dialog length. A framework for dialog learning in CCBR is
proposed in the present paper, and an instance of this frame-
work is implemented and tested empirically in an attempt to
evaluate the learning effectiveness of the framework. The re-
sults show us that on 29 out of the 32 selected datasets, CCBR
with the dialog learning mechanism uses fewer dialog ses-
sions to retrieve the correct case than CCBR without using
dialog learning.

Introduction
Reusing the solution to the previous most similar problem
in helping solve the current problem is the basic idea un-
derlying case-based reasoning (CBR) (Kolodner 1993). In
(Aamodt & Plaza 1994), the authors formalize the CBR cy-
cle into four steps: RETRIEVE the most similar previous
case/cases to the current problem, REUSE the information
or knowledge to solve the current problem, REVISE the pro-
posed solution and RETAIN the problem solving experience
likely to be useful in the future. The latter step is the learning
step.

In traditional CBR processes, users are assumed to be able
to provide a well-defined problem description, and based
on such a description a CBR system can find the most ap-
propriate previous case. But this assumption is not always
realistic. In some situations, users only have vague ideas
about their problems when beginning to retrieve, and often
describe them by surface features.

Conversational Case-Based Reasoning (CCBR) (Aha,
Breslow, & Muñoz-Avila 2001) provides a mixed-initiative
dialog for guiding a user to construct her problem descrip-
tion incrementally through a question-answering sequence.
CCBR research is currently to a large extent focusing on
discriminative question selection and ranking to minimize
the cognitive load on users to retrieve the case that best

Copyright c© 2006, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

matches the problem (Schmitt 2002). For example, select-
ing the most informative questions to ask (Shimazu 2002;
Cunninghamet al. 2001; Göker & Thompson 2000), or us-
ing feature inferencing to avoid asking users the questions
that can be answered implicitly using the current known in-
formation (Aha, Maney, & Breslow 1998; Gu & Aamodt
2005).

Successful dialogs that have occurred in a CCBR system
can be seen as previous solutions to users’ case retrieval
tasks and retained as cases. A new type of CBR is thereby
introduced into the CCBR process to improve its efficiency.
To our knowledge, there are so far no published results on
how to improve the dialog efficiency in CCBR through this
type of learning.

A framework for dialog learning in CCBR is presented
in the next section, followed by a description of an imple-
mentation of this framework. Following from that, an ex-
periment design for evaluating the efficiency of the dialog
learning method is described. Then the experimental results
are described and discussed, followed by our conclusion.

A Framework to Support Dialog Learning in
CCBR

In CCBR, as illustrated in Fig. 1 (the upper part surrounded
by the dashed line), a user provides her initial problem de-
scription as an initial new case (target case). The CCBR
system uses the initial new case to retrieve the first set of
most similar cases, and identifies a group of informative fea-
tures to generate discriminative questions. Both the retrieved
cases and the identified discriminative questions are ranked
and shown to the user. The user either finds her desired
case, which will terminate the retrieval process, or chooses
a question, which she considers relevant to her task, and
provides the answer. An updated new case is constructed
through combining the previous new case with the answered
question. Subsequent rounds of retrieving and question-
answering will iterate until the user finds her desired case
or no discriminative questions are available.

In order to support dialog learning in CCBR, we intro-
duce a special CBR process, as illustrated in the lower part
of Fig. 1, which includes a dialog case base, a dialog case
RETRIEVE module and a dialog case RETAIN module. In
addition, two other modules used in the standard CCBR pro-

358

Figure 1: A framework for the dialog learning enhanced
CCBR

cess, question generating and ranking, and case and ques-
tion displaying, are updated to utilize the most similar dia-
log case in the CCBR process. This utilization process can
be seen as the dialog case REUSE process. In order to avoid
the conceptual confusion between the conversational CBR
process and the dialog learning CBR process, the CBR pro-
cess where the cases come from the application case base
is referred to as application CBR. The CBR where the cases
come from the dialog case base is referred to as dialog CBR.
Also, correspondingly, the terms used in the two CBR pro-
cesses are distinguished by adding the adjective ’applica-
tion’ or ’dialog’.

