
Which Dynamic Constraint Problems Can Be Solved By Ants?

Koenraad Mertens∗ and Tom Holvoet and Yolande Berbers
AgentWise, Distrinet

Department of Computer Science, K.U.Leuven
Celestijnenlaan 200A

B-3001 Leuven, Belgium

{Koenraad.Mertens, Tom.Holvoet, Yolande.Berbers}@cs.kuleuven.be

Abstract

There exist a number of algorithms that can solve dynamic
constraint satisfaction/optimization problems (DynCSPs or
DynCOPs). Because of the large variety in the characteris-
tics of DynCSPs and DynCOPs, not all algorithms perform
equally well on all problems.

In this paper, we present the Dynamic Constraint Optimiza-
tion Ant Algorithm (DynCOAA). It is based upon the ant
colony optimization (ACO) meta-heuristic that has already
proven its merit in other dynamic optimization problems. We
perform a large number of experiments to identify the dy-
namic constraint problems which our algorithm is most suited
for. It turns out that this is a large class of problems, namely
heterogeneous problems that change often. We find this to
be common characteristics in real-world applications. For
these problems, DynCOAA outperforms both the complete
and non-complete traditional algorithms that were used for
comparison.

Introduction

Numerous real-world problems can be transformed in con-
straint satisfaction and constraint optimization problems
(CSPs and COPs). In many practical applications there is not
one static CSP or COP but a constantly changing problem
that has to be solved. Changes can happen either because
additional information is added to the model, or because of
a changing nature in the problem that one tries to solve. An
example of a changing problem is a GPS navigation system
that has to recalculate the route when the car does not follow
the proposed route.

When solving a changed version of a CSP or COP, the
changed problem is often similar to the old problem: it only
differs in a few constraints or variables. While it is possible
that a small change in the problem creates a big change in the
optimal solution, in most practical cases the optimal solu-
tions of such similar problems do not differ a lot. E.g. in the
GPS system when a car goes forward instead of turning left,
the initial positions are almost the same and it may suffice

∗This work has been funded by the Institute for the Promotion
of Innovation through Science and Technology in Flanders (IWT-
Vlaanderen)
Copyright c© 2006, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

to take the next left turn. Changing problems are called dy-
namic constraint satisfaction/optimization problems (DynC-
SPs/DynCOPs). They were first introduced by Dechter and
Dechter in (Dechter & Dechter 1988).

A number of algorithms have been proposed for solv-
ing dynamic constraint problems. They can be divided into
traditional methods and methods based on meta-heuristics.
Traditional solving methods include both complete and non-
complete algorithms. They are mostly adaptations of ex-
isting algorithms for static problems. While the complete
methods perform better on harder static problems, the more
reactive nature of the incomplete methods makes them more
suited for easier static problems and for tracking changes in
dynamic problems (Davenport 1995; Mailler 2005).

Meta-heuristic methods include evolutionary algorithms
and ant colony optimization (ACO) algorithms. In (Craenen,
Eiben, & van Hemert 2003), it is shown that evolutionary al-
gorithms cannot compete with complete algorithms on static
problems, while (van Hemert & Solnon 2004) and (Mertens
& Holvoet 2004) show that ACO algorithms are able to com-
pete with complete methods on static problems.

In this paper, we present the Dynamic Constraint Opti-
mization Ant Algorithm (DynCOAA), which is specifically
designed to solve DynCOPs. We perform a large number
of experiments on a broad range of DynCOPs, in order to
identify those problems where DynCOAA achieves the best
results. We compare those results to the performance of two
traditional algorithms: the complete algorithm Dynamic No-
good Recording (DynNR) (Schiex & Verfaillie 1993) and
the non-complete Dynamic Breakout Algorithm (DynBA)
(Morris 1993; Mailler 2005). It turns out that there is a huge
difference in the performance of DynCOAA with respect
to the type of problem that has to be solved. For homo-
geneous problems (those where no distinction can be made
between variables), DynCOAA is not the most efficient al-
gorithm, while for heterogeneous problems (those that do
exhibit such a distinction) that change rapidly, DynCOAA is
the best choice.

