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Abstract

In this paper we test whether a correlation exists between the
optimal mutation rate and problem difficulty. We find that the
range of optimal mutation rates is inversely proportional to
problem difficulty. We use numerical sweeps of the mutation
rate parameter to probe a problem with tunable difficulty. The
tests include 3 different types of individual selection methods.
We show that when problem difficulty increases, the range of
mutation rates improving performance over crossover alone
narrowed; e.g. as the problem difficulty increases the genetic
program becomes more sensitive to the optimal mutation rate.
In general, we found that the optimal mutation rate across a
range of mutation types and level of difficulty is close to 1/C,
where C is the maximum size of the individual.

Introduction
Mutation in evolutionary computation and specifically ge-
netic programming (GP) is frequently treated as a secondary
or background operator. If mutation is not excluded, it is
often given less emphasis than crossover. However, it has
been shown that mutation can significantly improve perfor-
mance when combined with crossover (Banzhaf, Francone,
& Nordin 1996) (Poli & Langdon 1997). Investigating the
effect of the mutation rate as a positive, neutral or negative
factor for variable length representation GP is limited com-
pared with genetic algorithm (GA) research.

In GP, different mutation implementations make it diffi-
cult to compare the published results. This inhibits the abil-
ity to select the optimal mutation rate (OMR). Factors that
make it difficult or impossible to determine the OMR by re-
viewing published results include:

• Varying solution depth and size.

• Mutation implementation and control parameters.

• Interaction with crossover and other phases of genetic
programming.

• Limited reporting of mutation in published research.

• Limited or lacking statistics and metrics describing popu-
lation response to mutation.

• Mutation parameter description and justification.
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This paper extends our understanding of mutation through
analysis of experimental results for GP culminating in the
following findings:

• The OMR is approximately1C across a range of problem
difficulties.

• The OMR is independent of mutation selection method.

• The sensitivity to the mutation rate increases when prob-
lem difficulty increases.

Background
First, we review previous research addressing mutation in
GP, followed by a review of difficulties in understanding mu-
tation research. Next, we review related GA research efforts
that have similar goals to this paper.

Banzhaf, Francone and Nordin applied population mu-
tation rates of 5%, 20%, 50%, 80% and significantly im-
proved the generalization capabilities of their genetic pro-
gram (Banzhaf, Francone, & Nordin 1996). The findings
reveal that as the problem difficulty increased, the improve-
ment due to higher mutation rates increased for two of three
data sets studied. Generalization improvements increased
the probability of creating outstanding runs. The OMR
for all three test problems (Gaussian 3D data set, phoneme
recognition data set and the IRIS machine learning image
training set) was 50%. These results show that mutation can
be beneficial, although in this case the limited number of
mutation rates tested makes it difficult to identify the pre-
cise OMR. There was no description of the mutation method
implementation.

Poli and Langdon tested new crossover techniques using
six different single-point mutation probabilities per node: 0,
1/256, 1/128, 1/64, 1/32 and 1/16 (Poli & Langdon 1997).
Point mutation was applied to every individuals in the pop-
ulation. The results suggest that crossover without muta-
tion causes premature convergence. They show that it was
five times easier to generate a solution for the 4-parity prob-
lem with a 1/256 mutation probability applied to each node.
They found the OMR is approximately 2 divided by the size
of the tree. For a problem depth of six, the OMR provided
10 to 15 times the performance of a standard genetic pro-
gram. Therefore, these results show that mutation is bene-
ficial. However, it is unclear if the rates they selected were
optimal.
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Luke and Spector varied crossover, mutation and popula-
tion size simultaneously. They studied 6 common problems
from the literature and found peak performance with a muta-
tion ratio between 20% and 30% of the population (Luke &
Spector 1997) (Luke & Spector 1998). The implementation
was point mutation where a random subtree is replaced with
a new random tree.

