
Prolog-Based Analysis of Tabular Rule-Based Systems with the XTT Approach∗

Grzegorz J. Nalepa and Antoni Ligęza
Institute of Automatics,

AGH – University of Science and Technology,
Al. Mickiewicza 30, 30-059 Kraków, Poland

gjn@agh.edu.pl, ligeza@agh.edu.pl

Abstract

This paper presents a new approach to the issue of assuring
rule-based systems (RBS) correctness. The principal idea is
that verification should be performed on-line, incrementally,
during system design. It allows for early detection and han-
dling of knowledge base anomalies and inconsistencies by
incorporating a formal Prolog-based analysis of RBS in the
design phase. A formal concept of a design tool (XTT) for
specifying attributive RBS with a visual editor is outlined.

Introduction
Over thirty years rule-based systems (RBS) prove to consti-
tute one of the most substantial technologies in the area of
applied Artificial Intelligence (AI). Modern rule-based sys-
tems find applications ranging from medicine to finance and
economy, going well beyond traditional rule-based program-
ming paradigm. Some interesting recent applications of rule
technology are the ones of business (the so-calledbusiness
rules implementing the knowledge level processing in com-
plex systems) and theSemantic Web. Both current research
and applications go far beyond the traditional approach (Barr
& Markov 2004).

Although rules constitute one of the simplest and most
transparent programming paradigms, practical implementa-
tion of rule-based systems encounters serious problems. The
main issues encountered concerncompletespecification of
non-redundantandconsistentset of rules (Liebowitz 1998;
Ligęza 2006). This turns out to be a tedious task requir-
ing significant effort of domain experts and knowledge en-
gineers (Knauf 2005).

The approaches to verification and validation of RBS
(Chang, Combs, & Stachowitz 1990; Liebowitz 1998;
Spreeuwenberg & Gerrits 2002; Vanthienen, Mues, &
G.Wets 1997; Vermesan & Coenen 1999) do not solve the
problem entirely. Verification performedafter the system is
designedis both costly and late. Moreover, after introduc-
ing the corrections of detected errors, the verification cycle
must be repeated. The problem consists in the possibility of
introducing new errorsthrough correction of the old ones.

∗Research supported from a KBN Research Project ADDER
No.: 4 T11C 035 24
Copyright c© 2006, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

This paper is dedicated to presentation of a new approach
to the issue of assuring RBS correctness. The principal idea
is thatverification should be performed on-line, incremen-
tally, during the design; moreover, error detection should
lead the designer back through the design, towards error
elimination.

Research towards amalgamating the design and verifica-
tion stages has been undertaken several years ago; some first
ideas date back to the so-calledψ-trees (Ligęza 1996) and
tab-trees(Ligęza, Wojnicki, & Nalepa 2001). It resulted
in elaboration of a new approach combining the expressive
power of decision trees and attributive decision tables of
non-atomic attribute values (Nalepa 2004). A more com-
plete presentation is given in (Ligęza 2006).

The approach presented in this paper allows for an early
detection and handling of knowledge base anomalies and in-
consistencies by incorporating an on-line formal validation
of RBS in the system design phase. Another important fea-
ture of the proposed approach consists invisual edition of
rule-components and connections among them. A formal
concept of a design tool for specifying attributive rule-based
systems (called eXtended Tabular Trees, XTT for short) with
a visual editor is outlined. These concepts have been im-
plemented in a prototype CASE tool called MIRELLA DE-
SIGNER (Nalepa 2004). A design and verification process
based on the idea of using PROLOG plugins for analysis is
also presented.

The paper is organized as follows: in Sect. 2 an idea of
hierarchical design of RBS is outlined; it is centered around
a knowledge representation and design method called XTT,
described in Sect. 3. XTT has strong logical foundations
that allow for definition of a formal approach to the analy-
sis, discussed in Sect. 4. In order to efficiently analyze the
XTT structure during the design, a formal transformation
from XTT to PROLOG-based representation is introduced in
Sect. 5. This enables formal verification with PROLOG pro-
cedures performed on-request during the design process.