Generally, a case in CBR can be represented by the fol-
lowing three parts (Kolodner 1993):

• Problem description: the state of the world at the time of
the case, and, if appropriate, what problem needed to be
solved at that time.

• Solution description: the stated or derived solution to the
problem specified in the problem description.

• Outcome: the resulting state of the world after the solu-
tion was carried out.

Dialog case base. For a dialog case, the problem descrip-
tion part contains the information related to the dialog pro-
cess: the initial constructed new case, the later incrementally
selected questions, and their answers. The solution descrip-
tion of a dialog case refers to the case successfully retrieved
from the application case base. For all dialog cases, their
outcomes are the same, that is, the user gets the retrieved
application case, and terminates the dialog.

Dialog case RETRIEVE. In CCBR, a new case, describ-
ing an application problem, is incrementally constructed and
used to retrieve a case from the application case base. The
same new case is also used to retrieve a case from the dia-
log case base. In addition to the features used in application
case retrieval, the similarity assessment used in dialog case
retrieval also takes the feature sequencing information into
account. The positions of various features in a dialog pro-

cess express the changes of users’ focus of attention, which
influence the similarity between the new case and a stored
dialog case.

Dialog case REUSE. The retrieved most similar dialog
case is considered to be able to improve the efficiency of
the current conversational application case retrieval process
in the following two ways:

The application case contained in the most similar dia-
log case is to be displayed to users for inspecting, that is,
the case and question displaying module in standard CCBR
needs to be modified.

The features that appear in the most similar dialog case,
but do not appear in the current new case, will get improved
ranking priority. That is, the question generating and rank-
ing module in standard CCBR can be influenced.

Dialog case RETAIN. With the conversational applica-
tion case retrieval going on, more and more successful di-
alogs will take place, and if we add all of them into the dia-
log case base as dialog cases, the dialog case base will grow
rapidly. A dialog case learning strategy is needed to main-
tain the dialog case base during the run time to improve its
capability without expanding too much.

An Implemented Instance of the Dialog
Learning Enhanced CCBR Framework

In an attempt to evaluate whether our proposed framework
can empirically improve the efficiency of the CCBR pro-
cess, we have implemented an instance of this framework
and evaluated it using a set of test datasets.

Underlying CCBR Process

We define an application case (ac) as

ac :< {fvw}, as >

Here,ac, {fvw}, andas express an application case, a set
of three-item vectors (< f, v, w >) used to express the prob-
lem description of the application caseac, and the solution
contained in caseac, respectively. In the present paper, our
only concern is how to identify the most similar case from
the case base (RETRIEVE), not the reuse of the case, so the
outcome part of the case is dropped.< f, v, w > is a vector
that describes a feature in caseac, in which f denotes the
feature name,v the feature value, andw is the importance
weight for featuref .

A new case in the CCBR process has only the{fvw} part,
while a stored application case has both the{fvw} andas
parts.

To complete a CCBR process, we further define the fol-
lowing two modules: application case RETRIEVE, and
question generating and ranking.

Application case RETRIEVE. In this experiment, we
adopt a weighted k-NN algorithm to complete the applica-
tion case retrieval task, in which the first k most similar cases
are returned. The number k, typically 7, is used to control
the number of cases that will be shown to the user in each
conversation session in CCBR.

359

We use a global feature weighting method, similar to
EACH (Salzberg 1991), to get a set of global weights, one
for each feature appearing in the application case base.

