
DRAFT – Monday, 13. February 2006 14:30

Reducing the Case Acquisition and Maintenance Bottleneck with
User-Feedback-Driven Case Base Maintenance

Markus Nick

Fraunhofer Institute for Experimental Software Engineering (IESE)
Fraunhoferplatz 1, 67663 Kaiserslautern

markus.nick@iese.fraunhofer.de

Abstract
Current case acquisition and case base maintenance tech-
niques implement quality assurance for cases through
reviews or by analyzing case properties before making a case
available for retrieval. Since reviews of cases with much tex-
tual data, in particular, cannot be fully automated, this is
done by a maintenance team. With limited resources, this
maintenance team becomes a bottleneck. To reduce this bot-
tleneck, our idea is to move parts of the case acquisition and
maintenance tasks to the user. With this, the maintenance
team needs to do case maintenance only for cases with an
‘out of range’ quality. Obviously, this idea requires changes
to the CBR process and system design. This is described by
our experience feedback loop design concept, which is pre-
sented in this paper. This design concept contains a user-
feedback-driven case base maintenance technique as its core
element. This design concept has been validated positively
in real-world projects for intra-organizational CBR systems
with tight integration into business processes and into the
respective tools.

Introduction
Users expect a certain level of quality in the cases that they
retrieve from a CBR system. The perceived usefulness of
the retrieved cases from the users’ view depends on the
quality of the different knowledge containers. [Althoff
et al. 2000] provided a cause-effect model for usefulness
deficiencies. For optimal usefulness, the most relevant
cases have to be retrieved, which depends on the similarity
models, and the relevant cases have to be correct and under-
standable, which depends on the cases themselves, etc.
Here, we focus on the quality of the cases, i.e., on case base
maintenance problems. Particularly cases with much tex-
tual information –like lessons learned or mainly textually
described problem-solution pairs– require editorial work in
some way, i.e., they have to be entered into the system and
reviewed regarding their quality [Basili et al. 1994, Weber
et al. 2001].

CBR maintenance research has already developed tech-
niques for supporting or automating the review of cases.
Several techniques address the automatic detection of qual-
ity problems using technical properties of cases and case
base (e.g., redundancy, coherence, consistency) [e.g., Rein-

artz et al. 2001, Racine and Yang 2001]. However, these
can hardly detect mistakes in the contents, which requires
reviews by humans. The collaborative maintenance tech-
nique of [Ferrario and Smyth 2001] automatically organizes
such reviews of new cases by a group of reviewers.

Obviously, with evolving case knowledge, review pro-
cess and maintenance team become a case acquisition and
maintenance bottleneck - if the volume of the respective
activities exceeds the available resources.

The goal of our approach is to reduce this bottleneck.
The idea is to move parts of the case acquisition and main-
tenance tasks to the user in his business process. Instead of
guaranteeing that all cases have a certain minimal quality
level, we require of the user that (1) he is able to enter and
update cases and (2) is able to better judge the usefulness of
cases using the additional validity information, and (3) is
willing to give feedback that can be used for automatically
maintaining this case validity information. Thus, the main-
tenance team has to be triggered only if the quality/validity
of a case is out of an acceptable range. This validity
describes (1) how often an experience/case has or has not
“worked” (i.e., its applicability) and (2) how well it per-
formed (i.e., its effects).

This is realized with a user-feedback-driven case base
maintenance strategy by our experience feedback loop, a
design concept for CBR systems that consists of (1) a novel
process model for CBR that enables the automatic mainte-
nance of case validity information using feedback from the
user during the CBR process and (2) a technique for auto-
matically diagnosing the need for maintenance using this
validity information.

In case studies in nine real-world projects, the feasibility
of our approach has been evaluated and validated positively
for tightly integrated intra-organizational CBR technology-
based experience management systems.

This paper is structured as follows: First, the experience
feedback loop design concept is presented. This includes
process, validity function, impact on a CBR system’s
knowledge representation and validity-related operations
on the case base, and an example. Second, the validity-
based diagnosis for maintenance need is described. Third,
the evaluation of the approach is presented. Finally, the
paper is summarized and some conclusions are drawn.Copyright © 2006, American Association for Artificial Intelligence

(www.aaai.org). All rights reserved.