In the following section we present our Dynamic Con-
straint Optimization Ant Algorithm (DynCOAA). This is
followed by the tests we performed and the results we found.
We conclude this paper with an overview of the relevance of
our findings in real-world problems.

439



A B

C

(a)

A B

C

AB

AC

(b)

A B

BC

C

AB

BA

CBAC

CA

(c)

Figure 1: Construction of a graph for a problem with 3 vari-
ables: A ∈ {4, 5, 6}; B ∈ {2, 3}; C ∈ {2, 3} and 2 con-
straints: A = B+C; B > C. (a) Each main node represents
a variable. (b) Going to the next main node is a two-step pro-
cess: first the next variable is chosen, then the value for the
current variable (A has 3 possible values: there are 3 value
edges from AB to B). (c) The complete graph for the prob-
lem. For reasons of efficiency, a reference to A = B + C is
stored in A, B and C, and a reference to B > C in B and
C, although one reference to each constraint suffices when
privacy concerns come into play in a distributed setting.

Algorithms

In this section we describe the algorithms we use in our
experiments. We first detail the mechanism behind our
Dynamic Constraint Optimization Ant Algorithm (Dyn-
COAA). Next we state the main characteristics of Dynamic
Nogood Recording (DynNR) and the Dynamic Breakout Al-
gorithm (DynBA).

Dynamic Constraint Optimization Ant Algorithm

The basic idea of the ACO meta-heuristic is that agents give
positive feedback to other agents when they have found a so-
lution. The feedback is given indirectly by placing artificial
pheromones in the environment of the agents. The amplitude
of the feedback depends on the quality of the solution.

In order to use the ACO meta-heuristic, the problem that
has to be solved must be translated into an environmental
structure. In the case of solving a DynCOP with the Dyn-
COAA algorithm, this structure is a graph, where the nodes
represent variables and the edges represent values for those
variables. Each node stores references to the constraints
its associated variable is involved in. Additional nodes and
edges are inserted to allow a more differentiated feedback,
such as an approximation of the fail-first heuristic. The con-
struction of such a graph for a simple problem with three
variables is shown in Fig. 1.

In its simplest form, an agent that tries to solve a COP
”walks around” in the graph structure. At each node, an
agent has to decide which edge to follow next. This decision
is based upon the amount of pheromones that are present
on each edge (feedback from previous agents). Moreover,
when the cost function is composed of the sum of weights
of violated constraints, each agent can check the constraints
before choosing a value and thus avoids bad solutions at an
early stage (as is done in a tree search). The relative im-
portance of the feedback on the one hand and the cost func-
tion on the other hand can be tuned for each class of prob-

lems. It is also possible to adapt the relative importances of
the cost function and the feedback while solving: as more
agents provide feedback, the usefull information that is pro-
vided by that feedback increases. In any case, decisions are
made stochastically to prevent that after some time all agents
compose the same variable-value assignment.

While going from node to node, an agent remembers the
path it has followed (and thus the values it has assigned
to variables). When an agent has visited all nodes, it has
constructed a complete variable assignment and the com-
plete cost function can be evaluated. According to this cost,
the agent puts more or less pheromones on the path it has
walked.

Future agents that walk the graph are influenced by
pheromones that are present in the graph, but because
pheromones evaporate, their influence is limited in time.
At the start of the algorithm, all edges are initialized with
a default pheromone quantity. As long as no agent puts
pheromones on a specific edge – because no agent finds a
good solution using the value associated with that edge – the
pheromone quantity of that edge gradually decreases. This
means that the probability that the edge gets chosen by an
agent also decreases.

For reasons of efficiency, not a single agent, but a swarm
of agents walk the graph simultaneously. Only the agent that
has found the best solution is allowed to put pheromones on
the graph. The agent that has found the best overall solution
is also remembered. The pheromones on the path of this
best agent are increased together with that of the best agent
of each swarm. Additional details on the construction of the
graph and the behavior of the ants can be found in (Mertens
& Holvoet 2004).

