
Abstract 
Cognitive modeling has outgrown the toy problems 
of the research labs and is increasingly tackling In-
dustrial size applications. This growth is not 
matched in terms of software tools and methodolo-
gies. In this paper, we propose a systematic auto-
mated approach for verifying the correctness of 
cognitive models.  We present a modular specifica-
tion language, define model correctness, and pre-
sent algorithms for automatically checking that a 
model meets its specifications.   

1 Introduction 
Cognitive models (CM) are slowly but surely leaving the 

research laboratories and increasingly used in commercial 
applications such as  evaluating user interfaces such as cell 
phone menus (Amant et al. 2004), war gaming for military 
training (Doesburg, et al. 2005, Ritter et al. 2003), and vir-
tual actors and elaborate and credible computer game char-
acters (Funge 2000).  The size and level of complexity of 
these models are not matched by the state of the art in the 
software engineering of cognitive models, which is still in 
its infancy stage (Ritter et al. 2003); models are still created 
from scratch with little reuse taking place; the validation of 
models is exclusively done through extensive testing (Ritter 
et al. 2000).  

The goal of this research is to contribute to addressing the 
need for rigorous tools and methodologies for the efficient 
development of reliable cognitive models by developing 
appropriate specification languages and methodologies (Mili 
and Macklem 2005), verification techniques to ascertain the 
validity of a model (Macklem 2005), and methodologies for 
reusing cognitive models through composition (Gilmer et al 
2004). In this paper, we focus on the verification of cogni-
tive models.  We start by briefly describing the specification 
language developed in section 2. We define the notion of 
correctness of a cognitive model with respect to its specifi-
cation in section 3, and then describe the verification algo-
rithms in section 4. In section 5, we discuss the implementa-
tion of these algorithms. We summarize our results and dis-
cuss future extensions of this work in section 6. 

  
 

2 Specification of Cognitive Models 

2.1 Requirements for CM Specifications 
In order to verify that a model meets its requirements, these 
requirements must be captured in some precise, non-
ambiguous form, i.e. in some formal specification language. 
Yet, in the domain of cognitive modeling in particular, and 
in artificial intelligence in general, there has not been an 
established tradition or practice to fully capture require-
ments. We identify three key impediments to the use of 
formal specifications with CMs, and state how we have ad-
dressed each with our patterns and conflicts specification 
language and methodology. 
   The tasks modeled are often ill-structured and hard to 
specify in a closed-form manner. We address this issue by 
opting for a modal specification language and approach. 
Tasks are specified in an incremental manner, capturing one 
aspect at a time. The overall specification is the sum of the 
partial specifications.  
   CMs simulate the processes of human behavior and prob-
lem solving, they are best qualified as reactive systems 
whose specifications cannot be adequately captured by 
state-based specification languages whose focus is on pre-
conditions and post-conditions (Bellini, Mattolini, and Nesi 
2000, Wang 2003). We address this by adapting a specifica-
tion language that captures reactive behavior, yet, is intui-
tive and easy to read and write (as compared to temporal 
logic, for example).   
   CMs are bound by two types of requirements: the compe-
tency requirement that they must perform the task at hand 
(e.g. drive, solve a puzzle), and the cognitive requirement 
that they perform it in a “human-like” manner.  The lan-
guage developed has the expressive power to capture both; 
the methodology allows us to capture them separately and to 
verify them independently.   
  We introduce the specification language briefly and infor-
mally using a small example.  We consider a cognitive 
model developed to solve the Tower of Hanoi problem with 
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<put, large, B> <put, medium, B> 

<put, small, B> 

<pick-up, large> <pick-up, medium> 

three pegs A, B, and C and three disks small, medium and 
large. The competency requirement for this problem dictates 
that, upon completion, the disks must all be on peg B in the 
correct order, i.e.:   

“Final configuration= [small, medium, large] on B”. 
The competency requirement dictates also that all disk 
movements must be compliant with the rules of the game, 
and will include constraints such as: 
 “No disk can be picked up before the last one picked up is 

put down.” 
The cognitive requirements, on the other hand, cover condi-
tions that describe the human-like aspects that we need to 
impose on the model such as: 

“there must be some trial and error.” 
In other words, we are not interested in producing the recur-
sive systematic solution to the problem. 