376

DRAFT – Monday, 13. February 2006 14:30

Experience Feedback Loop

Process
The experience feedback loop’s process describes a CBR
process that operationalizes standard CBR cycles [Aamodt
and Plaza 1994, Kolodner 1993, Reinartz et al. 2001] with
a so-called “case evaluation/revision in the real world using
feedback” – in the terms of Aamodt & Plaza or Kolodner.
For this purpose, the CBR process is embedded into a busi-
ness process and has feedback steps and validity monitor-
ing. A separate organizational unit is responsible for the
maintenance of the CBR system and the knowledge stored
in it. We call this unit experience factory [Basili
et al. 1994]. The combination of the experience factory
approach with the CBR cycle of [Aamodt and Plaza 1994]
by [Tautz and Althoff 1997] is the basis of our model. The
experience feedback loop runs as follows (Figure 1):

Business process side: Using context information from
the business process and further user input (e.g., problem
specification) as a query specification, the case base is
searched and the best-matching case is selected for reuse. If
necessary, the user modifies this selected case before its
application. If no case has been found, a new case is created
(like a hypothesis), which is then treated as the selected or
modified case. Then the user gives a priori feedback about
his expectations regarding the effects of the case on his cur-
rent task in the business process. Then the user applies the
case in the business process. If the case does not work for
the task of the user, the user either modifies the case, which
creates a new case (subsequent modifications do not create
further new cases), or he restarts with «search and select»,
or he gives up and ends the application with negative
a posteriori feedback. If the user could apply the case suc-
cessfully, appropriate feedback is given and actual effects
are stated.

Experience factory side: The validity monitoring compo-
nent collects the feedback and automatically calculates the
validity using the validity function explained below. The
validity information is used for enhancing search result pre-

sentations and for automatically triggering maintenance for
cases with insufficient validity.

User-Feedback-based Case Validity Function
Using the collected feedback for every reuse attempt, the
validity is calculated for each case. This case validity is
defined as

validity(case C) := < applicability score of C,
effects statistics of C >

The applicability describes if a case “worked” in a reuse
attempt. For each reuse attempt, the user specifies whether
the reused case was «applicable» or «not applicable». If a
new case has been created, the user specifies whether the
trial of the case “worked” (i.e., «applicable») or not (i.e.,
«not applicable»).

For each case, the applicability information from all
related reuse attempts is aggregated:

applicability score(case C) :=
[#reuse attempts where C was applicable,

#reuse attempts where C was not applicable]
Obviously, the value range for the applicability and the

applicability score function are application-independent.
The effects describe how well a case “worked” in a reuse

attempt. For each reuse attempt, the expected effects can be
collected before the application and the actual effects can
be collected after the application. The interpretation of the
effects obviously also depends on the applicability result
for the reuse attempt because the effects are positive for
“applicable” and negative for “not applicable”. Further-
more, expected and actual effects can differ. There are two
reasons: (1) The context changed during the reuse or (2) the
case appears in a way that leads to misunderstanding and
wrong expectations. The latter case impacts validity nega-
tively because expectations that are too low or too high can
lead to the selection of cases other than the one that would
be optimal for the current work context.

The result of the aggregation of the effects for a case are
the so-called effects statistics. Obviously, their definition is
application-specific – like the definition of the effects them-
selves.

applyfeedback
a priori

expected
effects

actual
effects

retrieve
(search &

select)

not
applicable

restart

maintenancetriggers

context
from

business
process

modify
before
reuse

create

applicability

feedback
a posteriori

validity
information
for cases of

retrieval result

validity monitoring

business process with
CBR process steps

experience factory

modify
during reuse

Figure 1: The experience feedback loop’s process is a CBR process with feedback steps and validity monitoring, where
cases are mainly entered and updated by the users during their work in their business processes.

377

DRAFT – Monday, 13. February 2006 14:30

Impact on Knowledge Representation Model and
Knowledge Processing
Collecting such feedback has an impact on the design of the
CBR system regarding the knowledge representation model
and case base operations.