The similarity measurement between a new case and a
stored application case is defined using the concept of dis-
tance. The greater the distance between the new case and
a stored application case, the lower the similarity between
them is.

distance(an, ac) =

√

∑

f∈{f} wfdif2(anf , acf)
∑

f∈{f} wf

(1)

wherean, ac, {f} andwf denote an application new case, a
stored application case, a feature set only including features
appearing inan and the importance weight for a featuref ,
respectively.dif(anf , acf) is a function used to compute
the difference between the new case and a stored application
case on a featuref , and is defined as follows:

dif(anf , acf) =


























|anf − acf | f is numeric (normalized)
max{anf , 1 − anf} f is numeric (normalized)

andacf is missing
0 f is nominal andanf = acf

1 f is nominal, andanf 6= acf

or acf is missing
(2)

In (Gu, Tong, & Aamodt 2005), the authors argue, sup-
ported by experimental evidence, that the query-biased simi-
larity calculation method (only taking the features appearing
in the query (new case) into account during similarity com-
putation) is the one most suitable for CCBR applications.
The reason is that the new case in CCBR is incomplete and
partially specified, and the query-biased similarity method
can avoid the negative influence of the features that appear
in the stored case but have not been assigned values in the
new case. Therefore, in Equation 1,{f} takes the value of
all the features appearing in the new case.

Question generating and ranking. In our implementa-
tion, the features that appear in the application case base
but have not been assigned a value in the current new case
will be transferred as discriminative questions. Discrimina-
tive questions are ranked before being displayed to users.
A weight-based question ranking strategy is used in our ap-
proach. For example, assume that there are three questions
transferred from three features, A, B, and C with the weights
values, 0.1, 0.2, and 0.05, respectively (learned from the
feature weighting process). According to the weight-based
question ranking strategy, their priority to be shown to users
will be ranked as B, A, and C. The basic idea underlying
this strategy is that the most relevant or important features
can provide more information than other features to discrim-
inate one case from others.

So, after a user provides her initial problem description, a
case retrieval process will be executed, and the first returned
k cases and the ranked discriminative questions are shown.

If she can find her desired case, the CCBR process is termi-
nated, otherwise, she will select and answer one question.
An updated new case is constructed through adding the an-
swered feature into the previous new case, and a new round
of the RETRIEVE process starts. The retrieving, question-
ing, and answering cycle continues until the case is selected
or no question is available.

Dialog Learning Enhanced Process
According to the framework introduced above, our imple-
mented dialog learning process contains the following four
parts:

Dialog case base. A dialog case (dc), in our approach, is
defined as:

dc :< {fvwp}, ds >

Here, dc, {fvwp}, and ds express a dialog case, a set of
four-item vectors (< f, v, w, p >) describing the problem
description of the dialog casedc, and a dialog solution re-
ferring to the retrieved application case following the dialog
process, respectively.< f, v, w, p > is a vector that de-
scribes a feature in the dialog casedc, in which f denotes
the feature name,v the feature value,w is the importance
weight for featuref , andp is an integer value that expresses
the appearance position of featuref in the dialog process.

A new case in the dialog learning enhanced CCBR is sim-
ilar to that in CCBR introduced in the above subsection, but
in order to support the dialog case retrieval, we add the fea-
ture position information into it. That is, the form of a new
case in the dialog learning enhanced CCBR is ’{fvwp}’,
instead of ’{fvw}’.

Dialog case RETRIEVE. In our research we define the
distance equation between a dialog new case and a stored
dialog case as follows:

distance(dn, dc) =
√

∑

f∈{f} wfposw(dnf , dcf)dif2(dnf , dcf)
∑

f∈{f} wf

(3)

where dn, dc, {f}, and wf denote a dialog new case, a
stored dialog case, a selected feature set, and the importance
weight for the featuref , respectively.

In Equation 3,wf anddif(dnf , dcf) have the similar def-
inition as in Equation 1. In addition,posw(dnf , dcf) is a
function used to compute the weight concerning the appear-
ance position of featuref in the dialog new case,dn, and
the stored dialog case,dc:

posw(dnf , dcf) =
1

2
+

1

2
∗ (1 −

|p(dn, f) − p(dc, f)|

max(dialoglength(dn), dialoglength(dc))
)

(4)

where p(dn, f), p(dc, f), dialoglength(dn), and
dialoglength(dc) denote the appearance position of

360

featuref in the new case,dn, and that in the dialog case,
dc, and the dialog length of the new case and that of the
dialog case. In addition, if a dialog case,dc, has missing
value on feature,f , we assign1

2
to posw(dnf , dcf). The

underlying idea behind this equation is that the more similar
the appearing positions of the feature in the new dialog
case and the stored dialog case, the more important the
difference of this feature between these two cases is to the
similarity calculation.

