
Improving Case-Based Recommendations using Implicit Feedback

Deepak Khemani, Mohamed A.K. Sadiq, Rakesh Bangani, Delip Rao

Department of Computer Science and Engineering,
Indian Institute of Technology Madras,

Chennai – 600 036, India.

khemani@iitm.ac.in, {sadiq, rbangani, delip}@cse.iitm.ernet.in

Abstract
A recommender system suggests items to a user

for a given query by personalizing the
recommendations based on the user interests. User
personalization is usually done by asking users either
to rate items or specify their interests. Generally users
do not like to rate items; an alternative approach
would be to implicitly track user’s behaviour by
observing their actions. In this paper, we build a
recommender system by using case-based reasoning to
remember past interactions with the user. We
incrementally improve the system recommendations
by tracking user’s behaviour. User preferences
captured during each interaction with the system are
used to recommend items even in case of a partial
query. We demonstrate the proposed recommender
system in a travel domain that adapts to different kinds
of users.

Introduction
Case Based Reasoning (CBR) can be traced back to
storing episodes in memory (Schank 1999; Kolodner
1993). From its more cognitive origins, CBR gradually
emerged and stabilized as a form of instance based
learning (Mitchell 1997). This change was spurred on by
a large number of successful industrial applications (Lenz
et al. 1998; Watson 1997; Leake 1996). In the course of
this transformation, CBR became an approach that was
focused on inexact retrieval using a notion of similarity.
Thus CBR evolved as a technique in which problem-
solution descriptions are stored in a case base and the
notion of inexact retrieval is deployed to implement the
heuristic “similar problems have similar solutions”. The
fact that CBR provides a methodology for storing and
reusing experience has even led to the emergence of an
area called Experience Management (Bergmann 2002).
The notion of dynamic memory for a problem-solving
agent pertains to some form of learning from experience.

Compilation copyright © 2006, American Association for Artificial
Intelligence (www.aaai.org). All rights reserved.

Learning in CBR is instance based viz. every new
experience is stored as an instance. This aspect of CBR
was somewhat lost when CBR was used as a retrieval
mechanism in recommender systems (Burke 2000), in
which given a query, the most similar product or package
is retrieved from a database.

In this paper we explore how a recommender system can
learn from its experience with the user and maintain usage
information to anticipate the requirements of similar users
in subsequent interactions. The motivation is to emulate a
human agent who often makes recommendations like
“This tour package to Gangotri is very popular” or “The
chicken tikka here has been selling like hot cakes”. We
demonstrate that a system that keeps track of the values of
attributes that occur in successful cases can then pick
cases that are tuned to the user preferences.

In our experiments, the weights used to aggregate local
similarity to a global measure are chosen arbitrarily, and
yet the system orders cases such that the case selected by
the user from the retrieval set is increasingly higher in
rank. Furthermore, one can design systems that track
different kinds of users if they are cherished clients, and
anticipate their requirements. We demonstrate this by
using queries of decreasing specificity and show that even
with a query containing few attributes the system still
retrieves cases with feature values that the users had
earlier wanted.

Related Work
A recommender system suggests products or services in
response to a query, based on the personal interests of the
users. It helps the user to overcome the problem of
information overload by providing personalized
recommendations. Examples of recommender systems
include recommending books, CDs, and other products at
Amazon.com (Linden, Smith and York 2003), movies by
MovieLens (Miller et al. 2003) and news at VERSIFI
Technologies (Billsus et al. 2002). The personalization
information is obtained by building user profiles
describing the characteristics of the user such as age,
gender, income, marital status and/or their interests. The
user information is mostly collected by explicitly asking
the users to either rate a (partial) set of items or select
their interests in the list provided.