Knowledge representation model: To allow computation
of the validity function by the system, the applicability and
effects information has to be stored in the case base. For
this purpose, a so-called occurrence entity is added for each
case entity. Occurrences reflect actual reuse attempts that
succeeded or failed – in a specific context. In an occur-
rence, the applicability and effects information for a reuse
attempt is stored. Thus, –if a context is stored as well– the
occurrence qualifies the relation between case and context.
The respective knowledge model pattern is as follows:

There are two mandatory attributes: The occurrence’s
«applicability» as specified above, and a «status» attribute
for the case. Before being applied, the status is «uncon-
firmed». After application, the status becomes «con-
firmed». When the case becomes obsolete, the status is
changed to «obsolete». The retrieval searches only in «con-
firmed» cases and uses the validity-related functions to
enhance the search result presentation.

Case base operations for validity monitoring: The appli-
cability score [#applicable, #not applicable] is calculated
as the cardinality of the case-occurrence relation with
respect to «applicable» and «not applicable». For the effects
statistics, the calculation is application-specific – as stated
above. For this automatic validity calculation purpose, the
validity monitoring component must store all feedback for
the current reuse attempt in its occurrence instance.

For each reuse attempt, an occurrence instance is created
immediately after the selection of the case. If no case is
selected for reuse, a new case is created and the new occur-
rence is linked to it. This is necessary for storing a priori
feedback. Furthermore, this allows collecting and storing
feedback for all CBR process steps after the retrieval step.

The modification of cases is divided into semantic and
syntactic changes. Only semantic changes change the
meaning of a case. Thus, syntactic changes can be made at
any time without impacting the validity values.

Whenever a confirmed case is to be modified semanti-
cally, a new «unconfirmed» case is created and the link
from the occurrence for the current reuse attempt is moved
to the new case. If the experience factory itself triggers a
semantic change (i.e., without relation to reuse attempts),
the new case’s status must be set to «confirmed» to include
it in future retrievals.

Example from Project indiGo
The example from the Project indiGo (www.indigo.fraun-
hofer.de) has the following setting: A company has an
experience management system for project management
experiences focusing on risks, observations, and problem-
solution pairs about customer interaction. For example,
experiences on how timely a partner delivers the required
input are used for optimizing project plans. These experi-
ences are stored as cases in a CBR system, which allows
similarity-based retrieval of experiences considering situa-
tion and project context characteristics. The experience
base is queried before project acquisition talks, during
project planning, and before project meetings. The experi-
ences give insights about the specific issues to consider
with a specific customer or a specific domain. Experiences
are stored after the respective events (i.e., acquisition talks
and meetings) or at the end of the respective phases.

With an experience feedback loop, the usage of an expe-
rience is tracked and feedback is collected for every appli-
cation of an experience. For each reuse of a risk experience,
an occurrence links the risk to the project where it was
applied. This (1) describes the context of the risk and
(2) allows determining the applicability score as number of
project contexts where the risk has been applicable and
where it failed (i.e., not applicable).

For an example risk “needed data not available on time”,
this is seen by the user over time as shown in Figure 2. The
risk is first encountered in Project X1. After Project X1, its
applicability score is [1:0]; after Project X2, it is [2:0]; and
after Project X3, it is [3:0]. Project Y1 is conducted after
the change to the business processes. Thus, the risk does not
apply and the applicability score becomes [3:1]. For Project
Z, the project planner sees that he has to take care because
the risk was not applicable all the time. He checks the reuse
history of the risk and notices that it was not applicable the
last time, which might mean that company A has improved.
However, he decides to still add some slack time for data
from A in order to be on the safe side.

The example shows that the user is better informed in his
decision making and can use the validity information to
judge how much he can trust an experience/case.

Context 0 n 0n Occurrence
•applicability
•actual effects
•expected effects

Case
•status
•validity()
•applicability score()
•effect statistics()

time

Company A
improves

its business
processes

Project ZProject Y1Project X1 X2 X3

Risk: Needed data not
available on time.

• Consequence: Project
not finished on time

• Contexts where
applicable: (#: 3)
- Projects X2, X3, X4

with Company A
• Context where

not applicable: (#: 0)

Risk: Needed data not
available on time.

• …
• Contexts where

applicable: (#: 3)
- Projects X2, X3, X4

with Company A
• Context where

not applicable: (#: 1)
- Project Y1 with A

Figure 2: Experience reuse and maintenance with an expe-
rience feedback loop by the example of the Project indiGo

378

DRAFT – Monday, 13. February 2006 14:30

Using Case Validity To
Diagnose Maintenance Need

Using the validity function, the need for maintenance can
be diagnosed for the cases in the case base.

