
Abstract
Cognitive modeling has outgrown the toy problems
of the research labs and is increasingly tackling In-
dustrial size applications. This growth is not
matched in terms of software tools and methodolo-
gies. In this paper, we propose a systematic auto-
mated approach for verifying the correctness of
cognitive models. We present a modular specifica-
tion language, define model correctness, and pre-
sent algorithms for automatically checking that a
model meets its specifications.

1 Introduction
Cognitive models (CM) are slowly but surely leaving the

research laboratories and increasingly used in commercial
applications such as evaluating user interfaces such as cell
phone menus (Amant et al. 2004), war gaming for military
training (Doesburg, et al. 2005, Ritter et al. 2003), and vir-
tual actors and elaborate and credible computer game char-
acters (Funge 2000). The size and level of complexity of
these models are not matched by the state of the art in the
software engineering of cognitive models, which is still in
its infancy stage (Ritter et al. 2003); models are still created
from scratch with little reuse taking place; the validation of
models is exclusively done through extensive testing (Ritter
et al. 2000).

The goal of this research is to contribute to addressing the
need for rigorous tools and methodologies for the efficient
development of reliable cognitive models by developing
appropriate specification languages and methodologies (Mili
and Macklem 2005), verification techniques to ascertain the
validity of a model (Macklem 2005), and methodologies for
reusing cognitive models through composition (Gilmer et al
2004). In this paper, we focus on the verification of cogni-
tive models. We start by briefly describing the specification
language developed in section 2. We define the notion of
correctness of a cognitive model with respect to its specifi-
cation in section 3, and then describe the verification algo-
rithms in section 4. In section 5, we discuss the implementa-
tion of these algorithms. We summarize our results and dis-
cuss future extensions of this work in section 6.

2 Specification of Cognitive Models

2.1 Requirements for CM Specifications
In order to verify that a model meets its requirements, these
requirements must be captured in some precise, non-
ambiguous form, i.e. in some formal specification language.
Yet, in the domain of cognitive modeling in particular, and
in artificial intelligence in general, there has not been an
established tradition or practice to fully capture require-
ments. We identify three key impediments to the use of
formal specifications with CMs, and state how we have ad-
dressed each with our patterns and conflicts specification
language and methodology.
 The tasks modeled are often ill-structured and hard to
specify in a closed-form manner. We address this issue by
opting for a modal specification language and approach.
Tasks are specified in an incremental manner, capturing one
aspect at a time. The overall specification is the sum of the
partial specifications.
 CMs simulate the processes of human behavior and prob-
lem solving, they are best qualified as reactive systems
whose specifications cannot be adequately captured by
state-based specification languages whose focus is on pre-
conditions and post-conditions (Bellini, Mattolini, and Nesi
2000, Wang 2003). We address this by adapting a specifica-
tion language that captures reactive behavior, yet, is intui-
tive and easy to read and write (as compared to temporal
logic, for example).
 CMs are bound by two types of requirements: the compe-
tency requirement that they must perform the task at hand
(e.g. drive, solve a puzzle), and the cognitive requirement
that they perform it in a “human-like” manner. The lan-
guage developed has the expressive power to capture both;
the methodology allows us to capture them separately and to
verify them independently.
 We introduce the specification language briefly and infor-
mally using a small example. We consider a cognitive
model developed to solve the Tower of Hanoi problem with

Formal Verification of Cognitive Models

A. Macklem, F. Mili
Oakland University

Rochester, MI 48309-4478
macklem@oakland.edu, mili@oakland.edu

420

<put, large, B> <put, medium, B>

<put, small, B>

<pick-up, large> <pick-up, medium>

three pegs A, B, and C and three disks small, medium and
large. The competency requirement for this problem dictates
that, upon completion, the disks must all be on peg B in the
correct order, i.e.:

“Final configuration= [small, medium, large] on B”.
The competency requirement dictates also that all disk
movements must be compliant with the rules of the game,
and will include constraints such as:
 “No disk can be picked up before the last one picked up is

put down.”
The cognitive requirements, on the other hand, cover condi-
tions that describe the human-like aspects that we need to
impose on the model such as:

“there must be some trial and error.”
In other words, we are not interested in producing the recur-
sive systematic solution to the problem.

