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Abstract 
Advances in sensing and communication technology make 
sensor networks a convenient and cost effective tool for 
collecting data in hard to reach and hazardous areas 
Increasingly, sensor networks are used to monitor the 
environment and enable swift and accurate intervention. 
Environmental monitoring is characterized by the facts that 
the area under surveillance tends to be large whereas 
incidents tend to be both sparse in time and localized. In 
this research, we investigate means by which we get good 
coverage, so that we do not miss events of interest, and we 
reduce cost, so that we do not deploy too many sensors in 
areas where nothing is happening.  
 
We propose to use a combination of static and mobile 
sensors. Initially, the nodes are randomly deployed. While 
the static sensors remain in place until they die out, mobile 
sensor nodes are constantly evaluating their position, 
scouting for �interesting� events. They move to areas where 
they can contribute useful and relevant information. As the 
dynamics of the events move, so do the mobile nodes. In 
this paper, we present the decision making process mobile 
nodes go through in order to adaptively adjust coverage. 
This process is simulated and the results presented. 

1. Introduction   
Sensor networks have been applied to a variety of 
monitoring applications [1]. Some of these applications are 
short term interventions surrounding a one-time event such 
as military interventions [2], natural disasters [3], and other 
accidents [4]. In these cases, once an event has already 
been detected, the objective is to get the most accurate and 
timely data about it using all the resources available. By 
contrast, other applications aim at detecting these events 
before or as soon as they happen [1]. Most environmental 
monitoring applications fall in this category. In these cases, 
it is not known before hand when or where the event will 
happen, thus a relatively large area needs to be monitored 
for a relatively long time period.  
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A key issue related to the latter category is the accurate 
detection of the phenomena of interest in a cost-effective 
manner. Because the area in which the event may occur is 
extended; For example, sensor nodes can be deployed in a 
forest to detect fires as they originate [1]. In this case, the 
area considered can cover hundreds of square miles. It 
would be costly to flood the area completely with sensors 
knowing that only a small percentage will ever detect 
anything. On the other hand, putting too few sensors runs 
the risk of completely missing phenomena when they do 
happen, or detecting them inaccurately.  
 
In this paper, we investigate an approach in which we 
combine two types of sensor nodes. A set of static wireless 
sensor nodes are used to provide a minimal coverage of the 
complete area of interest. These static nodes are 
supplemented with a set of mobile nodes that have 
sufficient power and possibly some recharging capability 
to allow them to move from regions where currently 
nothing is happening towards regions where they can be of 
some value in collecting relevant and useful information.  
 
In other words, mobile sensor nodes are constantly 
evaluating their position and scouting for �interesting� 
events. Their movements reflect the dynamics of the events 
on the ground. This approach raises a number of new 
issues not addressed by the traditional approach to sensor 
networks management. In particular, we are interested in 
two decisions that mobile nodes need to make at any point 
in time, namely: to move or not to move, and if they decide 
to move, what direction.  
 
The literature contains significant work related to coverage 
especially in robotic applications. However, these 
approaches attempt to decide on coverage without 
accounting for the phenomena being sensed. That is they 
do not have the capability of concentrating on areas of 
interest instead they simply try to spread out [5]. Another 
limitation that some of these approaches have is the 
requirement that nodes be localized and aware of the 
location of their neighbors [6].  
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In this paper we introduce an adaptive approach for mobile 
sensor nodes to cover an area of interest while accounting 
for the phenomena being monitored. This would result in 
dense coverage is areas of interest and sparse coverage in 
areas of limited immediate interest. This approach would 
result in significantly higher accuracy for queries being 
sent to the network.  
 
This paper is organized as follows: In section 2, we 
introduce the model of the sensor network. In this section 
we also discuss the dynamics, which define the motion of 
the nodes. In section 3, we describe the network agility. 
Section 4 gives the simulation results and section 5 
concludes the paper.  

2. Model: Node View 
Given an area of interest, which we represent by a two-
dimensional grid, we model the sensors as nodes on the 
grid. We assume the existence of a sink node submitting 
queries to the network, and synthesizing the answers 
received. The sink node decides at any point in time, which 
nodes to query. Our focus in this paper is on the movement 
of the mobile nodes. We use the paradigm of classical 
mechanics, namely Newton�s laws of motion, to model the 
motion of the mobile nodes. Mobile nodes are thought of 
as objects that are subjected to two external forces, a 
frictional force and a repulsive force. We define below the 
nature of these forces and how we use them to make the 
nodes decide when to move, how fast to move, and, to 
some extent, where to move.   

2.1 Usefulness: An Information Value Based 
Concept 
The effect of frictional forces in mechanic is to resist 
movement. We model the frictional force that a node is 
subjected to by the usefulness of that node at its current 
position.   
 
The motivation behind modeling the frictional force as 
usefulness is the fact that useful nodes should resist motion 
more than un-useful nodes. The concept of usefulness of a 
sensor node was introduced in [7]. In that paper we 
advocated the use of the inherent redundancy in sensor 
networks in order to use them efficiently, increase the 
accuracy of the queries submitted to them, and lengthen 
their life. In particular, we use the fact that most queries 
submitted to long term monitoring sensor networks are 
aggregate queries (such as max, sum, and average). By 
nature, these aggregate functions are tolerant of incomplete 
data sets.  
 