Following the idea in (Gu, Tong, & Aamodt 2005), since
we basically use the same new case to retrieve in both ap-
plication case base and dialog case base, it is reasonable
to adopt the query-biased similarity calculation method in
the dialog case retrieval process, that is,{f} is assigned the
same value as in Equation 1: all the features appearing in the
new case.

Based on Equation 3, a 1-NN algorithm is used to retrieve
the most similar dialog case.

Dialog case REUSE. In our implementation, the most
similar dialog case is used for two tasks: adjusting the dis-
played application cases and adjusting the discriminative
question ranking priorities in the current dialog session.

For the first task, if the application case acting as the so-
lution in the most similar dialog case is not included in the k
most similar application cases, we use it to replace the least
similar application case in the k returned cases. Concern-
ing the second task, the following equation is used to adjust
the weights of the candidate questioning features that also
appear in the most similar dialog case:

wf = wf+

(
1

2
+

1

2
∗ (1 −

p(dc, f))

dialoglength(dc)
))(1/|total feature set|)

(5)

where|total feature set| is the number of the features that
appear in the application case base.

Through increasing the weights of those candidate fea-
tures that also appear in the retrieved most similar dialog
case, those discriminative questions transferred from these
features will be ranked with higher priority.

Dialog case RETAIN. If a successful conversational case
retrieval takes place, whether this new dialog process should
be stored as a dialog case is decided by the dialog case learn-
ing strategy. Our dialog learning strategy only stores the
most general dialog cases in the case base. The relation,
more general than (�), between two dialog cases is defined
as:

< {fvwp}1, ds1 >�< {fvwp}2, ds2 > :

ds1 = ds2 and {fvwp}1 ⊆ {fvwp}2

(6)

Experiment Design
Our experiment is designed in an attempt to evaluate the
effectiveness of the dialog learning mechanism from the

perspective of using fewer dialog sessions to find the cor-
rect stored case. We use a leave-one-out cross validation
(LOOCV) method to simulate the human-computer dia-
log process; similar methods have been successfully used
by the CCBR community (Aha, Maney, & Breslow 1998;
Gu, Tong, & Aamodt 2005).

LOOCV proceeds with a series of simulated dialogs, each
dialog starting with selecting a case from the application
case base as the target case. The remaining cases form the
case base to be searched. The initial new case is constructed
through selecting the predefined number of features from
the target case. Based on this initial new case, a retrieval
process is carried out and the first k most similar cases are
returned. If the correct case is included in the returned ap-
plication case set, which means users find their desired case,
the conversation process is finished successfully. Otherwise,
a new feature is selected from the target case and added into
the current new case, simulating a question-answering ses-
sion between a human subject and a computer. The updated
new case is then used to start a new round of retrieval. The
retrieving, selecting, and adding cycle continues until the
correct case appears in the returned application case set or
there is no feature remaining to select in the target case.

There are two tasks we need to clarify in the above
LOOCV process: the feature selection strategy and the cor-
rect case determination.
Feature selection strategy. Feature selection strategy is
used to decide which feature should be selected from a
set of candidate features and added into the current new
case to simulate the question-answering process. In our
implemented CCBR, features are ranked according to their
weights. In LOOCV, we design a weight-biased random se-
lection strategy to simulate the discriminative question se-
lecting and answering process. For instance, suppose there
are three features, A, B, and C in the candidate feature set
with the weights values, 0.1, 0.2, and 0.3, respectively. Ac-
cording to the weight-biased random feature selection strat-
egy, feature A, B, C will be selected with the possibilities1

6
,

1

3
, and1

2
, respectively.