Hierarchical Design of Rule-Based Systems
The proposed approach and the visual tool introduces strong
structuring of the design process. Further, at any stage of
partially designed system any knowledge component can be
verified and corrected if necessary. In fact, the integration of
the design and on-line verification is one of the crucial novel

426

ideas of the presented approach, constituting perhaps the
first implementation of some early ideas initially put forward
in (Ligęza 1996), and then followed by (Ligęza, Wojnicki,
& Nalepa 2001). Simultaneously, this is a top-down ap-
proach, which allows for incorporating hierarchical design.
Using XTT as a core, in (Nalepa 2004) an integrated design
process, covering the following three phases has been pre-
sented. TheConceptual design, in which system attributes
and their functional relationships are identified; thelogical
design with on-line verification, during which the system
structure is represented as an XTT hierarchy, which can be
instantly analyzed, verified (and corrected, if necessary) and
even optimized on-line using a PROLOG-based framework;
and thephysical design, in which a preliminary PROLOG-
basedimplementationis carried out.

Vague system
Conceptual designdescription

business rules

Formal
conceptualization

ARD

Formal
logical design

XTT analysis
Formal logical

Prolog

Verification

Refinement

System−specific translation

Logical design

Structure

Input/Output

Attributes

Concepts

Reformulation

Physical design

Java code rules
RuleML

firewall
NetFilter/PF

Linux/BSD emProlog

prototype
XTT Prolog

Specification

JVM jDrew

Figure 1: Hierarchical Design, Analysis & Implementation
Process with ARD (Attribute Relationship Diagrams), XTT
(eXtended Tabular Trees) and PROLOG

One of the most important features of this approach is the
separation of the logical and physical design, which also
allows for a transparent,hierarchical design process. The
hierarchical conceptual model is mapped to a modular logi-
cal structure. The approach addresses three main problems:
a visual representation, a functional dependency and logical
structure, and a machine readable representation with auto-
mated code generation.

In the XTT-based approach the verification can be per-
formed on-line, as an internal part of the design process.
At any design stage any XTT component (extended table)
can be analyzed. The analysis of a selected property is per-
formed by external PROLOG-based plugins. The results of
the analysis can be instantly used to improve the design of
the given XTT table. In the current version of the MIRELLA
DESIGNER system (Nalepa 2004) the verification modules
operate taking as the input the state of the knowledge-base
and return the diagnosis in the form of an immediate report.

Foundations of the XTT Approach
Numerous rule-based systems use simple knowledge repre-
sentation logic based on attributes. Unfortunately, most of
the systems allows for use of very simple atomic formulae
only. Two most typical examples are of the formA = d and
A(o) = d, whereA is an attribute,o is an object, andd is an
atomicvalue of the attribute. In this way the specification of
attribute values is restricted to atomic values only.

In the proposed approach anextended attributive lan-
guageis used. In fact we useSAL, theSet Attributive Lan-
guage, as described in (Ligęza 2006). In SAL the atomic
formulae are of two basic forms, i.e.A(o) = t andA(o) ∈ t,
wheret is an arbitrary set of values (a subset of the domain
of attributeA1). For intuition,A(o) = t allows to say that
attributeA takesall the values oft for objecto; in fact,A is
a generalized attributetaking set values (Ligęza 2006). Ex-
pressionA(o) ∈ t says that attributeA takessomevalue(s)
of t (at least one) for objecto. Facts of the formA(o) = t
are mostly used for efficient specification of the fact-base
and in conclusion part of rules while facts such asA(o) ∈ t
are used in preconditions part of rules. Further details on
attributive languages can be found in (Ligęza 2006).

Rule Format
XTT uses extended attributive decision rules for the con-
struction of rule-based systems. A rule is based on the basic
rule format but includes both thecontrol statementanddy-
namic operationdefinitions. Hence, it can operate on the
system memory and show where to pass control in an ex-
plicit way. The full rule format incorporates the following
components:a unique identifierof the rule (it can be the
name or the number of the rule, or both),a context formula
defining the context situation in which the rule is aimed to
operate,preconditionsof the rule (specifying the logical for-
mula that has to be satisfied in order that the rule can be ex-
ecuted),a dynamic operation specificationwith the use of
retract and assertparts,2 a conclusion/decisionpart being
the output of the rule, anda control specificationwith the
use of thenextpart.