364

The existing recommendation approaches could be
classified as content-based filtering, collaborative
filtering, knowledge-based approach and hybrid
approaches (Burke 2002). In content-based filtering
approach, an item is recommended to the user by
estimating the rating of the non-rated items based on the
description of items rated by the user in the past. These
ratings could be estimated using various machine learning
techniques such as Bayesian classification, clustering,
decision trees and artificial neural networks (Pazzani and
Billsus 1997). In collaborative filtering approach, an item
is recommended to the user by estimating the ratings of
the non-rated items based on the ratings given to the items
by users with similar interest. In this case, the estimation
of the rating is done by using either some ad hoc heuristic
rules (Delgado and Ishii 1999) or a model learnt from the
underlying data using machine learning techniques
(Breese, Heckerman and Kadie 1998). Knowledge-based
recommender systems (Burke 2000) recommend items to
a user based on the available knowledge about the user
and items to satisfy user requirements. (Towle and Quinn
2000) discuss the significance of detailed explicit user and
product model representation for better recommendations.
Hybrid systems can be built by combining some of the
approaches based on the system’s requirements. A
detailed survey of such systems can be found in
Adomavicius and Tuzhilin (2005) and Burke (2002).

Case-based reasoning has been shown to be useful in
hybrid systems. PTV, a personalized TV recommender
system (O’Sullivan, Wilson and Smyth 2002) uses CBR
in combination with collaborative filtering approach. In
this paper we present a mechanism to learn user
preferences by incorporating the experience with the user
into the case-based retrieval process.

User Modeling
From the CBR point of view, we extend the notion of a
case base from being a collection of <description, lesson>
pairs to that of a knowledge base with <description,
lesson, usage> triplets. The usage component measures
the strength of a case from its utility perspective. We
approximate utility by how successfully the case was used
in the past. The idea is that such usage information can be
used towards ossification of cases as described in (Schank
1999). In a more dynamic environment in which new
solutions are proposed, they could enter the case base as
tentative solutions. These solutions would be available for
recall but would need to earn their spurs through
successful usage. Such new candidate solutions could be a
modified production plan in a manufacturing industry, a
new product introduced into the market in a recommender
system, or a solution found through a process of
adaptation in traditional CBR. In such environments it
would be meaningful to characterize cases not just by
their semantics, that is applicability, but also by their
demonstrated usefulness.

The proposed system keeps track of the values that occur
in successful cases. This information becomes a distinct
knowledge container, which can be thought of as a user
model. In other words, the user model here is an episodic
memory of the user’s preferences, maintained as usage
component. The usage component is represented in terms
of the occurrence frequencies of attribute values in the
retrieved cases and that in the cases selected by users. For
every user, a separate user model is maintained which acts
as an episodic memory that keeps track of successful
usage. On the other hand, the case base of attribute-value
pairs is like a semantic memory that describes the
problems and associated solutions.

Personalized Retrieval
We propose the Similarity-Usage Based Retrieval
(SUBR) approach, which incorporates the notion of usage
into retrieval. The description d of a case can be
characterized as a set of attribute-value pairs, d = {(a1, v1),
(a2, v2), … (an, vn)}. We define attrs(d) = {a1, a2, … an}
and d(ai) = vi. Similarly, a query q can also be
characterized as a set of attribute-value pairs, q = {(a1, v1),
(am, vm), … (ap, vp)}. We also define attrs(q) = {a1, am, …
ap} and q(ai) = vi. Let m be the number of attributes
whose values “match” with the query. This can be
formally stated as follows:

 (1)

where � is defined as follows:

if vi and vj are nominal and vi = vj

if vi and vj are cardinal and close(vi, vj)

Otherwise

The function close is defined as close: R × R � [0, 1].
The definition of close is domain dependent and returns
true if two numeric values from the domain are “close”
enough.