The first diagnosis step can be fully automated as fol-
lows: A tuple <case, context, applicability, actual effects>
is compared pair-wise for case-context pairs. For each ele-
ment of the tuple, the result is «same» or «different».
«same» refers to identical case attribute values. For textual
attributes, this would mean that the text has the same mean-
ing (how to do this technically for text is beyond the scope
of this paper). For this comparison of tuple pairs, a com-
plete table has been compiled (Table 1). For each possible

comparison result, there is one row in the table that speci-
fies the top-level diagnosis and refers to the respective
maintenance policy that has to be applied.

There are four validity anomalies that can be diagnosed:
• A context applicability inconsistency is defined as the

same case having been applied in the same context and
situation with different results regarding applicability.

• An effect inconsistency is defined as the same case hav-
ing been applied in the same context and situation with
the same applicability and with different effects.

• When variations in the case (e.g., slightly different reac-
tions) lead to a slightly different effect, this is referred to
as effect variation. An effect variation also means that
case and context do not capture in sufficient detail what
led to the effect variation.

• An alternative in a specific context is a case that is dif-
ferent regarding its contents, but has the same applica-
bility and same effects for a specific context. This can
be relaxed to having “almost the same effects” (how-
ever, this would introduce an overlap with the definition
of “effect variation”).

The maintenance policies required for Table 1 are shown in
Figure 3. Each has a condition that activates the policy and

Table 1: Combinations of applicability and effects for
groups of case-context pairs, respective diagnosis and
maintenance policies.

observation/
indicationa

(regarding
>=2 case-con-
text pairs)

a. ‘s’ = same, ‘d’ = different. ‘*’ = ‘same/different’. This refers to seman-
tically same/different items (see explanation in text).

diagnosis OK? maintenance policy

ca
se

s

co
nt

ex
ts

ap
pl

ic
ab

ili
ty

ac
tu

al
 e

ff
ec

ts

s s d d context applicability
inconsistency

no MP-1 "Detect context
applicability inconsisten-
cies."

s s d s context applicability
inconsistency
or typob

b. Having the same effects is actually nonsense, which favors the typo as
diagnosis.

no MP-1 "Detect context
applicability inconsisten-
cies."

s d sc

c. This is the only case where the applicability value itself makes a dif-
ference for the diagnosis because the diagnosis itself refers to a appli-
cability value.

* more generality
(if all applicable)

ok

more negative cases
(if all not applica-
ble)c

no MP-3 "Too many nega-
tive contexts for a spe-
cific case."

s d d * more “experiences”
about applicability

If #pairs >=3 then a subset can
lead to one of the diagnoses in
the three above rows.

s s s d effect inconsistency no MP-2 "Detect effect
inconsistencies."

effect variation ok Optimization regarding
effect is possible

d s s s context-specific
alternatives

ok

d s d * more different cases ok
d d * *

• MP-1 "Detect context applicability inconsistencies."
– Condition:1

For the occurrences of a case C:
A new occurrence O1 and an old occurrence O2 exist with
O1.context = O2.context and
O1.applicability != O2.applicability.

– Diagnosis 1: user has selected wrong applicability
– Diagnosis 2: identify further attribute in case or context

that allows to differentiate for the occurrences
– extend knowledge model with new attribute
– if attribute is in context:

– copy context and move link to copied context
– set value for new attribute for old and new context

– if attribute is in case:
– copy case and move link with context to copied case
– set value for new attribute for old and new case

• MP-2 "Detect effect inconsistencies."
– [as for the context applicability inconsistency]

• MP-3 "Too many negative contexts for a specific case." 2
– Condition: for a case,

ratio #’not applicable’ / #finished_occurrences > X%
AND #finished_occurrences > N

– Diagnosis 1: errors in the case itself
-> modify case; set status to ‘obsolete’ if further usage of
the old case should be avoided

– Diagnosis 2: the case was proposed due to bugs in the
retrieval

1 For offline or cumulative maintenance, the checked occurrences
have to be marked.

2 #finished_occurrences := (#occurrences where applicability != un-
defined)

Figure 3: Maintenance policies for Table 1

379

DRAFT – Monday, 13. February 2006 14:30

further diagnosis and maintenance actions. The different
further diagnoses for some maintenance policies show that
human interaction is required to make the respective deci-
sions. Furthermore, the maintenance actions themselves
include human decision making, e.g., determining which
attribute is missing due to a context applicability inconsis-
tency and determining if adding the attribute is reasonable
in an economical sense.