Koza introduced a framework for comparing mutation
with crossover in GP (Kozaet al. 1999) (Kozaet al. 2003).
This suggests mutation is unlikely to be beneficial when
compared to a large population with crossover. Few of
Koza’s early experiments include mutation. Koza states two
reasons for the omission of mutation in the majority of prob-
lems investigated in his first book (Koza 1992a). First, it
is rare to lose diversity when using a sufficient population
size; therefore, mutation is simply not needed in GP. Sec-
ond, when the crossover operation occurs using endpoints in
both trees, the effect is “very similar to point mutation.”

Mutation was often overlooked in early GP research. To-
day it receives more attention. Evidence strongly suggests
that efficiency in GP requires determining the OMR. In gen-
eral, mutation can have three effects:efficient mutation(mu-
tation at an optimal or near optimal rate) improves the prob-
ability of generating a solution,inefficient mutationadds an-
other processing phase to the GP environment and causes
deleterious changes to the population andbenign mutation
may not improve the results but still consume processing re-
sources. The previous results suggest that finding an OMR
depends on the type of mutation and the difficulty of the
problem. In this paper, we focus on OMR and is relation-
ship to problem difficulty.

In contrast to GP, there has been extensive research in the
GA community regarding mutation. Therefore, we examine
that literature for further insights. The GA research commu-
nity has investigated OMR for problems while considering:
population size, adaptive mutation rates, improved statisti-
cal random distributions and mixing of mutation modes. Of
the many papers studying mutation in GA, the following are
most relevant to this paper.

The GA research community typically specifies the muta-
tion rateµ as 1/n, where n is the length of the genome (Koza
1992b). In most implementations, mutation is applied with
µ probability to each bit in the genome. Sasaki and Nowak
describelocalization as “the ability for a quasispecies to
adapt to the peaks in the fitness landscapes (Sasaki & Nowak
2003).” Sasaki and Nowak describe the rate of less than
1/n as a requirement to satisfy the equilibrium quasispecies
distribution for a particular region of sequence space. A
value greater than 1/n causes delocalization, this results in
any finite population wandering in sequence space (Sasaki
& Nowak 2003).

Heinz Mühlenbein and Dirk Schlierkamp-Voosen per-
formed theoretical analysis of selection, mutation and re-
combination. They found that: a) mutation is more effi-
cient with crossover, b) the efficiency of the mutation oper-
ator is dependent upon the mutation rate and c) mutation in
large populations is inefficient (M̈uhlenbein & Schlierkamp-
Voosen 1995).

Stanhope and Daida use parameter sweeps to evaluate a

mutation-rate strategy. The mutate-rate strategy is variable
between individuals within a given generation based on the
individual’s relative performance for the purpose of function
optimization (Stanhope & Daida 1997).

Eiben et al. studied parameter settings for: mutation,
crossover, evaluation functions, replacement operator or sur-
vivor selection and population size in evolutionary algo-
rithms (Eiben, Hinterding, & Michalewicz 1999). Eiben
et al. split the research into parameter tuning and control.
Eiben et al. introduced mutation operators influence in GA
with: “There have been efforts to tune the probability of mu-
tation in GA’s. Unfortunately, the results (and hence the rec-
ommended values) vary, leaving practitioners in [the] dark.”
Extensions to improve both the structure of experiments and
reporting of mutation operations in GP are made to Eiben’s
et al. global taxonomy for parameter setting in (Piszcz &
Soule 2005).

Our goal is to test for the existence of correlation between
the level of difficulty and the OMR. We attempt to increase
the knowledge of OMR and its relationship as problem dif-
ficulty varies. The GA community has studied many aspects
of mutation, however little direct evidence exists that these
results apply to GP.