2.2 Specification Language 
We view the specification of a CM as a set of constraints on 
its traces, where a trace is the sequence of observable events 
perceived by and generated by the CM in the course of exe-
cuting a task. We adapt the concept of patterns and conflicts 
introduced by Nodine et al. (Nodine et al 1995) used to 
specify correct transaction schedules in cooperative settings. 
Patterns are constraints that specify interleaving between 
events that must take place such that “every pick-up disk d 
must be followed by a put-down disk d.” Conflicts are con-
straints that specify interleaving that must never take place 
such as “(must never) place disk d1 over disk d2 where d1 > 
d2.”  Selecting a language to capture the patterns and con-
flicts is a tradeoff between expressive power and ease of 
manipulation –notably verification in our case. In this paper, 
we use the restricted version of this language by limiting 
ourselves to regular languages. In other words, patterns and 
conflicts are captured using regular grammars or finite state 
automata for example. 

We illustrate below the finite automata capturing some of 
the Tower of Hanoi requirements. 

   
 

 
 
Figure 2.1 Pattern P1: Eventually large, medium, and 

small disks are place on B 
Pattern P1, Figure 2.1, states that eventually the three disks 
large, then medium, then small are placed on B. The last 
step: placing the small disk (successfully) terminates the 
pattern. Note that the initial state in P1 is not an accepting 
state, capturing the fact that P1 is not satisfied until the three 
disks make it to their final destination. By contrast, the ini-
tial state of pattern P2, Figure 2.2, is an accepting state; but 
should a disk d be picked up, then the pattern is not satisfied 

until that disk is placed back. P2 does not require that the 
disk be put back immediately; thus the need for C1. C1, 
Figure 2.3, states that once a disk d is picked up, picking up 
any disk d’ (other than d) terminates the conflict (i.e. leads 
to a conflict). Patterns and conflicts are expressed using the 
same syntax, but interpreted differently. In a valid trace, 
every activated pattern terminates, and no conflict termi-
nates.  

 
Figure 2.2 Pattern P2: Every pick up disk must be followed 
by a put disk. 

 
Figure 2.3 Conflict C1: After a disk d is picked up, no other 
pick up is allowed until d is put down. 
 
 A formal definition of the pattern and conflict specifica-
tion language is available in (Macklem 2005).  This exam-
ple suffices to illustrate an important benefit of this lan-
guage, namely its ease of use, for both writing specifications 
and for reading them.  

3 Defining Model Correctness 
Given a model M, we define the semantics of M to be the 

set of all possible traces generated by M.  A model trace 
consists of the set of events, actions, and decisions that are 
either perceived or preformed by the model.  Note that this 
definition of semantics reflects the fact that a cognitive 
model is characterized as much by its reactive ongoing be-
haviors as by the final outcomes of its decisions and actions. 

The trace of a model is a string composed by symbols of 
the trace alphabet.  The trace alphabet consists of all events, 
actions and decisions.  Typically this alphabet is smaller 
grain then the specifications’ alphabet.  For example, for the 
Tower of Hanoi, the specification alphabet contains symbols 
capturing “put disk d on peg x”, whereas the model trace 
alphabet consists of symbols capturing decisions such as 
“select next disk to more”.  This difference in the level of 
abstraction is easily addressed by mapping the patterns and 
conflicts to the model’s trace alphabet. 

A model is correct with a specification expressed by a set 
of patterns and a set of conflicts iff: 

• Every trace T of the model is correct with every 
pattern P in the specifications 

• Every trace T of the model is correct with every 
conflict C in the specifications 

<pick-up, d>

<put, d, y>

<pick-up, d>

<put, d, x>

<pick-up, d’> 
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Intuitively, a trace is correct with a pattern iff the pattern 
either does not occur or occurs completely.  Similarly, a 
trace is correct with a conflict if the conflict does not fully 
occur within the trace. A model is correct is all of its traces 
are correct, not just the ones we happened to generate (as in 
testing). 

4 Verification of Cognitive Models 
The modularity of the specifications translates into modular-
ity in their verification.  In other words, the competency and 
cognitive requirements can be verified independently.  Fur-
thermore, within each of them, each pattern and each con-
flict can be verified independently. 
 By definition of correctness, each pattern and each con-
flict must be verified with respect to every trace of the 
model.  Obviously, we will not attempt to generate all the 
traces individually; instead we build an abstract representa-
tion for this set in the form of a rooted graph. The set of 
traces is the set of all paths from the root of the graph to a 
leaf node.  

4.1  Production Flow Graph 
We call the graph representing all traces the Production 
Flow Graph (PFG), by analogy to the control flow graphs 
used in program analysis.  A PFG is a labeled directed graph 
G=<V,E,I> characterized as follows: 

1. The set of vertices V represents the production rules; 
there is one vertex ri for each production rule. 

2. For every pair (ri, rj), if it is possible for production 
rule rj to execute immediately following production 
rule ri, then (ri, rj)єE. 