Correct case determination. For each case in the applica-
tion case base, its correct case, or to be more specific: its
correctly matching case, is defined as the case returned by a
weighted 1-NN algorithm and with the same solution value.
Therefore, not all the cases in the application case base can
act as a target case to simulate a dialog. If a case has a
nearest neighbor with a different solution value, it will be
dropped from LOOCV.

According to whether or not the dialog learning mecha-
nism is used, the above LOOCV gets two variants. To each
variant the above LOOCV cycle is executed twice with the
aim to inspect the continuous learning characteristics of the
dialog learning mechanism. For the LOOCV process with-
out the dialog learning mechanism, the execution contexts
are exactly the same for both two cycles. For that with the di-
alog learning mechanism, the only difference between these
two cycles lies in the dialog case base content. That is, for
the first cycle, the dialog case base is initially empty, while
the dialog case base in the second cycle starts with a set of

361

Table 1: Datasets description and experiment results

Dataset Total Feat Solut DLNL DLL Cases DLNL DLL Cases Ave

Cases -ures -ions C1 C1 C1 C2 C2 C2 Shorten

Anneal 898 38 5 22.56 21.69 822 22.54 18.52 530 10.86%

Anneal Original 898 38 6 4.59 4.62 623 4.55 3.76 228 8.30%

Audiology 226 69 24 28.69 27.57 171 27.55 22.70 131 10.59%

Autos 205 25 7 3.07 2.69 147 3.37 3.17 141 9.02%

Balance Scale 625 4 3 3.04 3.20 369 3.06 2.36 -39 9.08%

Breast Cancer 286 9 2 5.42 5.30 153 5.39 4.59 52 8.47%

Breast-W 699 9 2 5.58 5.56 421 5.61 5.10 160 4.74%

Credit Approval 690 15 2 8.49 8.47 507 8.53 5.93 104 15.42%

Credit German 1000 20 2 6.66 6.61 622 6.61 5.65 235 7.67%

Diabetes 768 8 2 5.27 5.39 532 5.37 3.35 114 17.90%

Glass 214 9 7 3.69 3.83 145 4.06 2.91 60 13.16%

Heart Statlog 270 13 2 5.74 5.54 189 5.85 5.47 139 5.07%

Heart-h 294 13 5 5.30 5.08 190 5.37 4.43 79 10.97%

Heart-c 303 13 5 5.73 5.76 215 5.85 5.20 139 5.43%

Hepatitis 155 19 2 7.59 7.82 119 7.69 6.77 79 4.49%

Horse Colic 368 22 2 4.77 4.84 220 4.86 3.61 20 12.25%

Horse Colic Original 368 27 2 7.73 7.56 203 7.79 6.01 53 12.58%

Hypothyroid 3772 29 4 17.91 17.23 2882 17.93 15.61 1116 8.38%

Ionosphere 351 34 2 5.48 5.38 310 5.46 5.22 296 3.02%

Iris 150 4 3 2.31 2.28 123 2.35 1.84 30 11.69%

Kr-vs-kp 3196 36 2 21.13 21.07 2778 21.12 18.62 1337 6.08%

Labor 57 16 2 2.90 2.90 42 2.76 2.98 27 -3.89%

Lymph 148 18 4 6.99 7.06 114 7.19 6.56 89 3.96%

Primary Tumor 339 17 8 6.46 6.31 97 6.01 5.51 73 5.25%

Segment 2310 19 7 5.69 5.71 2130 5.81 4.18 1297 14.05%

Sick 3772 29 2 18.05 17.36 2983 18.09 15.82 1062 8.19%

Sonar 208 60 2 5.82 6.18 182 5.66 5.33 179 -0.24%

Soybean 683 35 19 14.22 13.22 498 14.42 8.91 177 22.73%

Vehicle 846 18 4 6.23 6.40 594 6.11 4.39 383 12.46%

Vote 435 16 2 7.81 7.42 243 7.80 6.89 69 8.36%

Vowel 990 13 11 3.23 3.19 962 3.27 2.99 707 4.98%

Zoo 101 17 7 5.86 5.92 86 5.52 5.55 62 -0.81%

Average 8.25 8.10 614.75 8.24 6.87 285.28 8.44%

dialog cases learned from the first cycle1.