When adding or removing variables or values in a dy-
namic problem, the corresponding nodes and edges have to
be added or removed on the appropriate hosts. When adding
or removing constraints, references to those constraints must
be registered or deregistered with the appropriate nodes.

While it is possible to leave all existing pheromone
trails unchanged and only to initialize new edges with the
default pheromone quantity, Guntsch et. al. show in
(Guntsch, Middendorf, & Schmeck 2001) that better results
can be achieved with dynamic ACO algorithms when all
pheromone quantities are equalized to a certain degree. We
use the Restart-Strategy that they describe in their paper, us-
ing a λR value of 0.5, which gave the best results in their
experiments. This means that all pheromone quantities are
set to the average of the previous pheromone quantity and
the default pheromone quantity.

In (van Hemert & Solnon 2004), it is shown that ACO al-
gorithms can compete with complete algorithms when solv-
ing static optimization problems. When we look at the
general properties of ACO algorithms (Dorigo, Maniezzo,
& Colorni 1991; Guntsch, Middendorf, & Schmeck 2001),
they should be even better suited for dynamic optimization
problems.

Algorithms for Comparison

We use two existing algorithms for comparing the efficiency
of the DynCOAA algorithm. Dynamic Nogood Recording

440



(DynNR) (Schiex & Verfaillie 1993) is a complete algo-
rithm, based on nogood recording, which was introduced
by (Dechter 1990). The nogoods that are recorded during
a search, are filtered and those nogoods that are still valid
can be reused in the next search. Nogoods remain valid as
long as the constraints that they are deduced from do not
weaken. We included DynNR in our comparison because
(Schiex & Verfaillie 1993) states that this algorithm is the
best complete method for dynamic constraint solving.

The Dynamic Breakout Algorithm (DynBA) is a non-
complete, local search algorithm, that is able to escape from
local minima. The (static) Breakout Algorithm was first in-
troduced in (Morris 1993). According to (Mailler 2005),
where the dynamic version was first proposed, DynBA is
a good choice for rapidly changing, hard problems: those
that DynCOAA is designed for.

Experimental Results

In this section we discuss the results of the tests we have
done to compare DynCOAA with DynNR and DynBA. The
three algorithms were implemented in C++, using the same
constraint processing engine. All tests were performed on a
Intel Pentium 4 CPU 3.0 GHz.

The problems that we tested were graph coloring prob-
lems where the number of constraint violations had to be
minimized. In the first subsection, we describe the behav-
ior of the three algorithms on homogeneous graph coloring
problems. In the second subsection heterogeneous graph
coloring problem are solved. The difference between ho-
mogeneous and heterogeneous problems is that in homoge-
neous problems, the constraints are chosen randomly, while
in heterogeneous problems, the random constraint genera-
tor is guided, so that the variables become clustered. There
exist more constraints between variables of the same clus-
ter than there are constraints between variables of different
clusters. As we will show, ant algorithms perform better on
these types of problems. We end this section with the results
of a real-world application.

Homogeneous Graph Coloring Problems

For our first series of tests, we used homogeneous graph col-
oring problems. In homogeneous problems, all variables are
treated equally by the random constraint generator (the com-
mon practice for constructing graph coloring problems). For
each problem, the algorithms could compute for x seconds.
After those x seconds, three constraints were replaced by
three different constraints and again the algorithms could
compute for x seconds. This was repeated 100 times. For
each combination of parameters, 20 different dynamic prob-
lems (with 1 initial and 100 changes) had to be solved. The
initial problem as well as the changes were remembered, so
that each algorithm had to solve exactly the same set of prob-
lems. For DynCOAA, a swarm of 5 ants was used.

There are a number of parameters in homogeneous graph
coloring problems that can be varied: the number of vari-
ables, the number of values and the number of constraints.
For static problems, these parameters determine where
the problem is located in relation to the phase transition.