3. For every edge (ri, rj) in E, the label l associated with 
the edge is the action of ri   ■ 

Note that the above is a characterization rather than a 
strict definition of a PFG in the sense that we are defining a 
lower bound but not an upper bound for E.  We state which 
edges must be included in E, but allow E to include more 
than those pairs. This choice allows us to construct PFG 
graphs easily—and iteratively as illustrated in section 5.  

 

 
Figure 3.1 Production Rules and Related PFG 

 

Figure 3.1 provides an example of three productions and 
their corresponding production flow graph.  First let’s con-
sider the productions in this example.  The productions are 
written using the syntax of the cognitive modeling language 
ACT-R.  The conditions of the production appear before the 
==> sign, and the actions appear after it.  These productions 
refer to an important data structure in ACT-R, namely the 
goal buffer. The goal buffer can have multiple attributes, 
e.g. ISA, subgoal, disksize.  For example, P1’s condition is 
that the current goal has values place-disk and start respec-
tively with no restriction on the value of disksize.  Most 
productions modify the goal buffer in their action clause by 
modifying the current goal or adding new sub-goals. Pro-
duction P1 updates the goal by changing the subgoal from 
start to select-move.  

Now, let’s consider the related PFG also shown in Figure 
3.1.  Within the PFG productions P1, P2, and P3 are repre-
sented as vertices.  A directed edge exists between produc-
tions P1 and P2 and between P1 and P3 to illustrate that 
following P1 either P2 or P3 may be executed.  This was 
determined because the actions of P1 do not conflict with 
the conditions of P2 and P3.  The labels on these two edges 
encode the action of P1.    In fact, as shown in section 5.1, a 
PFG graph can be generated automatically from the set of 
productions of a cognitive model.    

4.2 Correctness with Patterns 
Recall that for a trace to be correct with a pattern, the pat-
tern must not occur or must occur completely within the 
trace.  To show collectively that the set of all possible traces 
is correct with respect to a pattern, we show that their repre-
sentation as a PFG is correct with a pattern.  

Consider the example shown in Figure 3.2.  We can 
evaluate the correctness of the PFG graph with respect to 
pattern P1 by determining if each occurrence of P1’s prefix 
(first operation) within PFG is a complete occurrence of the 
remaining pattern string.  If the pattern prefix does not ap-
pear within the PFG, correctness is automatic.  In the exam-
ple in Figure 3.2, the prefix of the pattern is the character 
“a”. The prefix “a” has two occurrences on the FPG graph, 
one on edge <1,2> and one on edge <1,8>.  For the FPG to 
be correct with respect to pattern P1 every path rooted at 2 
and every path rooted at 8 must complete the occurrence. 
This condition is satisfied by the paths rooted at 2 (namely: 
<2,3,4,5> and <2,6,7,5>), as they each contain the remain-
ing pattern string “b,d”.  The same cannot be said about the 
paths rooted at 8. The only path rooted at 8 is <8,9> and it 
does not complete the pattern P1.  Therefore, the production 
flow graph PFG is not correct with the pattern specification 
P1.   
The process used for evaluating a PFG’s correctness with a 
pattern, as illustrated with the previous example, was auto-
mated.  The algorithm starts by searching the PFG graph in 
a depth-first manner checking for any label that matches the 
prefix (first operation) of the pattern.  If a match is not 
found, the PFG is correct.  If the prefix of the pattern is 
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found as the label of an edge eij, then every path leaving 
vertex j must contain the remainder of the pattern.  
One final point to address is the handling of cycles both 
within patterns and within a PFG. In (Mili and Macklem 
2005) we show how we eliminate cycles from patterns. Cy-
cles in the PFG are detected and handled during traversal by 
the algorithm.  
 

 
Figure 3.2 Evaluating correctness of PFG with respect to P1 
 

4.4 Correctness with Conflicts 
For a trace to be correct with respect to a conflict, the con-
flict must not fully occur within the trace. As with the pat-
terns, to show collectively that the set of all possible traces 
is correct with respect to a conflict, we show that their rep-
resentation as a PFG is correct with the conflict. 
  Before exploring the comparison process of a PFG with a 
conflict, we must first address the use of conflict exception 
strings. A conflict exception string may accompany a con-
flict string as needed to capture the notion of rolling back an 
occurrence of a  segment of a conflict string.  For example, 

 “no pick-up small disk can be followed by a put of me-
dium disk unless the small disk is put down first” 
The conflict string would capture the no pick-up of small 
disk followed by medium disk and the conflict exception 
string would capture the unless the small disk is put down 
first. 