Consider a case c ∈ CB, where CB is the case base. Let
sim (q, c) be the similarity of a query q with the case c.
Any similarity function can be used here. We strengthen
this measure with a usage factor (Khemani et al. 2005) as
follows

 simusage (q, c, user model) = sim (q, c) × uc (2)

where uc estimates the utility of the case from past
history. Let rj be the frequency of vj’s presence in a
retrieved case and sj be the frequency of it occurring in a
case selected by users. Let n be the frequency of the case
c’s retrieval. We define uc as follows

�
�

�
�

�

=
0
1
1

),(ji vvµ

�
∩∈

=
)()(

))(),((
qattrsdattrsa

aqadm µ

365

(3)

where, sj ≤ rj ≤ n. Observe that uc lies in the range [0, 2].
Initially, the utility value for all the cases in the case base
is set to neutral (such that uc is 1) in order to avoid any
bias. The utility of the case, uc is greater than one when a
case was previously selected by the user and this results in
simusage > sim. Whenever a case was previously rejected,
i.e. retrieved and not selected, uc becomes less than one
thereby reducing the simusage score. It is to be noted that
the attribute values of the selected case are rewarded in
terms of their usage or utility, while the attribute values of
the rejected cases are penalized. Given the measure
simusage (q, c, user-model), the SUBR procedure constructs
a retrieval set, by retrieving the k cases with highest
simusage values.

System Evaluation
The architecture of the proposed system is depicted in
Fig. 1. The system consists mainly of three components
namely Query Generator, Retriever and User Simulator.
The case base represents the semantic memory while the
user model represents the episodic memory.

Query Generator

A query generator was designed to generate a large set of
queries uniformly spanning the query space (all possible
queries). It can also generate partial queries, which were
used for experiments. For such queries, the attributes to
be present in a query were randomly chosen and their
values were chosen uniformly from the attribute space.

��������������������������� � 	
� � �
 �� � �
� �
� ����� � 	
� � �
 �� � �
� �
� ����� � 	
� � �
 �� � �
� �
� ����� � 	
� � �
 �� � �
� �
� �� ����

Retriever

The retriever, as described in the previous section,
retrieves cases (items) from the case base using the

similarity measure and the usage information from the
user model. Note that the other stages of CBR like Reuse,
Revise and Retain (Aamodt and Plaza 1994) are not
discussed because they are not relevant to the experiment.

User Simulator

The user simulator attempts to act as the real world user.
It serves as a synthetic user to select cases for system
evaluation. We maintain user preferences as probability
distributions over the values of each attribute. This is
collectively referred as user-preference-data. The user-
preference-data is hidden from the retriever and user
model. In our experiments, we handcrafted the user-
preference-data for two users – a typical graduate student
and a typical corporate executive. Hence the task of this
simulator would be to select a case (from the retrieved set
of cases) on behalf of the real user based on the
probability values already set for the particular user. The
case, which maximizes the joint probabilities of its
matching attribute values, is selected. In the event of a tie,
we resolve it by considering the joint probabilities of all
the attribute values in those cases. This is analogous to a
situation where more than one case is of our interest and
we look at other characteristics of the items to make our
choice. We use the corresponding user-preference-data of
a user for experimental evaluation of the system.

User Model Update

The case selected by the User Simulator is taken as a
feedback by the system and its usage information is
updated to reflect user preferences in that case. The
preferences of attribute values in the selected case are
bolstered against the rejected ones.

Experimental Results
We use the case base from the travel agents domain
containing 1470 cases for our experiments. Originally
Lenz collected this data set for experiments in CBR (Lenz
1994). The symbolic attributes in this case base are tour
type, location, season, accommodation and transport type.
The numeric attributes are duration, cost and number of
persons.

In the experiments reported here, we simulated two kinds
of users namely the student and executive, by designing
their user-preference-data over different attributes to build
corresponding user simulators. For example, a student
may prefer a low cost accommodation to stay in; prefer a
trekking holiday; or like to travel by a train. The
experiments demonstrate that the system learns the
choices made during selection and personalizes the results
based on the user preferences learnt.

The system was given a set of thousand queries, starting
with complete queries and gradually reducing to partial
queries with decreasing specificity. This was done to test
the learning of user preferences even in the absence of

m

n

sr

r

s

u

m

j

jj

j

j

c

�
= �

�
�

�

	
	

� −
−+

=
1

)1(

366

certain attribute values. However, since the queries were
distinct in nature, the performance of our system
improves gradually. In case, the queries were repeated,
the performance would be more like traditional CBR,
retrieving the same cases after a few episodes.