The MAX Binary Tree Problem
The goal of the MAX Binary Tree Problem (BTP) is to cre-
ate a full tree of a given depth that produces a tree with the
maximum value. The advantages of this problem are: 1) it
is easy to understand, 2) fitness evaluation is fast and simple
and 3) the problem difficulty is easy to change by changing
the tree depth. Gathercole and Ross describe the MAX prob-
lem that is similar to MAX BTP with variations for research-
ing the interaction of crossover and tree depth (Gathercole
& Ross 1996). Langdon and Poli extend the analysis of the
MAX problem by Gathercole and Ross and develop a quan-
titative model that indicates the rate of improvement. This
shows that solution time grows exponentially with depth
(Langdon & Poli 1997). Langdon and Poli’s work confirms
that the BTP is a tunably difficult problem suitable for our
research purposes.

The root node is at level (or depth) 0. All internal nodes
have a degree of 3, supporting 1 parent and 2 child nodes
and the terminal nodes have a degree of 1 (the parent).
The problem functions are+, − and the terminals used are
ephemeral random constants0 and1. The maximum value
for the tree is obtained when all internal nodes are+ and all
terminals are1, where the maxvalue is:

maxvalue = 2depth

Tree evaluation occurs once for each individual. Therefore,
this allows a very fast fitness evaluation when compared to
other GP problems, such as symbolic regression that may
require tens to hundreds of tree evaluations to measure the
fitness of a single individual.

The tree depth is variable, this allows us control the num-
ber of permutations. The tree depth control also determines
the size of the search space, which determines the problem
difficulty. Thus, increasing the depth significantly increases
problem difficulty (Langdon & Poli 1997).
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Experiment Approach
Two mutation implementations frequently appear in GP en-
vironments. The first is node based mutation, in which the
mutation rate specifies the probability per node of the indi-
vidual. The second method is tree based mutation, in which
the mutation rate specifies the frequency that individuals are
selected from the population for mutation. When applying
mutation in GP, researchers frequently set the mutation rate
to be 1

C , whereC denotes the size of the individual. The
mutation rate1

C is analogous to the rate preferred in fixed
length GA but there is little direct evidence that it is appro-
priate for variable length GP.

Four experiments of increasing difficulty test the conver-
gence of the genetic program on the MAX BTP. We perform
a parameter sweep of the mutation rate and observe the com-
putational effort. The parameter sweep of mutation rates in-
clude the ranges: 0.0001 to 0.001 with a step size of 0.0001,
0.001 to 0.01 with a step size of 0.001 and 0.01 to 1.0 with
a step size 0.01. These parameter sweep ranges provide a
balance between coverage of all possible rates and the time
to complete the experiment. The population mutation rate
or the percentagepm of the population that undergoes mu-
tation is tested for the mean computational effort over 100
runs. The mutation operation is subtree replacement where
a randomly selected node is replaced by a new randomly
generated subtree. The control case is no mutation.

Three mutation selection modes are considered:

• best (b) - the bestpm of the population is subjected to
subtree mutation, each individual has one subtree mutated

• none (n) - indicates no mutation phase

• random (r) -pm of the population is selected at random
with uniform probability and subjected to mutation.

During each mutation phase the number of individuals se-
lected for mutation is:

Im = Mpm

whereIm denotes the number of individuals mutated,M the
population size. Each selected individual has one subtree
mutated. In the case ofrandom, the same individual may
be selected from the population more than once, leading to
several subtree mutations in the same individual.

The difficulty of the MAX BTP is varied by using tree
depths of 4, 5, 6 and 7. We identify the OMR by measur-
ing the average computational effort to evolve a solution.
The optimal population size was empirically determined us-
ing a parameter sweep of population size for each depth in
a prior experiment. Luke performed a similar parameter
sweep of population and mutation parameters in (Luke &
Spector 1997) (Luke & Spector 1998).