Accounting for the possible use of a conflict exception 
string, means that a PFG is correct with a conflict only if 
any full occurrence of the conflict within the PFG also con-
tains the conflict exception string. 

Consider the example shown in Figure 3.3.  We can 
evaluate the correctness of the PFG with conflict C1 by de-
termining that no occurrence of C1’s prefix within PFG is 
an entire occurrence of the conflict string (this example does 
not involve a conflict exception string).   Prefix e occurs 
first between nodes 8,9 and there are not any paths leaving 
node 9.  Therefore the remainder of the conflict string does 
not occur.  The production flow graph PFG is consistent 
with conflict specification C1.   
The process used for checking a PFG’s correctness with a 
conflict has become the basis for the conflict verification 
algorithm.  This algorithm searches a PFG in a depth-first 
manner for any edge’s label matching the prefix operation 
of the conflict.  If no such label is found, then correctness is 
automatic.  If such a label is found on an edge, the algorithm 
checks all paths including that edge for the remainder of the 
conflict string.  If it is not found, the PFG is correct with 

that conflict.  However, if any path P contains the entire 
conflict string then the PFG is not correct with that conflict, 
unless path P also includes the conflict exception string. 

 

 
Figure 3.3 Correctness of PFG with respect to C1. 

4.5 Verifying PFGs vs. verifying a CM 
 The focus of this research is to check the correctness of a 
cognitive model. We have established that it suffices to ver-
ify that every trace of the model is correct with respect to 
every pattern and every conflict. In practice, we do not nec-
essarily have access to the set of all traces, instead, we work 
with a PFG graph which represents a superset of the traces 
of the model.  The PFG may contain paths that represent 
traces which would never occur when running the cognitive 
model.  This plays an important role when interpreting the 
meaning of the correctness between the PFG and the pat-
terns and conflict specifications.   

If a PFG is correct with a pattern or conflict then the cog-
nitive model it represents is automatically correct with re-
spect to that specification.  This is justified because the PFG 
contains a superset of the CM traces.  On the other hand, a 
PFG that is not correct with a pattern or conflict does not 
conclusively indicate that its corresponding CM is not cor-
rect as well.  Although false positives will never be returned 
when comparing the PFG and specifications, false negatives 
may be.  It is important for the verifier to use additional 
semantic knowledge to determine if the path that is non-
compliant with the specification may actually be traversed 
and draw conclusions accordingly. 
 Aware of the possibilities for false negatives, one can 
interpret the results of verifying the PFG against each pat-
tern and conflict to deduce the correctness of the CM with 
respect to those same specifications.  

5 Implementation 
A key feature of our approach is that the complete process 
of verifying that a cognitive model meets its requirements 
can be automated, from the creation of the PFG through the 
checking of each of the patterns and conflicts. 

5.1 PFG Construction  
A production flow graph can automatically be created 

from a cognitive model.  To create the production flow 
graph we use an iterative pruning process.  Initially the algo-
rithm constructs a full matrix (full graph) in which all pro-
ductions have edges connecting to all others.  According to 
the definition of a PFG, a full graph is a valid PFG, although 
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not very useful!  Thus, motivated to create a smaller yet still 
correct PFG, the algorithm begins an iterative pruning proc-
ess.  It examines one attribute at a time, each time using that 
attribute to prune edges from the graph.    At the ith iteration, 
we prune every edge ejk if we can determine, based on at-
tribute ai, that rk cannot follow rj in any model trace.   

An example of a matrix (representing the production flow 
graph) is shown before pruning in Figure 5.1 and after three 
iterations of pruning in Figure 5.2.  The initial matrix as 
shown in Figure 5.1, places an X in each cell to represent an 
edge between the intersecting row production and column 
production.  As edges are pruned away the cell is cleared.  If 
an edge remains during pruning, the X is replaced with the 
value of the buffer attribute.  When finished pruning, the 
cell value will be equivalent to the edge label in the graph.  

 
Figure 5.1 Production Matrix – Before Pruning 

 
 
 

 
Figure 5.2 Production Matrix – Pruning with Goal ISA, 
Retrieval ISA, and Goal Step attributes. 

 
Pruning continue until the verifier is satisfied with the 

size of the production flow graph.  A verifier could choose 
to exhaust all attributes in order to achieve a syntactically 
minimal production flow graph.  Of course even at this 
point, semantic knowledge could reduce the graph further.   