The performance of our system’s learning with usage is
compared against unbiased system – using mere similarity
measure sim. The size k of the retrieval set was restricted
to ten for all the experiments discussed below. The plots
show the average rank of the selected cases for the given
set of thousand queries for both the systems. The figures
also show error bars with 95% confidence interval. The
error bars represent the variance of the ranks in the results
during the ten runs of the experiments.

Fig. 2.1 plots the system’s performance in learning
student preferences and that of executive user in Fig. 2.2
for the same set of queries. Both the plots also show the
results using the unbiased system. It can be seen that in
both scenarios, the learning system progressively ranks
the selected case higher than the unbiased system. The
two plots demonstrate that the user model acquired from
experience does result in learning the user preferences. It
may also be noted that the error bars also reduced during
the learning process for our system as compared to the
unbiased system.�

������ ����� � 	
� � ��� � �� �� ��	
� � � �
�� �� �� �� � � � 	������ ����� � 	
� � ��� � �� �� ��	
� � � �
�� �� �� �� � � � 	������ ����� � 	
� � ��� � �� �� ��	
� � � �
�� �� �� �� � � � 	������ ����� � 	
� � ��� � �� �� ��	
� � � �
�� �� �� �� � � � 	 ����

������ �� ��� � 	
� � ��� � �� �� ��� � � � �
�� � �� �� �� �� � � � 	������ �� ��� � 	
� � ��� � �� �� ��� � � � �
�� � �� �� �� �� � � � 	������ �� ��� � 	
� � ��� � �� �� ��� � � � �
�� � �� �� �� �� � � � 	������ �� ��� � 	
� � ��� � �� �� ��� � � � �
�� � �� �� �� �� � � � 	 ����

To demonstrate that the two user models that evolve
during learning process are different, we query the system
using the usage information from the student user model

and select a case using the two different user simulators.
Each user simulator selects a case according to its own
preferences as defined in the user-preference-data but
from the same retrieval set, the one tuned to the student.
As expected the case selected by the executive ranked
consistently lower than the case selected by the student.
The two plots are compared in Fig. 3.

����� � ������� � ������� � ������� � ��
 � � �� �� � �� � � � � �� 	 � �� �
� � � � � 	 � � � � � � ���� �� �
� � 	 � ��
 � � �� �� � �� � � � � �� 	 � �� �
� � � � � 	 � � � � � � ���� �� �
� � 	 � ��
 � � �� �� � �� � � � � �� 	 � �� �
� � � � � 	 � � � � � � ���� �� �
� � 	 � ��
 � � �� �� � �� � � � � �� 	 � �� �
� � � � � 	 � � � � � � ���� �� �
� � 	 � ��

	 �� � ��
� �	 �� � � ��	 � � � ���
��� � � ��	 �
	 �� � ��
� �	 �� � � ��	 � � � ���
��� � � ��	 �
	 �� � ��
� �	 �� � � ��	 � � � ���
��� � � ��	 �
	 �� � ��
� �	 �� � � ��	 � � � ���
��� � � ��	 �

Finally, to show that the user model that evolves for a
user is significantly different from other user models, we
looked for the specific case selected by the student
simulator (student-best-case) from the retrieval set of the
system while using the student user model, in the retrieval
set of the system while using the executive user model as
well as in the retrieval set of unbiased system. As
expected, the student-best-case was not present most of
the times in the other two retrieval sets. Fig. 4.1 shows the
number of times this case was present in the three
retrieval sets. By definition, it was always present in its
own retrieval set but only less than half the times in the
other two retrieval sets. In other words, more often than
not the systems not attuned to the student did not even
retrieve the student-best-case.