Since Table 1 is complete regarding the comparison
results, the first diagnosis step can be automated, e.g., using
our EMSIG framework [Nick et al. 2001]. Furthermore,
thresholds regarding the number of allowed case-context
pairs for each validity anomaly allow specifying quality
requirements from new and updated cases in a well-defined
and controllable manner.

Evaluation
To evaluate the feasibility of the experience feedback loop
concept, its crucial points, which enable its proper function,
have to be analyzed. Since its proper function is based on
the correct interaction of the users with the CBR system,
the respective capabilities and the willingness of the users
have to be evaluated and impacting factors have to be iden-
tified. This leads to the following three questions, which
address the respective items from the introduction section:
1. Do users understand validity information?
2. Do users accept such systems where they have to enter

cases and give feedback?
3. Do users give a sufficient amount of feedback?
For all questions, it has to be analyzed under which circum-
stances this is feasible.

Research method: For obtaining evident evaluation
results, we chose case studies in real-world projects to get
realistic results. The experience feedback loop concept and
its refinements have been iteratively developed and tried in
nine real-world projects (i.e., research and industrial
projects) since 1998. Details can be found in [Nick 2005].
For this paper, we highlight two projects:

CBR-PEB is a web-based information system that pro-
vides a search on CBR products and applications. It is pub-
licly accessible (http://demolab.iese.fhg.de:8080).

ITFMS is an experience-based IT failure management
system, which has been used since the 4th quarter of 2004
by the IT service of the city treasury of Cologne. The sys-
tem provides experience-based suggestions for reactions to
IT failures. This is integrated into the failure handling pro-
cess and system. The system has its roots in the SKe project
[Nick et al. 2003]. Its concepts have also been transferred
and extended in an industrial project.

Understandability of validity information: In 2 projects,
we surveyed intended users and other stakeholders in work-

shops during the development of the CBR systems. In both
cases, the applicability score, i.e., [#applicable, #not appli-
cable], was perceived as easily understandable.

Overall acceptance: Sustained usage is a long-term indica-
tor for the acceptance of the system. The usage of the sys-
tem is monitored over time. For this purpose, a system is
regarded as accepted if it has been used more than one year
in accordance with expected trends.

In general, the systems developed in seven of the
projects show sustained usage for more than one year. Sys-
tems from two projects are too new to be evaluated regard-
ing sustained usage. Thus, acceptance is given.

In general, we identified a lower usage level in the
cross-organizational systems (3 projects – including CBR-
PEB) in comparison to the intra-organizational systems.
Particularly the acquisition and recording of new cases has
been more difficult than in the intra-organizational setting.
Thus, the factor intra-/cross-organizational setting is
regarded as a major factor for the acceptance of the experi-
ence feedback loop.

Rate of feedback: Another crucial issue is the feedback
rate, because the validity function can only be sufficiently
correct if there is a representative amount of feedback. For
CBR-PEB, the rate over five years was approx. 9%. For the
ITFMS, the rate was almost 100%. The major differences
between the two systems are (1) an integration of the
ITFMS into day-to-day work (which is not at all the case
for CBR-PEB), (2) a relatively short-term reuse of the
information entered into the system by a closed user group
(“relatively short-term” means less than one year), and
(3) intra-organization vs. cross-organization use.

Conclusions and Future Work
For CBR systems in domains with evolving case knowl-
edge, the presented experience feedback loop design con-
cept reduces the case acquisition and maintenance bottle-
neck. This is achieved by (1) the creation and update of
cases by the user in his business processes and
(2) automated detection of maintenance need using a user-
feedback-based validity function. Case studies in real-
world projects demonstrate the feasibility regarding the
critical points of this approach. With this, it is feasible to
limit the maintenance team’s tasks to the maintenance of
cases with automatically identified validity problems that
have occurred in reuse attempts.