2.2 Specification Language
We view the specification of a CM as a set of constraints on
its traces, where a trace is the sequence of observable events
perceived by and generated by the CM in the course of exe-
cuting a task. We adapt the concept of patterns and conflicts
introduced by Nodine et al. (Nodine et al 1995) used to
specify correct transaction schedules in cooperative settings.
Patterns are constraints that specify interleaving between
events that must take place such that “every pick-up disk d
must be followed by a put-down disk d.” Conflicts are con-
straints that specify interleaving that must never take place
such as “(must never) place disk d1 over disk d2 where d1 >
d2.” Selecting a language to capture the patterns and con-
flicts is a tradeoff between expressive power and ease of
manipulation –notably verification in our case. In this paper,
we use the restricted version of this language by limiting
ourselves to regular languages. In other words, patterns and
conflicts are captured using regular grammars or finite state
automata for example.

We illustrate below the finite automata capturing some of
the Tower of Hanoi requirements.

Figure 2.1 Pattern P1: Eventually large, medium, and

small disks are place on B
Pattern P1, Figure 2.1, states that eventually the three disks
large, then medium, then small are placed on B. The last
step: placing the small disk (successfully) terminates the
pattern. Note that the initial state in P1 is not an accepting
state, capturing the fact that P1 is not satisfied until the three
disks make it to their final destination. By contrast, the ini-
tial state of pattern P2, Figure 2.2, is an accepting state; but
should a disk d be picked up, then the pattern is not satisfied

until that disk is placed back. P2 does not require that the
disk be put back immediately; thus the need for C1. C1,
Figure 2.3, states that once a disk d is picked up, picking up
any disk d’ (other than d) terminates the conflict (i.e. leads
to a conflict). Patterns and conflicts are expressed using the
same syntax, but interpreted differently. In a valid trace,
every activated pattern terminates, and no conflict termi-
nates.

Figure 2.2 Pattern P2: Every pick up disk must be followed
by a put disk.

Figure 2.3 Conflict C1: After a disk d is picked up, no other
pick up is allowed until d is put down.

 A formal definition of the pattern and conflict specifica-
tion language is available in (Macklem 2005). This exam-
ple suffices to illustrate an important benefit of this lan-
guage, namely its ease of use, for both writing specifications
and for reading them.

3 Defining Model Correctness
Given a model M, we define the semantics of M to be the

set of all possible traces generated by M. A model trace
consists of the set of events, actions, and decisions that are
either perceived or preformed by the model. Note that this
definition of semantics reflects the fact that a cognitive
model is characterized as much by its reactive ongoing be-
haviors as by the final outcomes of its decisions and actions.

The trace of a model is a string composed by symbols of
the trace alphabet. The trace alphabet consists of all events,
actions and decisions. Typically this alphabet is smaller
grain then the specifications’ alphabet. For example, for the
Tower of Hanoi, the specification alphabet contains symbols
capturing “put disk d on peg x”, whereas the model trace
alphabet consists of symbols capturing decisions such as
“select next disk to more”. This difference in the level of
abstraction is easily addressed by mapping the patterns and
conflicts to the model’s trace alphabet.

A model is correct with a specification expressed by a set
of patterns and a set of conflicts iff:

• Every trace T of the model is correct with every
pattern P in the specifications

• Every trace T of the model is correct with every
conflict C in the specifications

<pick-up, d>

<put, d, y>

<pick-up, d>

<put, d, x>

<pick-up, d’>

421

Intuitively, a trace is correct with a pattern iff the pattern
either does not occur or occurs completely. Similarly, a
trace is correct with a conflict if the conflict does not fully
occur within the trace. A model is correct is all of its traces
are correct, not just the ones we happened to generate (as in
testing).