The above components can be presented as follows:

rule(i): context = ψ and
[A1 ∈ t1] ∧ [A2 ∈ t2] ∧ . . . ∧ [An ∈ tn]
−→
retract(B1 = b1, B2 = b2, . . . , Bb = bb),
assert(C1 = c1, C2 = c2 . . . , Cc = cc),
do(H1 = h1, H2 = h2, . . . , Hh = hh),
next(j), else(k),

whereψ defines the specific environmental and internal
conditions under which the rule is valid,[A1 ∈ t1] ∧
. . . ∧ [An ∈ tn] is the regular precondition formula,B1 =
b1, B2 = b2, . . . , Bb = bb is the specification of the facts

1Formally t can be an infinite set; (both discrete and continu-
ous) however, in practical applications it is often assumed to be a
finite discrete one.

2In the assumed language explicit negation is not used; only the
positive knowledge is represented in the knowledge base. Hence,
facts that are no longer true are removed (retracted) from the fact
base. This follows the well-known model of PROLOG.

427

to be retracted from the knowledge base,C1 = c1, C2 =
c2, . . . , Cc = cc is the specification of the facts to be as-
serted to the knowledge base,H1 = h1, . . . ,Hh = hh is the
specification of conclusions forming a direct output of the
rule, next(j) is the control specification, possibly including
the PROLOG cut marker.

Rules of a similar attribute structure can be easily com-
bined into a special form of decision table. TheExtended
Attributive Table(Ligęza 2006; Nalepa 2004) (XAT, oreX-
tended Table(XT), for short) takes the form presented in
Tab. 1.

Table 1: The basic form of an XAT

Info Prec Retract Assert Decision Ctrl
I Ctx A1 . . . An B1 . . . Bb C1 . . . Cc H1 . . . Hh N E

1 ψ t11 . . . t1n bi1 . . . b1b c11 . . . c1c h11 . . . h1h g1 e1
.
.
.

.

.

.
.
.
.
. . .

.

.

.
.
.
.
. . .

.

.

.
.
.
.
. . .

.

.

.
.
.
.
. . .

.

.

.
.
.
.

.

.

.
i ψ ti1 . . . tin bi1 . . . bib ci1 . . . cic hi1 . . . hih gi ei

.

.

.
.
.
.

.

.

.
. . .

.

.

.
.
.
.
. . .

.

.

.
.
.
.
. . .

.

.

.
.
.
.
. . .

.

.

.
.
.
.

.

.

.
k ψ tk1 . . . tkn bk1 . . . bkb cik . . . ckc hk1 . . . hkh gk ek

Each rule is represented by one row. In the first column
there is the rule identifier, theCtx is the context common
for all the rules,A1 . . . An are the precondition attributes,
andB1 . . . Bb are the retract,C1 . . . Cc are the assert, and
H1 . . .Hh are the conclusion-defining ones. TheCtrl part
defines the next rule to be executed (if present) or the else
rule in case of failure. Hence, the table can specify both
declarative knowledge (rules) and control knowledge (the
Ctrl column).

The idea of XT has been successfully applied to a num-
ber of example RBS, see (Nalepa 2004; Ligęza 2006). For
brevity, in order to illustrate this idea a single XT table taken
from the Thermostat system of (Negnevitsky 2002) is pre-
sented in Tab. 2. The detailed discussion of the whole sys-
tem containing 18 rules, composed if four XT tables can be
found in (Ligęza 2006).

Table 2: XT for rules 3-6.Context 2:aTD ∈ {wd,wk}.