For easy problems (those that are clearly under- or over-
constrained), incomplete algorithms like BA or COAA can
find a good solution fast, by following heuristics. Complete
algorithms also find a good solution, but it can take longer.
For hard problems (those within the phase transition be-
tween under- and over-constrained problems) the complete
algorithms like NR have the advantage of only considering
each assignment once. If only one or a few assignments are
allowed by the constraints, a complete algorithm like NR
will probably find it faster than an incomplete algorithm like
BA or COAA.

For dynamic problems, we notice a different behavior:
whether or not the parameters place a problem in the phase
transition zone is far less important when that problem
changes constantly. For a changing problem, the rate of
change becomes the dominant factor. This is consistent with
the findings in (Mailler 2005). For slowly changing prob-
lems the DynNR algorithm displayed the best performance.
This can be easily explained by intuition: a complete al-
gorithm will always find the optimal solution when given
enough time. When a problem changes slowly, the DynNR
algorithms has enough time between changes to find (a good
approximation to) the optimal solution. For rapidly chang-
ing problems the more reative DynCOAA and DynBA algo-
rithms outperform DynNR.

The performance of DynBA and DynCOAA is almost
the same on homogeneous dynamic graph coloring prob-
lems. Figure 2 shows the average best solution right be-
fore each change for a number of typical problems (thus
each of the 101 data points is the average of 20 solution val-
ues). The three lines for each algorithm indicate the average
and 95% confidence interval. Whether the algorithms are
allowed to compute for 0.25 seconds or for 2 seconds on
dynamic graph coloring problems that are within the phase
transition, DynCOAA and DynBA reach almost the same
solutions. Evidently, this solution is better when the algo-
rithms are allowed to compute longer (figure 2(a) versus fig-
ure 2(b)). Whether the algorithms have to solve problems
that are within the phase transition or problems that are over-
constrained has no influence on the relative performance of
both algorithms (figure 2(a) versus figure 2(c)).

Heterogeneous Graph Coloring Problems

Heterogeneous graph coloring problems are graph coloring
problems where not all variables are treated equally. An ex-
ample of a heterogeneous optimization problem is the clus-
tered traveling salesman problem (van Hemert & Urquhart
2004). In these problems, cities are clustered in certain re-
gions of space. Optimal solutions are likely to visit all cities
within one cluster, before visiting other clusters.

Two examples of heterogeneous graph coloring problems
are shown in figure 3. Figure 3(a) shows a cluster struc-
tured graph coloring problem. Variables within a cluster are
connected by more edges than variables in different clusters.
Figure 3(b) shows a star structured graph coloring problem.
In these problems, all inter-cluster edges connect a variable
from one central cluster to a variable of another cluster. For
our tests, we used clusters of 30 variables (resulting in to-
tal problems of 30, 60, 90,. . . variables), with inside each

441



0 20 40 60 80 100
0

5

10

15

20

25
S

o
lu

ti
o

n

(a) Degree 2.3, 0.25 seconds

0 20 40 60 80 100
0

5

10

15

20

S
o

lu
ti
o

n

(b) Degree 2.3, 2 seconds

0 20 40 60 80 100
0

5

10

15

20

25

S
o

lu
ti
o

n

(c) Degree 2.5, 0.25 seconds

Figure 2: Average best solution right before each change for
DynCOAA (solid line), DynBA (dotted line) and DynNR
(dashed line) on homogeneous dynamic graph coloring
problems with 30 variables, 3 colors, a degree of 2.3 (for
(a) and (b)) or 2.5 (for (c)) and a computing time of 0.25
seconds (for (a) and (c)) or 2 seconds (for (b)).

cluster an edge degree of 2.3. On average, each variable was
involved in 2 inter-cluster edges. As with the homogeneous
problems, for each combination of parameters, 20 different
problems, consisting of 1 initial problem and 100 successive
problems were generated.