In contrast to current approaches that implement a
‘review of case quality before application’ strategy [e.g.,
Ferrario and Smyth 2001], the experience feedback loop
implements a kind of ‘review by application’ strategy. This
becomes acceptable for the user by making the validity of
cases transparent to him, which requires the validity to be
sufficiently correct and up-to-date.

380

DRAFT – Monday, 13. February 2006 14:30

The case validity function is guaranteed to be correct and
up-to-date only if the process steps of the experience feed-
back loop are executed correctly and if the feedback is
stored correctly and completely. Theoretically, this can only
be guaranteed if (1) the feedback loop process steps are
tightly integrated into the surrounding business process
(e.g., through process integration for stable business pro-
cesses) and (2) the maintenance operations are guaranteed
to be executed (e.g., through tool integration). The case
studies in real-world projects demonstrate that this tight
integration is essential for a validity function with proper
results. This requirement is acceptable in practice because
recent studies underline the necessity of such a tight inte-
gration for the success of knowledge management systems
in general [e.g., Mertins et al. 2003, Weber et al. 2001].

The maintenance policies for diagnosing the need for
maintenance are complete in the sense that they address all
possible validity anomalies. Thresholds for the anomalies
limit the triggering of maintenance to cases where the
anomalies are considered to be severe enough and, there-
fore, reduce the effort on the part of the maintenance team.
Currently, these thresholds are being determined in work-
shops with the stakeholders in order to ensure that the
thresholds adhere to the organization’s existing policies.

The experience feedback loop design concept has been
systematically refined into a set of 26 models (see my work
described in [Nick 2005]). This model set enables a check-
list-based requirements analysis and the design of experi-
ence management systems. The model set addresses further
issues such as reuse of several items (as a configuration).
The usage of the model set for requirements analysis and
design showed an efficiency improvement of a factor >3 for
experienced and >11 for inexperienced developers of expe-
rience management systems. The measured efficiency
improvements make the design method applicable to small/
medium-scale systems and rapid prototyping.

Currently, we are working on extending and tailoring the
concept to enable systems to be self-aware of how much
they can trust their knowledge and use this in their actions.
This requires, e.g., to learn and adapt thresholds automati-
cally over time and to cope with incomplete feedback and
noise. Such techniques are relevant for the field of Ambient
Intelligence where nodes/devices of any size have to run,
make decisions, and learn from effects on the environment
with as little human intervention as possible to achieve, on
the human side, a “feeling” of being in an intelligent adap-
tive environment –as a kind of friend, Fr. bel ami– that reli-
ably acts and learns on its own.1

References
Aamodt, A. and Plaza, E. 1994. Case-based reasoning:
Foundational issues, methodological variations, and system
approaches. AICom - Artificial Intelligence Communica-
tions, 7(1):39–59.
Althoff, K.-D., Nick, M., and Tautz, C. 2000. Systemati-
cally diagnosing and improving the perceived usefulness of
organizational memories. In Ruhe, G. and Bomarius, F., edi-
tors, Learning Software Organizations - Methodology and
Applications, Springer Verlag, Heidelberg, Germany. Num-
ber 1756 in Lecture Notes in Computer Science, 72–86.
Basili, V. R., Caldiera, G., and Rombach, H. D. 1994. Expe-
rience Factory. In Marciniak, J. J., editor, Encyclopedia of
Software Engineering, John Wiley & Sons. volume 1.
Ferrario, M. A. and Smyth, B. 2001. Distributing case-base
maintenance: The collaborative maintenance approach.
Computational Intelligence, 17(2):315–330.
Kolodner, J. 1993. Case-Based Reasoning. Morgan Kauf-
mann.
Mertins, K., Heisig, P., and Vorbeck, J., editors 2003. Del-
phi study on the future of knowledge management - Over-
view of the results, 179–190. Springer, Berlin.
Nick, M. 2005. Experience Maintenance through Closed-
Loop Feedback. PhD thesis, University of Kaiserslautern.
Published by Fraunhofer IRB Verlag.
Nick, M., Althoff, K.-D., and Tautz, C. 2001. Systematic
maintenance of corporate experience repositories. Compu-
tational Intelligence, 17(2):364–386.
Nick, M., Groß, S., and Snoek, B. 2003. How knowledge
management can support the it security of egoverment ser-
vices. In Wimmer, M., editor, Proceedings of the Fourth
Conference on Knowledge Management in Electronic Gov-
ernment (KMGov), Lecture Notes in Computer Science.
Racine, K. and Yang, Q. 2001. Redundancy detection in
semistructured case bases. IEEE Transactions on Knowl-
edge and Data Engineering, 13(3):513–518.
Reinartz, T., Iglezakis, I., and Roth-Berghofer, T. 2001.
Review and restore for case base maintenance. Computa-
tional Intelligence, 17(2):214–234.
Tautz, C. and Althoff, K.-D. 1997. Using case-based rea-
soning for reusing software knowledge. In Leake, D. and
Plaza, E., editors, Proceedings of the Second International
Conference on Case-Based Reasoning, Springer Verlag.
Weber, R., Aha, D. W., and Becerra-Fernandez, I. 2001.
Intelligent lessons learned systems. International Journal
of Expert Systems - Research & Applications, 20(1).