Inf. Prec Retract Assert Dec. Ctrl
I aTD aTM aOP aOP H N E
3 wd [9, 17] – dbh 3.7 2.4
4 wd [0, 8] – ndbh 3.7 2.5
5 wd [18, 24] – ndbh 3.7 2.6
6 wk – – ndbh 3.7 2.3

The tables in the original system incorporate the following
attributes:aDD – day,aTD – today,aTM – time,aOP –
operation,aMO – month,aSE – season,aTHS – thermo-
stat_setting. The following attributes values were used:wd=
’workday’, wk= ’weekend’dbh= ’during business hours’,
ndbh= ’not during business hours’. For intuition, the first
row of Table 2 represents the rule:If today is a work-day
and the time is between 9:00 and 17:00Then the operation
is ’during business hours’ (dbh). The other three rules define
when the operation is ’not during business hours’ (ndbh).

Based on the idea of the XT, theeXtended Tabular
Trees (XTT)knowledge representation has been devel-
oped (Nalepa 2004). An example of system design with
XTT is presented in Figure 2.

Figure 2: An example of XTT structure

An important feature of XTT is the fact that, besides vi-
sual representation, it offers a well-defined,logical repre-
sentationwhich may be formally analyzed (Nalepa 2004;
Ligęza 2006). On themachine readable code levelXTT
can be represented using an XML-based languageXTTML
(XTT Markup Language) suitable for import and export op-
erations.

Rule Inference Control
Having the specific rule format, the examination and possi-
ble firing of rules defined by XTT hierarchy is performed by
the forward-chaining rule interpreter engine. The interpre-
tation begins with theroot tablein the XTT hierarchy. The
first row (rule) in the current table is selected, and the row
is processed, which includes: checking if the preconditions
of the rule are satisfied; retracting all the facts that undergo
the specification of the facts given in theretract part; as-
serting all the facts given in theassertpart; and executing
the actions defined in the conclusion part. Then the pro-
cess continues by going to the table and rule specified with
the nextpart if present, if not, the next row in the table is
selected and processed; if this was the last row then back-
track to the previous table, or halt the inference process (the
system behavior in this step is determined depending on the
selected inference mode). In this way it is possible to work
out several solutions for certain problems if necessary.

Formal Analysis of XTT Components
Within the proposed XTT approach a formal analysis
and verification of selected theoretical properties can be
performed. Three key properties have been considered
in (Nalepa 2004; Ligęza 2006):redundancy– subsumption
of rules, indeterminism– overlapping rules, andcomplete-
ness– missing rules. Additionally, the XT components can
be checked if they are minimal and reduction possibilities
are suggested. Reduction of an XT component is performed
by gluing two (or more) rules having identical conclusions.

In this approach the verification can be performed on-line,
as an internal part of the design process. In the current ver-
sion of MIRELLA , the designed system is verified against
the following anomalies: subsumption, indeterminism and
incompleteness. In fact, these issues are generic and cover a
number of more specific problems, such as rule equivalence,
inconsistent rules, etc. Moreover, reduction to minimal form
through gluing of table rows withbackward dual resolution
(Ligęza 2006) is supported.

428

In case of rule specification with tabular systems, the anal-
ysis of subsumption is performed as follows. Consider two
rules,r andr′ given below (with simplified XTT scheme):

rule A1 A2 . . . Aj . . . An H
r t1 t2 . . . tj . . . tn h
r′ t′1 t′2 . . . t′j . . . t′n h′

The condition for subsumption in case of tabular rule format
takes the algebraic formt′j ⊆ tj , for j = 1, 2, . . . , n and
h′ ⊆ h. If it holds, then ruler′ can be eliminated leaving the
more general rule:

rule A1 A2 . . . Aj . . . An H
r t1 t2 . . . tj . . . tn h

The indeterminism analysis is also almost straightfor-
ward; in order to have two rules applicable in the same state,
their preconditions must have a non-empty intersection. In
case of tabular systems this can be expressed as follows. For
any attributeAj there is an atom of the formAj = tj in r
andAj = t′j in r′, i = 1, 2, . . . , n. Now, one has to find the
intersection oftj andt′j – if at least one of them is empty
(e.g. two different values; more generallyt1,j ∩ t2,j = ∅),
then the preconditions are disjoint and thus the rules are de-
terministic. The check is performed for any pair of rules.

Reduction of XT is performed through gluing rules hav-
ing identical conclusion part. Several rules can be glued to a
single, equivalent rule according to the following scheme:

rule A1 A2 . . . Aj . . . An H
r1 t1 t2 . . . t1j . . . tn h
...