����� � ���� � �� �� � ��
� � � �� � �� 	 � � � � � � �� 	
� � � �
����� � ���� � �� �� � ��
� � � �� � �� 	 � � � � � � �� 	
� � � �
����� � ���� � �� �� � ��
� � � �� � �� 	 � � � � � � �� 	
� � � �
����� � ���� � �� �� � ��
� � � �� � �� 	 � � � � � � �� 	
� � � �
!!!!� � 	
� � 	
� � 	
� � 	
!!!!� � 	 � � �� �� � 	 � � �� �� � 	 � � �� �� � 	 � � �� �

� � ���
��� � � ��	 �
	
� � ���
��� � � ��	 �
	
� � ���
��� � � ��	 �
	
� � ���
��� � � ��	 �
	

It was also observed that even when the student-best-case
was present in the other two retrieval sets, its rank was
always lower than that in the student retrieval set. Fig. 4.2

0

1

2

3

4

5

6

Q1-1
00

Q10
1-

20
0

Q20
1-

30
0

Q30
1-

40
0

Q40
1-

50
0

Q50
1-

60
0

Q60
1-

70
0

Q70
1-

80
0

Q80
1-

90
0

Q90
1-

10
00

Queries

A
ve

ra
g

e
R

an
k

Student

unbiased

0

1

2

3

4

5

6

7

Q1-1
00

Q10
1-

20
0

Q20
1-

30
0

Q30
1-

40
0

Q40
1-

50
0

Q50
1-

60
0

Q60
1-

70
0

Q70
1-

80
0

Q80
1-

90
0

Q90
1-

10
00

Queries

A
ve

ra
g

e
R

an
k

Student

Executive

0

1

2

3

4

5

6

Q1-1
00

Q10
1-

20
0

Q20
1-

30
0

Q30
1-

40
0

Q40
1-

50
0

Q50
1-

60
0

Q60
1-

70
0

Q70
1-

80
0

Q80
1-

90
0

Q90
1-

10
00

Queries

A
ve

ra
g

e
R

an
k

Executive

unbiased

367

shows the average rank of the student-best-case in the
three retrieved sets, whenever it was present. The student
performance is the same as in earlier plots. The other two
plots in the graph are ranks averaged only when the case
was present in the retrieval set.

������ �� ��
 � � �� �� ��� � � �� ��
� � �	
� � � �
������ �� ��
 � � �� �� ��� � � �� ��
� � �	
� � � �
������ �� ��
 � � �� �� ��� � � �� ��
� � �	
� � � �
������ �� ��
 � � �� �� ��� � � �� ��
� � �	
� � � �
!!!!� � 	
� � 	
� � 	
� � 	
!!!!� � 	 � ��� �
� � �� � 	 � ��� �
� � �� � 	 � ��� �
� � �� � 	 � ��� �
� � �

��
��� � � ��	 �
	 �" � � � ����
��� � � ��	 �
	 �" � � � ����
��� � � ��	 �
	 �" � � � ����
��� � � ��	 �
	 �" � � � ��
�" � 	 �� �� 	 � �
�
�" � 	 �� �� 	 � �
�
�" � 	 �� �� 	 � �
�
�" � 	 �� �� 	 � �
�����

We conclude this section by considering sample queries
from the execution. We presented two queries Q1 and Q2
to the system before and after the learning, such that Q1 is
a superset of Q2. The query Q1 is a more specific query
than Q2. The query Q2 specifies that eight people want to
wander around for six days within a budget of $1100,
while the query Q1 specifies in addition that the above
holiday should be during May and they would prefer a 3-
star hotel. Before learning, different cases are selected for
queries Q1 and Q2 using student’s preferences as shown
in Table 1. After learning, the queries Q1 and Q2 both
result in the same case being selected, as shown in Table
2. This case is different from the ones selected before
training and is also ranked high. It should also be noted
that after learning, even though Q2 was less precise than

Q1, the system was able to recall what the user desired.
This demonstrates that the system already had an idea of
what the user wanted and a detailed query does not make
a difference. The description of the cases selected is
shown in Table 3.

Conclusions and Future Work
We demonstrated that by using the feedback of cases
selected by users from retrieval sets, a recommender
system could learn to anticipate the cases that a user or a
group of users may want. The system does this by
keeping track of the values of the attributes that occur in
the successful cases. The similarity based retrieval
method is augmented to use this statistical information to
induce a new ordering on the cases where the cases with
more frequently occurring values are placed higher.
Observe that this value learning is different from weight
learning that has been reported (Aha and Wettschereck
1997).