4 Verification of Cognitive Models
The modularity of the specifications translates into modular-
ity in their verification. In other words, the competency and
cognitive requirements can be verified independently. Fur-
thermore, within each of them, each pattern and each con-
flict can be verified independently.
 By definition of correctness, each pattern and each con-
flict must be verified with respect to every trace of the
model. Obviously, we will not attempt to generate all the
traces individually; instead we build an abstract representa-
tion for this set in the form of a rooted graph. The set of
traces is the set of all paths from the root of the graph to a
leaf node.

4.1 Production Flow Graph
We call the graph representing all traces the Production
Flow Graph (PFG), by analogy to the control flow graphs
used in program analysis. A PFG is a labeled directed graph
G=<V,E,I> characterized as follows:

1. The set of vertices V represents the production rules;
there is one vertex ri for each production rule.

2. For every pair (ri, rj), if it is possible for production
rule rj to execute immediately following production
rule ri, then (ri, rj)єE.

3. For every edge (ri, rj) in E, the label l associated with
the edge is the action of ri ■

Note that the above is a characterization rather than a
strict definition of a PFG in the sense that we are defining a
lower bound but not an upper bound for E. We state which
edges must be included in E, but allow E to include more
than those pairs. This choice allows us to construct PFG
graphs easily—and iteratively as illustrated in section 5.

Figure 3.1 Production Rules and Related PFG

Figure 3.1 provides an example of three productions and
their corresponding production flow graph. First let’s con-
sider the productions in this example. The productions are
written using the syntax of the cognitive modeling language
ACT-R. The conditions of the production appear before the
==> sign, and the actions appear after it. These productions
refer to an important data structure in ACT-R, namely the
goal buffer. The goal buffer can have multiple attributes,
e.g. ISA, subgoal, disksize. For example, P1’s condition is
that the current goal has values place-disk and start respec-
tively with no restriction on the value of disksize. Most
productions modify the goal buffer in their action clause by
modifying the current goal or adding new sub-goals. Pro-
duction P1 updates the goal by changing the subgoal from
start to select-move.

Now, let’s consider the related PFG also shown in Figure
3.1. Within the PFG productions P1, P2, and P3 are repre-
sented as vertices. A directed edge exists between produc-
tions P1 and P2 and between P1 and P3 to illustrate that
following P1 either P2 or P3 may be executed. This was
determined because the actions of P1 do not conflict with
the conditions of P2 and P3. The labels on these two edges
encode the action of P1. In fact, as shown in section 5.1, a
PFG graph can be generated automatically from the set of
productions of a cognitive model.

4.2 Correctness with Patterns
Recall that for a trace to be correct with a pattern, the pat-
tern must not occur or must occur completely within the
trace. To show collectively that the set of all possible traces
is correct with respect to a pattern, we show that their repre-
sentation as a PFG is correct with a pattern.

Consider the example shown in Figure 3.2. We can
evaluate the correctness of the PFG graph with respect to
pattern P1 by determining if each occurrence of P1’s prefix
(first operation) within PFG is a complete occurrence of the
remaining pattern string. If the pattern prefix does not ap-
pear within the PFG, correctness is automatic. In the exam-
ple in Figure 3.2, the prefix of the pattern is the character
“a”. The prefix “a” has two occurrences on the FPG graph,
one on edge <1,2> and one on edge <1,8>. For the FPG to
be correct with respect to pattern P1 every path rooted at 2
and every path rooted at 8 must complete the occurrence.
This condition is satisfied by the paths rooted at 2 (namely:
<2,3,4,5> and <2,6,7,5>), as they each contain the remain-
ing pattern string “b,d”. The same cannot be said about the
paths rooted at 8. The only path rooted at 8 is <8,9> and it
does not complete the pattern P1. Therefore, the production
flow graph PFG is not correct with the pattern specification
P1.
The process used for evaluating a PFG’s correctness with a
pattern, as illustrated with the previous example, was auto-
mated. The algorithm starts by searching the PFG graph in
a depth-first manner checking for any label that matches the
prefix (first operation) of the pattern. If a match is not
found, the PFG is correct. If the prefix of the pattern is

422

found as the label of an edge eij, then every path leaving
vertex j must contain the remainder of the pattern.
One final point to address is the handling of cycles both
within patterns and within a PFG. In (Mili and Macklem
2005) we show how we eliminate cycles from patterns. Cy-
cles in the PFG are detected and handled during traversal by
the algorithm.