...
...

...
...

...
rk t1 t2 . . . tkj . . . tn h

rule A1 A2 . . . Aj . . . An H
r t1 t2 . . . T . . . tn h

provided thatt1j ∪ t2j ∪ . . . ∪ tkj = T . If T is equal
to the complete domain, thenT = _. Of course, rules
r1, r2, . . . , rk are just some selected rows of the original ta-
ble containing all rules. The logical foundation for reduc-
tion are covered in (Ligęza 2006). In the example system,
rules 4 and 5 of Table 2 can be glued, provided that the
time specification can be expressed with non-convex inter-
vals (i.e. [00:00-08:00]∪[18:00-24:00]).

Finally, completeness verification can be viewed as a two-
stage procedure. First some maximal reduction is performed
on the precondition part of a selected table. In the ideal case
an empty table (full logical completeness) is confirmed (any
set of input values will be served). In the other case one has
to check which input specifications are not covered. Here,
thanks to allowing for non-atomic values of attributes it is
not necessary to go through the list of all possible atomic
combinations, i.e. performing the so-calledexhaustive enu-
meration check, i.e. analysis of all the elements of the Carte-
sian product of the precondition attribute domains. In the
proposed approach the attribute domains can be divided into
subsets (granularized) corresponding to the values occurring
in the table; hence the check is performed in a more abstract
level and with increased efficiency. Uncovered input spec-
ifications define the potentially missing rule preconditions.
The system is complete in the sense that there are no admis-
sible (correct) inputs which are uncovered.

Prolog-based XTT Analysis
Prolog-based XTT Representation

Transformation from XTT tables to a PROLOG-based rep-
resentation allows for obtaining alogically equivalentcode
that can be executed, analyzed, verified, optimized, trans-
lated to another language, transferred to another system, etc.

In order to fully represent an XTT model several issues
have to be solved: afact (Object-Attribute-Value triple) rep-
resentation has to specified, the attributedomainswith all
the constraints have to be represented, a rule syntax has to
be defined, the knowledge base has to beseparatedfrom the
inference engine, and an inference control mechanism has to
be implemented.

Every XTT cell corresponds to a certainfact in the rule
base. A fact is represented by the following term:

f(< attribute_name >,< value_type >,< value >)

whereattribute_name is an XTT attribute name pre-
fixed by a lower-casea in order to prohibit upper-case
names (they would be interpreted as variables in PROLOG);
value_type is one of{atomic, set, interval,
natomic, nset, ninterval} , andvalue is the at-
tribute value held in cell, possibly a non-atomic one.

In order to represent different attribute types and value
domains the following rules are established:

1. Atomic values, e.gA(O) = V , are represented by
f(aA,atomic,V) term.

2. Negated atomic values, e.gA(O) 6= V , are represented
by f(aA,natomic,V) term.

3. Non-atomic numerical values, such asA(O) ∈< x, y >,
are represented byf(aA,interval,i(x,y)) term.

4. Negated non-atomic numerical values, such asA(O) /∈
(x, y), or A(O) /∈< x, y >) are represented by
f(aA,ninterval,i(x,y)) term.

5. Non-atomic symbolic values, such asA(O) ∈
{monday, tuesday} are represented by
f(aA,set,Seti) term, where Seti is a prede-
fined setSeti = {monday, tuesday}.

6. Negated non atomic symbolic values, such as:
A(O) /∈ {monday, tuesday} are represented by
f(aA,nset,Seti) term, whereSeti is a predefined
setSeti = {monday, tuesday}.

Now, considering that: every attribute domain has lower and
upper constraints, and there is a predefined real numbers pre-
cision, every relational expression with numerical value can
be mapped to anintervalof the form:< v1, v2 >.

Rules are represented as PROLOG facts. This allows for
encoding virtually any structured information. Note that in
such a case the built-in PROLOG inference facilities can-
not be used directly – there is a need for a meta-interpreter
(however, this gives more flexibility in terms of rule pro-
cessing). Using PROLOG for meta-programming (writing
an interpreter) is a standard approach used in the implemen-
tation of advanced PROLOGapplications. The extended rule
syntax is:

429

rule(table-num, rule-num, precondition-list,
retract-list, assert-list, decision-list,
next-table, next-rule in next-table).