The following terms and calculations define the mini-
mum computational effort average for each optimal solution.
ACE Average Computational Effort based on mean genera-
tion for all 100 runs. The mean generation describes the
number of generations for a given test to produced an ac-
ceptable solution. To achieve an acceptable solution the GP
must evolve an individual that meets the criteria defined by
the fitness function at or prior to the maximum generation

Table 1: Experiment Problem Parameters

Objective Maximum tree value
Terminal Set 0, 1
Function Set +,−
Fitness Cases 1
Fitness Evaluation of tree value
Population Size, E(1, 2, 3, 4) 40, 90, 350, 1000
Maximum Generations 1000
Initialization Method Half and half
Initialization Depth Ramp 20 to 60 %
Maximum Tree Depth: E(1,
2, 3, 4)

4, 5, 6, 7

Maximum Tree Size Controlled by depth.
Crossover Selection mode = fitness
Crossover Rate 0.9
Reproduction Selection mode = fitness
Reproduction Rate 0.1
Mutation Selection Mode none, random, best
Mutation Rate Range E(1, 2,
3, 4)

none, 0.0001-0.001,
0.001-0.01, 0.01-1.0

specified.NSNumber of Acceptable Solutions found in 100
runs. The ’+ 1’ is included in the ACE equation to count
generation 0:

ACE = (Mean Generation + 1) ∗ Population Size

CEAIS Computational Effort Average per Individual Solu-
tion.

CEAIS =
ACE

NS
We use the following acronyms in the experiment results

section.

• IOMRN Improvement Optimal Mutation Rate Normal-
ized, the ratio of the CEAIS value forbestand random
mutation selection modes compared tonone: CEAISnone

CEAIS

• MAXOW Maximum Optimal Mutation Window, the mu-
tation rate at the upper CEAIS value of the optimal range
window.

• MINOW Minimum Optimal Mutation Window, the mu-
tation rate at the lower CEAIS value of the optimal range
window.

• OW OMR Window, the OMR window that minimizes
computational effort defined as:MAXOW−MINOW .

Table 1 shows the parameters for the four experiments,
E(n) references the experiment denoted by the valuen.

Experiment Results
Figure 1 depicts the results for the experiment runs. They
value of the plot indicates the average computational effort
per individual solution. The OMR is the point where the
minimum CEAIS value occurs.

The results show an increasing sensitivity to mutation rate
range as the problem difficulty increases. Increasing sensi-
tivity is evident in Figure 1 by the increasing slope and by
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Table 2: Experiment Result Summary
MODE Depth 4 5 6 7

(n) OMR NA NA NA NA
(n) CEAIS 108 259 1464 NA
(n) IOMRN 1.0 1.0 1.0 NA
(r) OMR 0.030 0.002 0.0002 NA
(r) CEAIS 41 212 1438 NA
(r) IOMRN 2.7 1.2 1.0 NA
(r) OW 0.032 0.003 0.0002 NA
(b) OMR 0.060 0.011 0.020 0.003
(b) CEAIS 30 150 363 7197
(b) IOMRN 3.7 1.7 4.0 ∞
(b) MINOW 0.0001 0.0002 0.003 0.002
(b) MAXOW 0.09 0.07 0.062 0.004
(b) OW 0.0899 0.0698 0.059 0.002

the narrowing window of effective OMR rates shown by the
thick gray arrows. The OW for the CEAIS curve is formed
by the plotted points adjacent to the minimum CEAIS value.
The results identify the OMR for at four levels of difficulty.

The improvement in time-to-solution and computational
effort as measured by CEAIS shows that thebestmutation
selection mode provides a significant improvement com-
pared with none and random. As problem difficulty in-
creases the mutation selection methods of none and random
produce fewer solutions, neither produces solutions for trees
of depth 7 (see Figure 1. The performance improvement is
shown in Table 2 and is relative tonone.

In Figure 1 each subplot is marked with a thick gray arrow
indicating the extent of the OW. Selection of the OW uses the
following heuristics: 1) the minimum and maximum win-
dow points are at or below the average of the CEAIS values
that occur at mutation rates of 0.1 through 1.0 and 2) rep-
resent the first or last inflection point that define a window
with heuristic 1.