We further identify the following hypothesis to test:

H1: the dialog learning mechanism is effective, that is, the
CCBR system with the dialog learning mechanism is able to
find the correct case using fewer dialog sessions than the one
without dialog learning.

H2: the dialog learning mechanism is sustainable, that
is, with the dialog learning process going on and more di-
alog cases being stored in the dialog case base, the perfor-
mance of the dialog learning enhanced CCBR system keeps
increasing.

H3: the dialog case base is maintainable, that is, with
the dialog learning process going on, the dialog learning en-
hanced CCBR system retains fewer dialog cases to save.

1The random feature selection process (weight-biased) leads to
different questioning sequences in two LOOCV cycles for each
simulated target case. To some extent this compensates for the
problem of the test set being biased by the training set.

Experiment Environment, Datasets and
Results

We implement the experiment inside the Weka framework
(Witten & Frank 1999), and test it using the datasets pro-
vided by the Weka project, originally from the UCI reposi-
tory (Newmanet al. 1998). There are 36 datasets available,
and we choose 32 from them. The dataset selection criterion
is quite simple, that is, the 4 datasets with the largest sizeare
dropped out because they need too much execution time.

All the numeric features in these datasets are normalized
using the corresponding filter provided in Weka3.4.3 accord-
ing to the requirement of the distance calculation algorithm.
The detailed information of the selected datasets is illus-
trated in the left part of Table 1, in which the first 4 columns
denote respectively: the name of each dataset (Dataset), the
number of the cases (TotalCases), the total number of the
features excluding the solution feature (Features), and the
number of categories or solutions (Solutions).

The experiment results are listed in the right part of Table
1, in which the columns: DLNLC1, DLLC1, CasesC1, and
NLDLC2, DLLC2, and CasesC2 denote the average dialog

362

length without the dialog learning mechanism, the average
dialog length with the dialog learning mechanism, and the
number of the dialog cases obtained in the dialog case base
in the first cycle and in the second cycle of LOOCV for each
dataset.

To clearly show whether the dialog learning process really
improves the dialog efficiency, we add one column into Ta-
ble 1, AveShorten, to illustrate the percentage of the reduced
dialog sessions in CCBR using the dialog learning mecha-
nism for each dataset. And the last row gives the average
values of the result parameters for all the 32 datasets.

Out of 32 datasets, there are 29 datasets in which CCBR
enhanced by the dialog learning mechanism uses fewer dia-
log sessions to find the correct case than that without the dia-
log learning process (average using 8.44% fewer dialog ses-
sions). Comparing the average results of the first LOOCV
cycle with those of the second one, we can see that CCBR
without the dialog learning mechanism uses almost the same
dialog lengths in both the first and the second LOOCV cycle
(8.25≈8.24), while CCBR with the dialog learning process
uses fewer dialog sessions to find the correct case in the sec-
ond LOOCV cycles than in the first cycle (6.87<8.10), and
the stored dialog cases in the second cycle are also fewer
than in the first cycle (285.28<614.75).

To show how significant the experiment results support
the hypothesis identified in last section, we carry out the
hypothesis testing (one-tailed t-test with two related sam-
ples). The average values of column ’DLNLC1’ and col-
umn ’DLNLC2’, and that of column ’DLLC1’ and column
’DLNLC2’ for each dataset are calculated and taken as the
hypothesis testing parameter for H1; The values in column
’DLLC2’ and column ’DLLC1’ are selected as the testing
parameter for H2; And for H3, the values in column ’Cas-
esC2’ and column ’CasesC1’ are used as the testing param-
eter. With the degree of freedom of 31 and the significance
level of 0.01, we find out the critical value as 2.457. For the
three hypotheses listed above, we get the t values as 5.23,
5.80, and 3.81, respectively. Since all the calculated t val-
ues are larger than the critical value, we reject all the null
hypotheses and accept the three original hypotheses.