In this application theelsepart is implicitly considered to
be the next rule in the current table.

The whole table-tree structure of XTT is represented by
oneflat rule-base. The rule-base is separated from the infer-
ence engine code. All tables have unique identifiers (num-
bers), and rules are assigned unique numbers too. This al-
lows for a precise inference control.

Using the Thermostat example (Tab. 2) is represented by
the following PROLOG code:
rule(2,3, [f(aTD,atomic,wd), f(aTM,interval,i(9,17))],

[f(aOP,atomic,_)], [f(aOP,atomic,true)], [], 3,7).

rule(2,4, [f(aTD,atomic,wd), f(aTM,interval,i(0,8))],

[f(aOP,atomic,_)], [f(aOP,atomic,false)], [], 3,7).

rule(2,5, [f(aTD,atomic,wd), f(aTM,interval,i(18,24))],

[f(aOP,atomic,_)], [f(aOP,atomic,false)], [], 3,7).

rule(2,6, [f(aTD,atomic,wk)],

[f(aOP,atomic,_)], [f(aOP,atomic,false)], [], 3,7).

where:aTD, aTM, aOP, are abbreviated attribute names:
today, time, operationrespectively.

Prolog Inference Engine
In order to interpret XTT rules there is a need for ameta-
interpreter. As a proof-of-concept an XTT meta-interpreter
engine has been developed and described in detail in (Nalepa
2004). It is aforward chaininginterpreter, where the infer-
ence control is performed using control statements encoded
in rules, i.e. next-table,next-rule . The Halt rule
is defined as a table/rule numbered0,0 – it stops the in-
ference process.Backtrackingis possible using an appro-
priate interpreter mode. The engine is implemented with
the mainrun/2 predicate, and several auxiliary predicates:
satisfied/1 checks whether the list of facts is valid,
fails/1 is the opposite to the above,valid/1 checks
whether the fact is present in rule base, or can be proved
valid, remove/1 /add/1 removes/adds the fact from the
rule-base,out/1 outputs the decision.

There are several clauses defining therun/2 predicate,
which constitutes the kernel of the meta-interpreter. Below
simplified but illustrative code excerpts for the regular (with
no backtracking) operation mode are shown.
run(0,_) :- write(’*** HALTED: run(0,_) *** ’), nl,!.

run(Table,Rule) :- mode(backtrack,no),

rule(Table,RuleInTable,LP,LR,LA,LD,NTable,NRule),

ok_rule(Rule,RuleInTable), nonvar(NTable),

satisfied(LP), remove(LR), add(LA), out(LD),

write(’*** Fired rule: ’), write(Table), write(’/’),

write(RuleInTable),write(’ *** ’),nl,!,

run(NTable,NRule).

run(Table,Rule) :- mode(backtrack,no),

rule(Table,RuleInTable,LP,LR,LA,LD,NTable,_),

ok_rule(Rule,RuleInTable), var(NTable),

satisfied(LP), remove(LR), add(LA), out(LD),

write(’*** Fired rule: ’), write(Table), write(’/’),

write(RuleInTable),write(’ *** ’), nl, run(0,_).

run(_,_) :- mode(backtrack,no), run(0,_).

The engine has a simple user shell providing access to its
main functions and can be easily extended if needed (Nalepa
2004).

Analysis and Verification Framework
During the logical design of rule-bases incremental synthe-
sis is supported by the on-line, PROLOG-based system anal-
ysis and verification framework. It allows for the implemen-
tation of different external verification and analysis modules.
The framework is integrated with the XTT inference engine.

The external analysis, verification and optimization mod-
ules are implemented in PROLOG. They have direct access
to the system knowledge base. Each module reads the XTT
rule-base and performs the analysis of the given property. It
then produces a report. The report can be optionally visual-
ized in the MIRELLA DESIGNER. Since the modules have
the access to the PROLOG-based XTT system description, it
is also possible to implement dynamic rule correction algo-
rithms.