Figure 3.2 Evaluating correctness of PFG with respect to P1

4.4 Correctness with Conflicts
For a trace to be correct with respect to a conflict, the con-
flict must not fully occur within the trace. As with the pat-
terns, to show collectively that the set of all possible traces
is correct with respect to a conflict, we show that their rep-
resentation as a PFG is correct with the conflict.
 Before exploring the comparison process of a PFG with a
conflict, we must first address the use of conflict exception
strings. A conflict exception string may accompany a con-
flict string as needed to capture the notion of rolling back an
occurrence of a segment of a conflict string. For example,

 “no pick-up small disk can be followed by a put of me-
dium disk unless the small disk is put down first”
The conflict string would capture the no pick-up of small
disk followed by medium disk and the conflict exception
string would capture the unless the small disk is put down
first.

Accounting for the possible use of a conflict exception
string, means that a PFG is correct with a conflict only if
any full occurrence of the conflict within the PFG also con-
tains the conflict exception string.

Consider the example shown in Figure 3.3. We can
evaluate the correctness of the PFG with conflict C1 by de-
termining that no occurrence of C1’s prefix within PFG is
an entire occurrence of the conflict string (this example does
not involve a conflict exception string). Prefix e occurs
first between nodes 8,9 and there are not any paths leaving
node 9. Therefore the remainder of the conflict string does
not occur. The production flow graph PFG is consistent
with conflict specification C1.
The process used for checking a PFG’s correctness with a
conflict has become the basis for the conflict verification
algorithm. This algorithm searches a PFG in a depth-first
manner for any edge’s label matching the prefix operation
of the conflict. If no such label is found, then correctness is
automatic. If such a label is found on an edge, the algorithm
checks all paths including that edge for the remainder of the
conflict string. If it is not found, the PFG is correct with

that conflict. However, if any path P contains the entire
conflict string then the PFG is not correct with that conflict,
unless path P also includes the conflict exception string.

Figure 3.3 Correctness of PFG with respect to C1.

4.5 Verifying PFGs vs. verifying a CM
 The focus of this research is to check the correctness of a
cognitive model. We have established that it suffices to ver-
ify that every trace of the model is correct with respect to
every pattern and every conflict. In practice, we do not nec-
essarily have access to the set of all traces, instead, we work
with a PFG graph which represents a superset of the traces
of the model. The PFG may contain paths that represent
traces which would never occur when running the cognitive
model. This plays an important role when interpreting the
meaning of the correctness between the PFG and the pat-
terns and conflict specifications.

If a PFG is correct with a pattern or conflict then the cog-
nitive model it represents is automatically correct with re-
spect to that specification. This is justified because the PFG
contains a superset of the CM traces. On the other hand, a
PFG that is not correct with a pattern or conflict does not
conclusively indicate that its corresponding CM is not cor-
rect as well. Although false positives will never be returned
when comparing the PFG and specifications, false negatives
may be. It is important for the verifier to use additional
semantic knowledge to determine if the path that is non-
compliant with the specification may actually be traversed
and draw conclusions accordingly.
 Aware of the possibilities for false negatives, one can
interpret the results of verifying the PFG against each pat-
tern and conflict to deduce the correctness of the CM with
respect to those same specifications.

5 Implementation
A key feature of our approach is that the complete process
of verifying that a cognitive model meets its requirements
can be automated, from the creation of the PFG through the
checking of each of the patterns and conflicts.

5.1 PFG Construction
A production flow graph can automatically be created

from a cognitive model. To create the production flow
graph we use an iterative pruning process. Initially the algo-
rithm constructs a full matrix (full graph) in which all pro-
ductions have edges connecting to all others. According to
the definition of a PFG, a full graph is a valid PFG, although

423

not very useful! Thus, motivated to create a smaller yet still
correct PFG, the algorithm begins an iterative pruning proc-
ess. It examines one attribute at a time, each time using that
attribute to prune edges from the graph. At the ith iteration,
we prune every edge ejk if we can determine, based on at-
tribute ai, that rk cannot follow rj in any model trace.