When we look at the results for relatively small (90 vari-
ables, thus 3 clusters) problems (figure 4), we notice that
both DynCOAA and DynBA perform better that DynNR.
This is due to the relatively short computing time of 2 sec-
onds for each change. If we would increase the computa-
tion time, the difference would become smaller or even be
inverted. For problems with a cluster structure (figure 4(a)),
the performance of DynBA is slightly better that that of Dyn-
COAA. At least, this holds after about 20 changes. During
the first 20 changes however, the performance of DynBA
is clearly better than that of DynCOAA. This is due to the
pheromone trails in DynCOAA. When agents give feedback,
they do so by laying pheromone trails in their environment.
Because of the special construction of the environment in
DynCOAA, the pheromone trails can approximate the fail-
first heuristic, which is very helpfull in structured problems.
But it takes time for the ants to gather these pheromone
trails. During this time, the information that is present in the

(a) Cluster structure (b) Star structure

Figure 3: Examples of a cluster structured and a star struc-
tured graph coloring problem. Each cluster contains 30 vari-
ables in the problems that were tested. Internally, the clus-
ters have an edge density of 2.3 (this is within the phase
transition for 30 variables). For cluster structured problems
(a), there are extra edges that connect variables from dif-
ferent clusters. For star structured problems (b), each extra
edge connects a variable from the central cluster to a variable
from another cluster. On average, each variable is involved
in two inter-cluster edges.

trails continuously increases. The solution that is found also
gradually enhances. After about 20 changes, the pheromone
trails reach the maximum amount of information that is pos-
sible at the given change rate and the solution stagnates. For
problems with a star structure (figure 4(b)), the same conclu-
sions can be drawn. But because a star structured graph has
an even more explicit structure, the information that can be
captured in the pheromone trails is even more meaningful.

It is also clear from figure 4(b) that the nogood record-
ing strategy of DynNR has an important drawback when
rapidly changing problems have to be solved. During the
first changes, the solution that is found by DynNR is better
than that of DynCOAA. But while DynCOAA increases its
amount of information, without the need of filtering it after
each change, DynNR does need to filter the nogood it has
collected. This takes time, and limits the amount of time
that remain available for searching a solution. After about
10 changes, an equilibrium is found between filtering the
nogoods and creating new ones.

These conclusions can, to a lesser extend, also been ap-
plied to the homogeneous problems the we discussed earlier.

When we look at bigger problems (figure 5: 150 vari-
ables, 5 clusters and figure 6: 210 variables, 7 clusters), we
notice the same global picture. But the bigger the problem
(and thus the bigger the graph structure that is used by the
ants in DynCOAA), the more information that can be stored
by DynCOAA. For problems of 210 variables, extra infor-
mation can be stored in the pheromone trails even after 80
changes. This results in a performance for DynCOAA that
is clearly better than that of DynBA.

Real-World Ship Scheduling Test

While it is interesting to know that DynCOAA is suited for
heterogeneous dynamic constraint problems, the question
remains if this class of problems appears in real-world ap-
plications. Therefore, we decided to also use a real-world
problem instead of an artificial problem to validate our re-
sults. The problem we try to solve is to assemble a schedule
for transport ships. The ships transport liquified natural gas

442



0 20 40 60 80 100
0

20

40

60

80

100

120
S

o
lu

ti
o

n

(a) Cluster structured, 90 variables

0 20 40 60 80 100
0

20

40

60

80

100

120

S
o

lu
ti
o

n

(b) Star structured, 90 variables

Figure 4: Average best solution right before each change for
DynCOAA (solid line), DynBA (dotted line) and DynNR
(dashed line) on heterogeneous dynamic graph coloring
problems with 90 variables (3 clusters) in a cluster structure
(a) or a star structure (b). The computation time per problem
was 2 seconds.

from different ports around the world to one destination port.
Using data provided by Tractebel Engineering (Engineering
), the algorithms had to calculate a schedule for 7 ships, for
a period of three months.

After a decent schedule had been found, we simulated a
storm: one of the ships got delayed for three days. The al-
gorithms had to recalculate the schedule, incorporating the
delay. The goal was twofold: to obtain a good schedule, but
also to leave the individual schedules for the 6 ships that did
not get stuck in the storm as unchanged as possible.