The general algorithm for checking subsumption is as fol-
lows: for every two different rules in a table: 1) check
whether the precondition part of the first rule is weaker
(more general) than the precondition of the second rule, if
so, 2) check whether the conclusion part (including assert,
retract, decision parts) of the first rule is stronger (more spe-
cific) than the conclusion of the second rule; if so, 3) the
second rule is subsumed. A simplified excerpt of the main
part of the plugin PROLOG code follows:
vsu(T):-

rule(T,N1,P1,R1,A1,D1,_,_), rule(T,N2,P2,R2,A2,D2,_,_),

N1 \= N2, subsumes(P1,P2), covers(D1,D2),

write(’*** Rule: ’),

write(T),write(’.’),write(N1),write(’ subsumes: ’),

write(T),write(’.’),write(N2), nl, fail.

vsu(T):-

write(’No more subsumption in table ’), write(T), nl.

The plugin uses predicatessubsumes/2 and
covers/2 , which are used to compare two lists of
facts (whether they are weaker or stronger). The algorithm
is also able to check the assert and retract lists of the
rules. It is assumed that a rule subsumes another rule if it
asserts/retracts more facts than the subsumed rule.

Related Work
The research on verification and validation of rule-based
systems has a long tradition.3 Numerous research have been
undertaken in the domain of verification of rule-based sys-
tems. Some best known results are recapitulated in a com-
prehensive book edited by J. Liebowitz (Liebowitz 1998).
A recent book focused on verification and validation of
knowledge-based systems is (Vermesan & Coenen 1999). A
number of tools is listed in (Ligęza 2006).

Using PROLOG for the verification of rule-based systems
was also proposed by C. L. Chang et al. in (Chang, Combs,
& Stachowitz 1990). Their tool, the Expert Systems Vali-
dation Associate (EVA) was a validation system developed
at the Lockheed Artificial Intelligence Center in the late
80. It consisted of a set of generic tools to validate any
knowledge-based system written in any expert system shell

3For almost complete bibliography see:www.csd.abdn.
ac.uk/~apreece/Research/vvbiblio.html , last up-
date in 1995; for the V&V tools see alsowww.csd.abdn.ac.
uk/~apreece/Research/vvtools.html

430

such as CLIPS, OPS5, and other. The system offered several
tools, such as an extended structure checker, extended logic
checker, semantics checker, omission checker, rule refiner,
control checker, and behavior verifier. The main conceptual
differences to our work is that the analysis with EVA was
performedafter the design stage, while our system support
on-line verification integrated with visual design. Moreover,
the logical background, and hence the class of languages is
well defined (for details see (Ligęza 2006)).

An interesting work oriented towards simple practical ap-
plication is the one of J. Vanthienen (Vanthienen, Mues, &
G.Wets 1997). His tool, the PROLOGA system allows for
knowledge specification with hierarchical decision tables.
It enables verification of several theoretical characteristics,
such as subsumption, completeness, conflict, etc. The main
limitation of the system is that it supports propositional lan-
guage for knowledge representation only. XTT is of incom-
parably higher expressive power and provides inference con-
trol mechanisms and dynamic knowledge modification.

A classical work on verifying logically specified rule-
based systems is the one of Preece (Preece, Bell, & Suen
1992); a more recent paper concerns a method for structure-
based testing of rule-based systems (Preeceet al. 1998).
Some interesting recent report on the VALENS system are
presented in (Gerrits & Spreeuwenberg 2000); it is one of
rare tools incorporating verification capability; however, it
follows the classical approach where the verification is per-
formed off-line, for a completed knowledge base. No de-
tails on the language and its expressive power nor about the
technical aspects of verification were reported in (Gerrits &
Spreeuwenberg 2000).

Concluding Remarks
The paper presents an outline of a new approach to design
and verification of rule-based systems. It is argued that a rea-
sonable solution should consist in an integrated design and
verification procedure allowing for on-line verification of a
partially designed system. A new idea for structural knowl-
edge representation, the eXtended Tabular Trees (XTT), is
incorporated.