Of particular interest is the fact that not all measurements 
play an equally important role in computing these 
functions. At one extreme, in computing the function max, 
we can omit all measurements but the max (assuming we 
know which one it is before hand) and still obtain the 

correct value. In this case, the higher the value sensed by a 
node, the higher is its information value. In general we 
define the usefulness of a node i for a query q as a metric 
taking values between 0 and 1 that captures the 
information value of the data sensed by that node. The 
formula of usefulness varies with the query being 
computed. We show the formula for the query max: 
  

Ffrictional(i, Max)=usefulness (i , Max) = P(X<xi) 
 
where xi is the value sensed at node i and X ranges over the 
set of all the sensed values in the network (or cluster) of 
interest.     

2.2 Redundancy: A Measure of the Node’s 
Commonality 
The effect of repulsive forces in classic mechanics is to 
propel an object away from its current position. We model 
the repulsive force that a node is subjected to by the 
redundancy of that node at its current position; that is, the 
commonness of the nodes measured value.  
 
The motivation behind modeling the repulsive force as 
redundancy is the fact that a node returning information, 
useful or not, should be encouraged to move away if there 
is a significant number of other nodes around it sensing a 
similar value. The usefulness of a node is an absolute 
measure of its potential contribution to a query and does 
not capture well whether other nodes carry the same 
information or not. For example, the usefulness of a node 
measuring 10 is the same whether X={1, 1, 10} or X={9, 
9, 10}. In both cases, the 10 will have the same usefulness, 
although intuitively, it is much "more redundant" in the 
second set. In other words, a node measuring 10 in the 
second set can be skipped without much loss of 
information, whereas the measurement of 10 in the first set 
is critical. Its absence dramatically impacts the final result. 
The concept of redundancy of a node i relative to a query 
Max is captured by the following expression: 
 

Frepulsive(i, Max)= Redundancy (i , Max) = 1-1/N 
 
where N is the number of nodes in the neighborhood of 
node i sensing values, Vn, such that, 
 

Vi � ε ≤ Vn ≤ Vi + ε 
 
where ε is a predefined constant, called coefficient of 
redundancy. Because in this case we are interested in 
redundancy as a reflection of local spatial redundancy, it is 
measured within a neighborhood of diameter d, which 
translates to nodes within a transmission range d. Clearly, 
redundancy is zero when a node is unique and it tends to 1 
as the redundancy increases.  
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2.3 Dynamics  
The motivation behind node motion is that it can be of 
more value elsewhere and it can dynamically adjust to 
changes in the phenomena being monitored. The decision 
to move is taken by each node individually based on the 
frictional force (usefulness) and the repulsive force 
(redundancy). The usefulness of a node is computed by the 
sink in light of information received by all nodes queried. 
As a service to the nodes, whenever the sink submits a 
query to a node, it sends the node�s current usefulness 
value. The redundancy of a node is calculated from 
information it learns about its neighborhood. Every node 
sets a listening range d (the radius of its neighborhood) and 
hears values sent by nodes within this listening range to 
the sink. The more nodes in the listening range return 
similar values to its own the higher is the node�s 
redundancy value.  
 
According to Newton�s Second Law of Motion, an 
object�s momentum is proportional to the sum of the 
forces, F, it is subjected to. In fact, F = m.a where m is the 
mass and a is the acceleration vector, and F is the vector 
sum of forces. We take a somewhat simplified 
interpretation of this law whereby, the force F= Frepulsive - 
Ffrictional.  A positive value of F sets an object in motion. 
That is in order to cause an object to move the following 
condition has to apply, 
 

Ffrictional < Frepulsive 
 

 In other words, when a mobile node satisfies the 
condition, 
 

P(X<xi) < 1- 1/N 
 
where all the symbols are as defined before, the node is 
propelled to move. However, if all the nodes with this 
condition satisfied move then too much mobility occurs 
and potentially most of the nodes would leave that area. 
For example, if two mobile nodes i and j are redundant 
when compared to each other, ideally, only one of them 
should move. Therefore, a node eligible to move, that is 
satisfying the above condition, should move with a certain 
probability. In addition, having mobile nodes take turns 
moving and stopping should be avoided. Ideally only a few 
nodes decide to move, and once they do, they keep moving 
with a high probability as long as Newton�s Second Law 
of Motion allows them to. This behavior is captured by 
Newton�s First Law of Motion that makes objects resist 
change. Non moving nodes �prefer� not to move and 
moving nodes �prefer� to keep moving. 
 
To capture the probabilistic behavior and Newton�s First 
Law of Motion, a node�s probability of motion is defined 
as, 

P(Motion)=(Frepulsive - Ffrictional)*K=(1- 1/N - P(X<xi))*K 
where  

 
 
where, C is a contact greater than 1, called the coefficient 
of first law of motion.  
 