In the experiments it is shown that when a case base
accrues usage information for a user, then it tends to pick
those cases, the user had preferred earlier. In an extreme
situation even with hardly any information in the query,
such a system can pick a case that would satisfy the user.
This is akin to the situation when you walk into your local
pub, and the barman comes up to you with “The usual?”,
without you having specified anything. The system
demonstrated here uses frequency information of values
of attributes that occur in successful cases. It does not
however keep track of combinations of preferred values.
The above work assumes that the user preferences are
static. It would also be interesting to design systems that
adapt to changing user preferences.

� � �� ����� � � � �� �$ � � �� �� � � � �
�� � �� � ��# � � �� ����� � � � �� �$ � � �� �� � � � �
�� � �� � ��# � � �� ����� � � � �� �$ � � �� �� � � � �
�� � �� � ��# � � �� ����� � � � �� �$ � � �� �� � � � �
�� � �� � �� �� ��� � �� �� ��� ��� � �� �� ��� ��� � �� �� ��� ��� � �� �� �����

ATTRIBUTES TOUR TYPE NO. OF

DAYS
COST NO. OF

PERSONS
MONTH ACCOMMO

DATION
SELECTED

CASE ID
RANK

QUERY Q1 WANDERING 6 $1100 8 MAY 3-STAR 105 2

QUERY Q2 WANDERING 6 $1100 8 84 7

����

� � �� �� ��� � � � �� �$ � � �� �� � � � �
�� � �� �
� ���� � �� �� �# � � �� �� ��� � � � �� �$ � � �� �� � � � �
�� � �� �
� ���� � �� �� �# � � �� �� ��� � � � �� �$ � � �� �� � � � �
�� � �� �
� ���� � �� �� �# � � �� �� ��� � � � �� �$ � � �� �� � � � �
�� � �� �
� ���� � �� �� �����

ATTRIBUTES TOUR TYPE NO. OF

DAYS
COST NO. OF

PERSONS
MONTH ACCOMMO

DATION
SELECTED

CASE ID
RANK

QUERY Q1 WANDERING 6 $1100 8 MAY 3-STAR 435 2

QUERY Q2 WANDERING 6 $1100 8 435 2

0

1

2

3

4

5

6

7

Q1-1
00

Q10
1-

20
0

Q20
1-

30
0

Q30
1-

40
0

Q40
1-

50
0

Q50
1-

60
0

Q60
1-

70
0

Q70
1-

80
0

Q80
1-

90
0

Q90
1-

10
00

Queries

A
ve

ra
g

e
R

an
k

Student

unbiased

Executive

368

# � � �� �� ��% � 	 � ���
�� � �� ��
� � �	 � �� �
� � �� � 	 � 	# � � �� �� ��% � 	 � ���
�� � �� ��
� � �	 � �� �
� � �� � 	 � 	# � � �� �� ��% � 	 � ���
�� � �� ��
� � �	 � �� �
� � �� � 	 � 	# � � �� �� ��% � 	 � ���
�� � �� ��
� � �	 � �� �
� � �� � 	 � 	 ����

ATTRIBUTES TOUR TYPE NO. OF

DAYS
COST NO. OF

PERSONS
LOCATION MONTH ACCOMMOD

ATION
TRANSPORT

TYPE

CASE ID 105 WANDERING 7 $1172 3 HARZ MAY 3-STAR CAR

CASE ID 84 WANDERING 7 $944 8 BAVARIA AUGUST FLAT CAR

CASE ID 435 WANDERING 14 $1008 2 CARINTHIA MAY 2-STAR CAR

References

Aamodt, A., and Plaza, E. 1994. “Case-Based Reasoning:
Foundational Issues, Methodological Variations and
System Approaches”. AI-Communications 7(1), pp. 39-
52.