1 Project BelAmI (Bilateral German-Hungarian Research Col-
laboration on Ambient Intelligence Systems)
www.belami-project.org

381

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /ENU (Use these settings to create PDF documents with higher image resolution for high quality pre-press printing. The PDF documents can be opened with Acrobat and Reader 5.0 and later. These settings require font embedding.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /FRA <FEFF004f007000740069006f006e007300200070006f0075007200200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020005500740069006c006900730065007a0020004100630072006f0062006100740020006f00750020005200650061006400650072002c002000760065007200730069006f006e00200035002e00300020006f007500200075006c007400e9007200690065007500720065002c00200070006f007500720020006c006500730020006f00750076007200690072002e0020004c00270069006e0063006f00720070006f0072006100740069006f006e002000640065007300200070006f006c0069006300650073002000650073007400200072006500710075006900730065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e00650020007100750061006c00690074006100740069007600200068006f006300680077006500720074006900670065002000410075007300670061006200650020006600fc0072002000640069006500200044007200750063006b0076006f0072007300740075006600650020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e00200042006500690020006400690065007300650072002000450069006e007300740065006c006c0075006e00670020006900730074002000650069006e00650020005300630068007200690066007400650069006e00620065007400740075006e00670020006500720066006f0072006400650072006c006900630068002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e00200045007300740061007300200063006f006e00660069006700750072006100e700f50065007300200072006500710075006500720065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e0067002000740069006c0020007000720065002d00700072006500730073002d007500640073006b007200690076006e0069006e0067002000690020006800f8006a0020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e00200044006900730073006500200069006e0064007300740069006c006c0069006e0067006500720020006b007200e600760065007200200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f00670065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000610066006400720075006b006b0065006e0020006d0065007400200068006f006700650020006b00770061006c0069007400650069007400200069006e002000650065006e002000700072006500700072006500730073002d006f006d0067006500760069006e0067002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e002000420069006a002000640065007a006500200069006e007300740065006c006c0069006e00670020006d006f006500740065006e00200066006f006e007400730020007a0069006a006e00200069006e006700650073006c006f00740065006e002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200071007500650020007000650072006d006900740061006e0020006f006200740065006e0065007200200063006f007000690061007300200064006500200070007200650069006d0070007200650073006900f3006e0020006400650020006d00610079006f0072002000630061006c0069006400610064002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e0020004500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007200650071007500690065007200650020006c006100200069006e0063007200750073007400610063006900f3006e0020006400650020006600750065006e007400650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e0020004e00e4006d00e4002000610073006500740075006b0073006500740020006500640065006c006c00790074007400e4007600e4007400200066006f006e0074007400690065006e002000750070006f00740075007300740061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007000720065007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e002000510075006500730074006500200069006d0070006f007300740061007a0069006f006e006900200072006900630068006900650064006f006e006f0020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006800f800790020007500740073006b00720069006600740073006b00760061006c00690074006500740020006600f800720020007400720079006b006b002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e00200044006900730073006500200069006e006e007300740069006c006c0069006e00670065006e00650020006b0072006500760065007200200073006b00720069006600740069006e006e00620079006700670069006e0067002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006600f60072002000700072006500700072006500730073007500740073006b0072006900660074006500720020006100760020006800f600670020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e00200044006500730073006100200069006e0073007400e4006c006c006e0069006e0067006100720020006b007200e400760065007200200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