The justification for iterative pruning of edges is straight-
forward.  To begin all productions have edges connecting to 
all others.  Through the iterations, edges are pruned only 
when an attribute production’s action sets an attribute to a 
value that does not match the attribute’s value given in an-
other production’s condition.    

The number of attributes used in pruning, as well as the 
selection of the right attributes to use, will have a reducing 
effect on the branching factor of the PFG.  For instance, 

some attributes such as the goal or sub-goal are used often 
in both rule conditions and actions.  Therefore, their values 
are relevant to the majority of production rules and are more 
likely to facilitate pruning. 

For our running example, with 61 productions, the PFG 
initially has a branching factor of 61.  After one pruning 
iteration the branching factor is on average 24 and after 
three iterations the largest branching factor is 18 and on 
average less than 3.  This algorithm was also applied to 
three ACT-R tutorial CMs:  unit 4 paired, unit 5 grouped, 
and unit 6 bst-learn (available at the ACT-R website).  Their 
initial branching factors are 6, 7, and 26 respectively.  All 
three models had an average branching factor of 2 after 
pruning (with no more than three pruning iterations neces-
sary).  Thus, this algorithm is a powerful tool for creating 
and iteratively reducing the size of the PFG. 
 
5.2 Pattern Verification  

The pattern verification algorithm as discussed in section 
4.2 is implemented in SQL as a series of three tables and 
three stored procedures.  The time complexity of the pattern 
verification algorithm is O(nd), where n is the number of 
productions and d is the branching factor of the production 
flow graph.  Since the time complexity of this algorithm is 
exponential with respect to the branching factor, a small 
branching factor is essential.  This is easily ensured by al-
lowing the production flow graph creation algorithm to iter-
ate through as many attributes as necessary to prune the 
graph into an acceptable size. 
 
5.3 Conflict Verification  
The conflict verification algorithm as discussed in section 
4.3 has been written in pseudo-code but not yet imple-
mented.  

6  Extensions and Conclusions 
As cognitive models are used increasingly in industrial set-
tings, we must make applicable the same tools and method-
ologies applied traditionally in software engineering: speci-
fication, validation, reuse, and verification.  In this paper, 
we proposed a verification technique for specifications cap-
turing cognitive model requirements.   
We introduced the patterns and conflicts specification lan-
guage to facilitate the formal specification of CMs in an 
incremental manner.  Patterns capture mandatory interleav-
ing of events and conflicts capture forbidden interleaving of 
events.  We propose that specifications be split into compe-
tency and cognitive requirements to enable partial specifica-
tions for ill-structured tasks, promote separation of con-
cerns, and allow reuse of specifications across cognitive 
architectures.   
Related works of interest within formal specification and 
verification include the use of temporal logic (Clarke et al. 
2000) or process algebra (Wang 2003) to describe human 
behaviors.  Temporal Logic and model checking may be an 
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approach that can be adapted to the needs of CMs and is an 
area of research we will pursue. Process Algebra however is 
heavy in mathematical notations and more complex in na-
ture requiring some mathematical expertise. This highlights 
one of the most important features of our specification lan-
guage, the ease in which it can be understood and used to 
represent requirements.  This is an essential feature in order 
to combat the reluctance to use formal specifications in this 
“hard to specify” area. 
Verification based on formalized specification and auto-
mated using simple tools relieves the dependency on the 
availability of human data or then involvement of a domain 
expert as necessary with a testing-based approach to valida-
tion.  Also, this approach provides a means to verify all or 
partial specifications allowing its use in conjunction with a 
testing approach.   

The limited experience we have had with the proposed 
approach is encouraging. We are currently working on ex-
tensions of this work that include: 

• Expanding the expressive power of the patterns and 
conflicts. For now, we have restricted the syntax to 
regular expressions which have the dual benefits of 
being easy to represent and understand graphically 
and easy to reason about. We are currently exploring 
the consequences of expanding to context free ex-
pressions.   

• Although the concepts of patterns and conflicts are 
intuitive, we have found that first time users misin-
terpret them an misuse them in some common ways. 
We are developing specification validation environ-
ments  in which specifiers are given interactive feed-
back on their specifications allowing them to refine 
them and correct them as needed. 

• The initial motivation of this work was the possibil-
ity of reusing models by composing them together in 
order to create more complex models. The work pre-
sented here is a prerequisite and enabler for such a 
task.   

 Additionally, we would like to expand the scope of this 
research and apply our formal verification technique to 
other rule-based AI systems. 
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