The presented concept of tabular systems (XTT) seems to
provide a new quality in knowledge representation. Simulta-
neously, it constitutes a step on the way to thealgebraization
of knowledge which seems important both for efficiency rea-
sons and making the approach close to engineering practice.
XTT offers the possibility ofvisual knowledge representa-
tion which seems very important for practical applications.
It also incorporates the possibility ofhierarchical represen-
tation anddevelopmentof a RBS. Finally, it enables inter-
leaving theverificationanddesignstages, so that a possibly
correct system is designed and developed.

References
Barr, V., and Markov, Z., eds. 2004.Proceedings of the
Seventeenth International Florida Artificial Intelligence
Research Society Conference, Miami Beach, Florida, USA.
AAAI Press.

Chang, C. L.; Combs, J. B.; and Stachowitz, R. A. 1990.
A report on the expert systems validation associate (eva).
Expert Systems with Applications1(3):217–230.
Gerrits, R., and Spreeuwenberg, S. 2000. Valens: A knowl-
edge based tool to validate and verify an aion knowledge
base. InECAI 2000, Proceedings of the 14th European
Conference on Artificial Intelligence, Berlin, Germany, Au-
gust 20-25, 2000, 731–738.
Knauf, R. 2005. The engineering of system refinement or:
What ai learnt from software engineering.Fachberichte In-
formatik Universität Koblenz-Landau(28th German Con-
ference on Artificial Intelligence (KI-2005), Workshop
on Knowledge Engineering and Software Engineering,
Koblenz, Germany, ISSN 1860-4471):59–70.
Liebowitz, J., ed. 1998.The Handbook of Applied Expert
Systems. Boca Raton: CRC Press.
Ligęza, A.; Wojnicki, I.; and Nalepa, G. J. 2001. Tab-
trees: a case tool for design of extended tabular systems.
In et al., H. M., ed.,Database and Expert Systems Appli-
cations, volume LNCS 2113 ofLecture Notes in Computer
Sciences. Berlin: Springer-Verlag.
Ligęza, A. 1996. Logical support for design of rule-based
systems. reliability and quality issues. In Rousset, M., ed.,
ECAI-96 Workshop on Validation, Verification and Refin-
ment of Knowledge-based Systems, volume W2. Budapest:
ECAI’96.
Ligęza, A. 2006.Logical Foundations for Rule-Based Sys-
tems. Berlin, Heidelberg: Springer-Verlag.
Nalepa, G. J. 2004.Meta-Level Approach to Integrated
Process of Design and Implementation of Rule-Based Sys-
tems. Ph.D. Dissertation, AGH – University of Science and
Technology, Institute of Automatics, Cracow, Poland.
Negnevitsky, M. 2002.Artificial Intelligence. A Guide to
Intelligent Systems. Addison-Wesley.
Preece, A. D.; Bell, R. D.; and Suen, C. Y. 1992. Verifying
knowledge-based systems using the cover tool. InIFIP
Congress (3), 231–237.
Preece, A. D.; Grossner, C.; Chander, P. G.; and Radhakr-
ishnan, T. 1998. Structure-based validation of rule-based
systems.Data Knowl. Eng.26(2):161–189.
Spreeuwenberg, S., and Gerrits, R. 2002. Requirements for
successful verification in practice. InProceedings of 15th
International Florida Artificial Intelligence Research So-
ciety Conference 2002 Society (FLAIRS-2002), Pensacola,
FL, USA, May 14-16, 2002, 221–225. Menlo Park, CA:
AAAI Press.
Vanthienen, J.; Mues, C.; and G.Wets. 1997. Inter-tabular
verification in an interactive environment. In J. Vanthienen,
F. H., ed.,EUROVAV-97, 4th European Symposium on the
Validation and Verification of Knowledge Based Systems,
volume II. Leuven, Belgium: Katholieke Universiteit Leu-
ven. 155–165.
Vermesan, A., and Coenen, F., eds. 1999.Validation and
Verification of Knowledge Based Systems. Theory, Tools
and Practice. Kluwer Academic Publisher.

431