This problem is quite complicated: the original schedul-
ing problem is made up of a total of 69 variables, with do-
mains up to 200 possible values, and 101 constraints. The
constraints are a mixture of hard constraints (those have to
be obeyed in each valid solution: it are constraints with a
weight of infinity) and soft constraints, binary constraints
and n-ary constraints. A solution with a cost of 1000 means
that the local transport rate in the destination port has to
deviate from the optimal rate during a total of one day (in
smaller intervals distributed over the three months). At a
cost of 2000, it has to deviate during a total of 2 days, etc.
An important aspect of this problem is the physical meaning
of the variables: there are variables that represent a port, oth-
ers represent a time or a cargo. Not all these variables have
a similar meaning, resulting in a heterogeneous problem.

Instead of the three algorithms that were described in the
previous sections, we used the distributed versions of those
algorithms (DynDBA and DynAWC) for this problem. Be-
cause the principles behind the algorithms remain the same,
this should not influence the results, only the speed of calcu-
lation. The swarm size for DynCOAA was increased from 5
to 30. Each of the three algorithms made 20 schedules. The
anytime curves for this problem are shown in figure 7.

0 20 40 60 80 100
0

50

100

150

200

250

S
o

lu
ti
o

n

(a) Cluster structured, 150 variables

0 20 40 60 80 100
−50

0

50

100

150

200

250

S
o

lu
ti
o

n

(b) Star structured, 150 variables

Figure 5: Average best solution right before each change for
DynCOAA (solid line), DynBA (dotted line) and DynNR
(dashed line) on heterogeneous dynamic graph coloring
problems with 150 variables (5 clusters) in a cluster struc-
ture (a) or a star structure (b). The computation time per
problem was 2 seconds.

The first thing to notice is that DynDBA is missing from
figure 7. During the 10 minutes of calculation time, none
of the 20 runs were able to find any valid schedule (one that
satisfies all hard constraints). Because no initial schedule
was found, DynDBA could not even begin to search for a
solution after the change.

The two algorithms that did find a valid solution did so in
all 20 runs. But the behaviors of DynCOAA and DynAWC
were completely different for the original and the changed
problem. For the original schedule, it took both algorithms
about 1 minute to find a first solution for all 20 runs. While
the initial solution of DynCOAA was better, the solution that
DynAWC found after 10 minutes was almost perfect. At that
time, DynCOAA still had a cost of about 550.

As for the schedule after the storm, it took DynCOAA less
than 10 seconds to find a valid schedule in all 20 runs. Dyn-
COAA could not improve this first schedule significantly,
but still ended with an average cost of about 300 after 10
minutes of calculation. DynAWC on the other hand took al-
most 100 seconds to find a first solution in all 20 runs. The
first average solution had a cost of about 5000. In the re-
maining time, the solution could be improved to less than
2000, but this still was a lot higher than the average solution
of DynCOAA.

Conclusions

In this paper we presented DynCOAA. It is based on the
ACO meta-heuristic and designed from the start for solving
dynamic constraint optimization problems (DynCOPs). We
compared this algorithm to two traditional algorithms: the
complete algorithm DynNR and the incomplete algorithm
DynBA.

443



0 20 40 60 80 100
100

120

140

160

180

200
S

o
lu

ti
o

n

(a) Cluster structured, 210 variables

0 20 40 60 80 100
0

50

100

150

200

S
o

lu
ti
o

n

(b) Star structured, 210 variables

Figure 6: Average best solution right before each change for
DynCOAA (solid line), DynBA (dotted line) and DynNR
(dashed line) on heterogeneous dynamic graph coloring
problems with 210 variables (7 clusters) in a cluster struc-
ture (a) or a star structure (b). The computation time per
problem was 2 seconds.

From our tests, we can conclude that DynCOAA is suited
for heterogeneous, rapidly changing dynamic constraint
problems. When other types of problems have to be solved,
other algorithms are more suited. As can be seen from the
real-world test we did, a heterogeneous problem is not a rare
phenomenon. Instead we believe it is present in a lot of real-
world applications.