An example of a matrix (representing the production flow
graph) is shown before pruning in Figure 5.1 and after three
iterations of pruning in Figure 5.2. The initial matrix as
shown in Figure 5.1, places an X in each cell to represent an
edge between the intersecting row production and column
production. As edges are pruned away the cell is cleared. If
an edge remains during pruning, the X is replaced with the
value of the buffer attribute. When finished pruning, the
cell value will be equivalent to the edge label in the graph.

Figure 5.1 Production Matrix – Before Pruning

Figure 5.2 Production Matrix – Pruning with Goal ISA,
Retrieval ISA, and Goal Step attributes.

Pruning continue until the verifier is satisfied with the

size of the production flow graph. A verifier could choose
to exhaust all attributes in order to achieve a syntactically
minimal production flow graph. Of course even at this
point, semantic knowledge could reduce the graph further.

The justification for iterative pruning of edges is straight-
forward. To begin all productions have edges connecting to
all others. Through the iterations, edges are pruned only
when an attribute production’s action sets an attribute to a
value that does not match the attribute’s value given in an-
other production’s condition.

The number of attributes used in pruning, as well as the
selection of the right attributes to use, will have a reducing
effect on the branching factor of the PFG. For instance,

some attributes such as the goal or sub-goal are used often
in both rule conditions and actions. Therefore, their values
are relevant to the majority of production rules and are more
likely to facilitate pruning.

For our running example, with 61 productions, the PFG
initially has a branching factor of 61. After one pruning
iteration the branching factor is on average 24 and after
three iterations the largest branching factor is 18 and on
average less than 3. This algorithm was also applied to
three ACT-R tutorial CMs: unit 4 paired, unit 5 grouped,
and unit 6 bst-learn (available at the ACT-R website). Their
initial branching factors are 6, 7, and 26 respectively. All
three models had an average branching factor of 2 after
pruning (with no more than three pruning iterations neces-
sary). Thus, this algorithm is a powerful tool for creating
and iteratively reducing the size of the PFG.

5.2 Pattern Verification

The pattern verification algorithm as discussed in section
4.2 is implemented in SQL as a series of three tables and
three stored procedures. The time complexity of the pattern
verification algorithm is O(nd), where n is the number of
productions and d is the branching factor of the production
flow graph. Since the time complexity of this algorithm is
exponential with respect to the branching factor, a small
branching factor is essential. This is easily ensured by al-
lowing the production flow graph creation algorithm to iter-
ate through as many attributes as necessary to prune the
graph into an acceptable size.

5.3 Conflict Verification
The conflict verification algorithm as discussed in section
4.3 has been written in pseudo-code but not yet imple-
mented.

6 Extensions and Conclusions
As cognitive models are used increasingly in industrial set-
tings, we must make applicable the same tools and method-
ologies applied traditionally in software engineering: speci-
fication, validation, reuse, and verification. In this paper,
we proposed a verification technique for specifications cap-
turing cognitive model requirements.
We introduced the patterns and conflicts specification lan-
guage to facilitate the formal specification of CMs in an
incremental manner. Patterns capture mandatory interleav-
ing of events and conflicts capture forbidden interleaving of
events. We propose that specifications be split into compe-
tency and cognitive requirements to enable partial specifica-
tions for ill-structured tasks, promote separation of con-
cerns, and allow reuse of specifications across cognitive
architectures.
Related works of interest within formal specification and
verification include the use of temporal logic (Clarke et al.
2000) or process algebra (Wang 2003) to describe human
behaviors. Temporal Logic and model checking may be an

424

approach that can be adapted to the needs of CMs and is an
area of research we will pursue. Process Algebra however is
heavy in mathematical notations and more complex in na-
ture requiring some mathematical expertise. This highlights
one of the most important features of our specification lan-
guage, the ease in which it can be understood and used to
represent requirements. This is an essential feature in order
to combat the reluctance to use formal specifications in this
“hard to specify” area.
Verification based on formalized specification and auto-
mated using simple tools relieves the dependency on the
availability of human data or then involvement of a domain
expert as necessary with a testing-based approach to valida-
tion. Also, this approach provides a means to verify all or
partial specifications allowing its use in conjunction with a
testing approach.