Conclusion
In this paper, we propose a dialog learning framework in
CCBR, implement it, and evaluate it based on 32 datasets.
The evaluation results give us significant evidence to sup-
port our hypotheses, that is, the dialog learning mechanism
is effective and sustainable, and the dialog case base is main-
tainable.

Our conclusion is drawn based on the two cycles of
LOOCV. A long term real human-subject based experiment
would give us more solid evidence to our hypotheses. In
addition, though the dialog learning enhanced CCBR stores
fewer dialog cases in the second evaluation cycle than in the
first, the size of the dialog case base is comparable to or even
larger than the application case base, which demands a con-
siderable memory space and CPU time to retrieve inside. We
are now focusing on designing a better dialog learning strat-
egy to retain fewer dialog cases without reducing the system
efficiency significantly.

In a practical CCBR application, whether this dialog
learning mechanism should be adopted depends on the
tradeoff between the dialog efficiency improvement and the
resource cost (both CPU time and memory space). In ad-
dition, if a knowledge-intensive question selection method
(Gu & Aamodt 2005) is used, in which discriminative ques-
tions are ranked also based on the semantic relations among
them, more research is needed on how to combine the se-
mantic question ranking with the question ranking priority
adjustment in dialog case REUSE.

References
Aamodt, A., and Plaza, E. 1994. Case-based reasoning:
Foundational issue, methodological variations, and system
approaches.AI Communications7(1):39–59.
Aha, D. W.; Breslow, L.; and Muñoz-Avila, H. 2001.
Conversational case-based reasoning.Applied Intelligence:
The International Journal of Artificial Intelligence, Neu-
ral Networks, and Complex Problem-Solving Technologies
14(1):9.
Aha, D. W.; Maney, T.; and Breslow, L. 1998. Support-
ing dialogue inferencing in conversational case-based rea-
soning. InEuropean Workshop on Case-Based Reasoning,
262–273.
Cunningham, P.; Bergmann, R.; Schmitt, S.; Traphoner,
R.; Breen, S.; and Smyth, B. 2001. Websell: Intelligent
sales assistants for the world wide web.KI - Kunstliche
Intelligenz1:28–31.
Göker, M. H., and Thompson, C. A. 2000. Personalized
conversational case-based recommendation. Inthe 5th Eu-
ropean Workshop on Case-Based Reasoning.
Gu, M., and Aamodt, A. 2005. A knowledge-intensive
method for conversational cbr. In:Proceedings of the 6th
International Conference on Case-Based Reasoning.
Gu, M.; Tong, X.; and Aamodt, A. 2005. Comparing sim-
ilarity calculation methods in conversational cbr. In:Pro-
ceedings of the 2005 IEEE International Conference on In-
formation Reuse and Integration.
Kolodner, J. 1993.Case-based reasoning. Morgan Kauf-
mann Publishers Inc.
Newman, D.; Hettich, S.; Blake, C.; and Merz, C.
1998. Uci repository of machine learning databases
[http://www.ics.uci.edu/ mlearn/mlrepository.html].
Salzberg, S. 1991. A nearest hyperrectangle learning
method.Mach. Learn.6(3):251–276.
Schmitt, S. 2002. simvar: A similarity-influenced question
selection criterion for e-sales dialogs.Artificial Intelligence
Review18(3-4):195–221.
Shimazu, H. 2002. Expertclerk: A conversational case-
based reasoning tool for developing salesclerk agents in e-
commerce webshops.Artificial Intelligence Review18(3-
4):223 – 244.
Witten, I. H., and Frank, E. 1999.Data Mining: Practi-
cal machine learning tools with Java implementations, vol-
ume 10 ofMorgan Kaufmann Series in Data Management
Systems.

363