Adomavicius, G., and Tuzhilin, A. 2005. “Towards the
Next Generation of Recommender Systems: A Survey of
the State-of-the-art and Possible Extensions”, In IEEE
Transactions on Knowledge and Data Engineering, vol.
17, no. 6, pp. 734-749.

Aha, D. W., and Wettschereck, D. 1997. “Case-based
learning: Beyond classification of feature vectors”, In
Proceedings of the Ninth European Conference on
Machine Learning, pp. 329-336.

Bergmann, R. 2002. “Experience Management:
Foundations, Development Methodology, and Internet-
Based Applications”, Lecture Notes in Artificial
Intelligence, Vol. 2432, Springer Verlag.

Billsus, D.; Brunk, C.A.; Evans, C.; Gladish, B., and
Pazzani M. 2002. “Adaptive Interfaces for Ubiquitous
Web Access”, In Communications of ACM, vol. 45, no. 5,
pp. 34-38.

Breese, J. S.; Heckerman, D.; and Kadie, C. 1998.
“Empirical Analysis of Predictive Algorithms for
Collaborative Filtering”, In Proceedings of 14th
Conference on Uncertainty in Artificial Intelligence, pp.
43-52.

Burke, R. 2000. “Knowledge-based Recommender
Systems. In A. Kent (ed.), Encyclopedia of Library and
Information Systems. Vol. 69, Supplement 32. New York:
Marcel Dekker.

Burke, R. 2002. “Hybrid recommender systems: Survey
and experiments”. User Modeling and User Adapted
Interaction, pp. 331-370.

Delgado, J., and Ishii, N. 1999. “Memory-Based
Weighted-Majority Prediction for Recommender
Systems”, In Proceedings of ACM SIGIR Workshop
Recommender Systems: Algorithms and Evaluation.

Khemani D., Sadiq M., Bangani R., and Rao D. 2005,
“What You Get is What You Wanted”, poster at 13th
International Conference on ADCOM, India.

Kolodner, J. 1993. “Case Based Reasoning”, Morgan
Kaufmann, San Mateo.

Leake, D. 1996. “Case Based Reasoning: Experiences,
Lessons, and Future Directions”, AAAI Press/MIT Press,
Menlo Park.

Lenz, M. 1994. “Case-Based Reasoning for Holiday
Planning”, (Eds.) Schertler, W., Schmid, B., Tjoa, H.
Werthner, In Information and Communications
Technologies in Tourism, pp. 126-132, Springer Verlag.

Lenz, M.; Bartsch-Sporl, B.; Burkhard, H.D.; and Wess,
S. (Eds.) 1998. “Case Based Reasoning Technology”,
Lecture Notes in Artificial Intelligence 1400, Springer
Verlag.

Linden, G.; Smith, B.; and York, J. 2003, “Amazon.com
Recommendations: Item-to-Item Collaborative Filtering”,
In IEEE Internet Computing, pp. 76-80.

Mitchell, T., 1997. “Machine Learning”, McGraw Hill.

Miller, B.N.; Albert, I.; Lam, S.K.; Konstan, J.A.; and
Riedl, J., 2003. “MovieLens Unplugged: Experiences
with an Occasionally Connected Recommender System”,
In Proceedings of International Conference Intelligent
User Interfaces.

O'Sullivan, D.; Wilson, D.C.; and Smyth, B., 2002.
“Improving Case-Based Recommendation: A
Collaborative Filtering Approach”, In Proceedings of
European Conference on Case-Based Reasoning, pp. 278-
291.

Pazzani, M., and Billsus, D., 1997. “Learning and
Revising User Profiles: The Identification of Interesting
Web Sites”, Machine Learning, vol. 27, pp. 313-331.

Schank, R. 1999. “Dynamic Memory Revisited”,
Cambridge University Press.

Towle, B. and Quinn, C. 2000, “Knowledge Based
Recommender Systems Using Explicit User Models”, In
Knowledge-Based Electronic Markets, Papers from the
AAAI Workshop, pp. 74-77.

Watson, I. 1997. “Applying Case-Based Reasoning;
Techniques for Enterprise Systems”, Morgan Kaufmann
Publishers.

369