The limited experience we have had with the proposed
approach is encouraging. We are currently working on ex-
tensions of this work that include:

• Expanding the expressive power of the patterns and
conflicts. For now, we have restricted the syntax to
regular expressions which have the dual benefits of
being easy to represent and understand graphically
and easy to reason about. We are currently exploring
the consequences of expanding to context free ex-
pressions.

• Although the concepts of patterns and conflicts are
intuitive, we have found that first time users misin-
terpret them an misuse them in some common ways.
We are developing specification validation environ-
ments in which specifiers are given interactive feed-
back on their specifications allowing them to refine
them and correct them as needed.

• The initial motivation of this work was the possibil-
ity of reusing models by composing them together in
order to create more complex models. The work pre-
sented here is a prerequisite and enabler for such a
task.

 Additionally, we would like to expand the scope of this
research and apply our formal verification technique to
other rule-based AI systems.

References
ACT-R website http://act-r.psy.cmu.edu/.
Amant, R. Horton, T., Ritter, F. 2004. Model-based evalua-

tion of cell phone menu interaction, Proceedings SIGCHI,
343-350, New York, N.Y. ACM Press.

Bellini, P., Mattolini, R., and Nesi, P. 2000. Temporal Lo-
gics for Real Time System Specification ACM Computing
Surveys (32)1:12-42.

Clarke, E., Grumberg, O., and Doron P. 2000. Model Check-
ing. Cambridge, MA: M.I.T. Press.

Doesburg, W., Heuvelink, A., Broek, E. 2005. TACOP: a
cognitive agent for a naval training simulation environ-
ment. Proceedings 4th International Conference on

Autonomous Agents and Multiagent systems, 1363-1364.
New York, N.Y. ACM Press.

Funge, J. 2000. Cognitive modeling for games and anima-
tion. Communications of the ACM, (43)7: 40-48.

Jones, R.M. et al., 1999. Automated Intelligent Pilots for
Combat Flight Simulation AI Magazine 20(1): 27-42.

Macklem, A. 2005. Verification and Validation of Cognitive
Models. Master’s Thesis, Dept. of Computer Science and
Engineering, Oakland University.

Mili, A., Desharnais, J., and Mili, F. 1994. Computer Pro-
gram Construction Cambridge University Press.

Mili, F., A. Macklem, 2004. Patterns and Conflicts for the
Specification, Proceedings IADIS Conference, Portugal.

Nodine, M.H., Ramaswarmy, S., and Zdonik, S.B. 1995. A
Cooperative Transaction Model for Design Datbases. In
Database Transaction Models for Advanced Applications
Elmagarmid (ed.) Morgan Kaufman:53-85.

Ritter, F. E. et al. 2000. Supporting cognitive models as
users ACM Transactions on Computer-Human Interac-
tion, 7(2):141-173.
http://redeft.ist.psu.edu/papers/ritterBJY00.pdf.

Ritter, F. E., Major, N. P. 1995. Useful Mechanisms for
developing simulations for cognitive models. AI and
Simulation of Behaviour Quarterly, 91(Spring):7-18.
http://redeft.ist.psu.edu/papers/ritterM95.pdf.

Ritter, F. E., et al., 2003. Techniques for Modeling Human
and Organizational Behavior in Synthetic Environments:
A supplementary Review Wright-Patterson Air Force
Base, OH: Human Systems Information Analysis Center.
http://iac.dtic.mil/hsiac/SOARS.htm.

Wang, Y. 2003. Using Process Algebra to Describe Human
and Software Behaviors Brain and Mind 4(2003):199-
213.

425