Experiment Summary

Table 2 shows as problem difficulty increases the OW nar-
rows. This is shown by OMR and CEAIS values in the
bestrows of Table 2. To achieve optimal computational effi-
ciency with complex problems, overestimation of the OMR
may be more useful than underestimation. In the case of the
depth 7 problem, selecting below an optimal mutation rate
causes an increase in computational effort. However, above
the OW mutation differences from 0.02 to 1.0 only decrease
CEAIS values by approximately 1/2 an order of magnitude
compared to the OMR. The OW is typically 6-9% which is
a fairly small range.

For the best mutation selection method, the OMR de-
creased by more than an order of magnitude from 0.06 to
0.003 as the binary tree problem depth increased from 4 to
7. In the depth 7 binary tree problem,noneand random
produced no viable solutions.Bestmutation selection mode
achieved a peak of 94 acceptable solutions near the OMR.
Figure 2 shows a plot of the resulting the OMR from the
experiment and the typical mutation rate:1

C .
The plot shown in Figure 2 for thetypical OMR is ap-

Figure 2: Mutation range summary linear/log plot. The ex-
perimental mutation rate (circle) is similar to 1/C. OW de-
creases with increasing difficulty.

proximately fit by the following equation:

0.5336 ∗ e(−0.7023∗Depth)

The plot shown in Figure 2 for theexperimentalOMR is
approximately fit by the following equation:

1.4234 ∗ e(−0.8389∗Depth)

The sensitivity to the proper mutation rate increases as diffi-
culty increases. Figure 2 shows the mutation range limits at
each of the four levels of difficulty. The triangle symbol des-
ignates thetypical mutation rate of1C and the circle symbol
indicates the measuredexperimentalmutation rate.

Conclusion
The MAX BTP provided controlled problem difficulty to de-
termine the OMR as a function of problem difficulty and
the individual selection method for mutation. We have
shown that the OMR for several mutation selection modes
remain consistent for the four levels of problem difficulty
tested. Experimental optimal mutation rates for the binary
tree problem correlate with the typical mutation rate used
in GA. In general, the range of mutation rates that pro-
duce acceptable solutions decrease as problem difficulty in-
creases. This observation confirms the challenge researchers
face when choosing effective mutation rates. Performing
parametric mutation experiments provides detailed problem
characterization compared to a limited number of fixed mu-
tation rates for evaluation. The resulting CEAIS plots over a
regular interval show that interpolation of too few mutation
rates may cause omission of critical behavior changes. This
research shows:

• The OMR diminishes and is inversely proportional to
problem difficulty.
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Figure 1: Experiment 1, 2, 3, 4, Depth 4, 5, 6, 7, CEAIS versus Mutation Rate, Log-Log. The plots show an increasing problem
difficulty (left to right, top to bottom) with a decreasing OMR window.
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• The results show significant performance improvements
with mutation versus crossover alone, for problem depths
6 and 7.

• The range of efficient mutation rates narrow as difficulty
increases.

• OMR decreases with increasing problem difficulty for the
unimodal problem.

An interesting picture emerges. Mutation can improve
performance, however the range of mutation rates that im-
prove performance is fairly small and gets smaller as prob-
lems get more difficult. This confirms researchers’ observa-
tions that it is very hard to determine a good mutation rate.
The optimal rate is usually near 1/C, so we have a reasonable
initial value to chose for the mutation rate.

In the binary tree problem of problem depth 7 we show
extremely low mutation rates are suboptimal. High mutation
rates may not always be computationally efficient; however,
in the problem depth 7 case more acceptable solutions were
evolved with high mutation rates than mutation rates below
1e-03.

Open research questions: Is there a correlation between
increasing difficulty and the diminishing returns of muta-
tion with larger populations for GP as Heinz Mühlenbein
and Dirk Schlierkamp-Voosen (M̈uhlenbein & Schlierkamp-
Voosen 1995) describe for GA? Is it possible to model and
predict where a large enough population size provides suffi-
cient diversity to reduce or eliminate the need for mutation?
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