References

Craenen, B. G. W.; Eiben, A. E.; and van Hemert, J. I.
2003. Comparing evolutionary algorithms on binary con-
straint satisfaction problems. IEEE Trans. Evolutionary
Computation 7(5):424–444.

Davenport, A. 1995. A comparison of complete and in-
complete algorithms in the easy and hard regions. In Pro-
ceedings of the Workshop on Studying and Solving Really
Hard Problems, CP-95, 43–51.

Dechter, R., and Dechter, A. 1988. Belief maintenance in
dynamic constraint networks. In Proceedings of the Sixth
National Conference on Artificial Intelligence (AAAI ’88),
37–42.

Dechter, R. 1990. Enhancement schemes for constraint
processing: backjumping, learning, and cutset decomposi-
tion. Artif. Intell. 41(3):273–312.

Dorigo, M.; Maniezzo, V.; and Colorni, A. 1991. Positive
Feedback as a Search Strategy, Technical Report 91016,
Dipartimento di Elettronica e Informatica, Politecnico di
Milano, Italy.

Engineering, T. http://www.engineering.tractebel.com/.

Guntsch, M.; Middendorf, M.; and Schmeck, H. 2001.
An ant colony optimization approach to dynamic TSP. In

0
2

0
0

0
4

0
0

0
6

0
0

0
8

0
0

0
S

o
lu

ti
o

n

1 10 100 1000
Seconds

Original

1 10 100 1000
Seconds

Change 1

DynCOAA

DynAWC

Figure 7: Anytime curves for DynCOAA (solid line) and
DynAWC (dashed line) when assembling a schedule for
ships. DynDBA was unable to find any solution. The error
bars indicate the 95% confidence interval of the final average
solution.

Spector, L.; Goodman, E. D.; Wu, A.; Langdon, W. B.;
Voigt, H.-M.; Gen, M.; Sen, S.; Dorigo, M.; Pezeshk,
S.; Garzon, M. H.; and Burke, E., eds., Proceedings of
the Genetic and Evolutionary Computation Conference
(GECCO-2001), 860–867. San Francisco, California,
USA: Morgan Kaufmann.

Mailler, R. 2005. Comparing two approaches to dy-
namic, distributed constraint satisfaction. In Proceed-
ings of the Fourth International Joint Conference on Au-
tonomous Agents and Multiagent Systems (AAMAS ’05),
1049–1056.

Mertens, K., and Holvoet, T. 2004. CSAA; a Constraint
Satisfaction Ant Algorithm Framework. In Proceedings
of the Sixth International Conference on Adaptive Com-
puting in Design and Manufacture (ACDM’04), 285–294.
Springer-Verlag.

Morris, P. 1993. The breakout method for escaping from
local minima. In AAAI, 40–45.

Schiex, T., and Verfaillie, G. 1993. Two approaches
to the solution maintenance problem in dynamic con-
straint satisfaction problems. In Proceedings of the IJCAI-
93/SIGMAN Workshop on Knowledge-based Production
Planning, Scheduling and Control, Chambery, France.

van Hemert, J., and Solnon, C. 2004. A study into ant
colony optimization, evolutionary computation and con-
straint programming on binary constraint satisfaction prob-
lems. In Applications of evolutionary computing (EvoCOP
2004), Lecture Notes in Computer Science. Springer Ver-
lag.

van Hemert, J. I., and Urquhart, N. 2004. Phase transi-
tion properties of clustered travelling salesman problem in-
stances generated with evolutionary computation. In Yao,
X.; Burke, E. K.; Lozano, J. A.; Smith, J.; Guervós, J.
J. M.; Bullinaria, J. A.; Rowe, J. E.; Tiño, P.; Kabán, A.;
and Schwefel, H.-P., eds., Parallel Problem Solving from
Nature - PPSN VIII, 8th International Conference, Birm-
ingham, UK, September 18-22, 2004, Proceedings, vol-
ume 3242 of Lecture Notes in Computer Science, 151–160.
Springer.

444