The motivation for this definition is that based on the 
second law of motion the term F=Frepulsive - Ffrictional can be 
perceived as the acceleration of the node and multiplying 
by K captures the first law of motion behavior. So if the 
node was moving then P(Motion) increases and if it was 
stationary then P(Motion) decreases.  
 
Also the term F=Frepulsive - Ffrictional, which is the 
acceleration, is used by the node to deduce the speed of 
motion. The node keeps track of its current speed and 
based on the acceleration obtained it calculates the new 
speed of motion.  
 
We use the Laws of motion to control the decision to move 
or not and with what speed, but we do not use them 
directly to control the direction of movement. This reflects 
the fact that typical sensors do not have an accurate and 
reliable mechanism to perceive distances and direction. For 
example, when a node listens to transmission activity in its 
neighborhood, it hears activity within the predefined 
listening range but is not able to efficiently nor accurately 
determine the two-dimensional topology of the nodes it 
hears. Therefore, in computing the repulsive force, for 
instance, we account for the intensity of the force �
captured by the number of nodes� but not its direction. 
We decouple the decision to move (intensity) from that of 
where to move (direction).  
 
The requirements on criteria used to select the direction of 
movement are similar to those used to decide to move, 
namely: the decision must be made based on information 
available or easily obtainable by the node in question, and 
the decision must not require extensive storage or 
computation. We consider two different approaches: 
  
Random direction:  At every step, a direction is chosen at 
random and used. This approach presents the advantage of 
not requiring any information or any memory. It counts on 
the fact that as long as the node has not reached an 
interesting area, it will keep moving. As shown in the 
simulation section, given enough time, this approach does 
converge and leads most mobile nodes to move towards 
interesting regions. The key disadvantage of this approach 
is that it converges too slowly and uses up too much 
energy moving in the wrong direction. Another 
shortcoming of this approach is that it also conflicts with 
Newton�s first law of motion which dictates that an object 
should resist change in motion, i.e. it should maintain the 
same direction of movement�among other things�unless 
compelled otherwise by the forces it is subjected to.   
 
Gradient-based direction: Using locally available 
information, sensor nodes can determine the intensity of 
the force or in other words the acceleration, F= Frepulsive - 
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Ffrictional, they are subjected to, but not its direction. But, 
using some limited memory, they can compute an 
approximation of the direction and use it to move. The first 
time a node is propelled to move; it will maintain that same 
direction for a predetermine number of steps, M, and 
remember the acceleration at the beginning of the journey. 
After the M steps, the node examines the difference 
between the current acceleration and the acceleration at the 
beginning of the itinerary and adjusts its direction 
accordingly. If we limit ourselves to 4 different directions, 
(N, S, E, W), the node maintains the same direction if the 
acceleration decreased; reverses direction if it increased, 
and picks one of the orthogonal direction if the 
acceleration changed very little. This approach allows the 
nodes to minimize random wandering and converging 
towards better regions in less number of iterations. 
 
 Since localization typically requires a significant amount 
of power, in the above discussion we have used the 
assumption that sensors do not have a highly accurate 
mechanism of sensing exact location (their own as well as 
that of nodes around them) [8]. In case some of the nodes 
are location aware, the mobile nodes no longer need to 
move �blind-folded�. They would have full information 
about both intensity and direction of the forces they are 
subjected to and move accordingly.   

3. Model: Network View 
We consider now the network as a whole. For the sake of 
abstraction and readability, we assume that the whole 
network forms a single cluster, i.e. the network consists of 
a sink node and a set of static and mobile nodes. The sink 
node receives or formulates a query; it is responsible for 
querying the nodes of the network, receiving their answers, 
and synthesizing them into an answer to the query.  In the 
context of the applications of interest, the queries are 
typically long-running aggregate queries. They are long 
running in the sense that the same query is run repeatedly 
with a predefined frequency (i.e. every second, every hour, 
etc.). The queries typically compute aggregate functions 
such as minimum, maximum, sum, and average.  
 
One of the key issues related to such networks are framed 
in terms of query optimization [9] taking into account the 
redundancy inherent in these networks and their associated 
queries as well as the cost functions. In [7], we formulate a 
number of metrics that are used by the sink nodes to assess 
the utility of individual nodes (combination of usefulness, 
cost, and power available) and decide accordingly whether 
to query them or not. These metrics present the advantage 
of being easy to compute, based on information already 
collected for other purposes, and of reflecting the 
dynamics on the ground as they evolve.  
 
All the features presented in [7] still apply here. The sink 
keeps a record of the usefulness of the nodes (among other 
things). These usefulness values are used to decide 

whether to query a node or not, and are updated whenever 
the node is queried. As a result, a node that is not queried 
frequently has a utility value (in the sink) that is relatively 
outdated. When the nodes do not move, the speed of 
change of their utility is relatively uniform and reflects the 
speed of change of the phenomenon being monitored. On 
the other hand, when some nodes are mobile, they force a 
speed of change to their utility that is higher than the speed 
of change to other nodes. If they start with a low 
usefulness the likelihood of their being queried is low, and 
so is the frequency with which their utility will be updated. 
This may mislead them into believing that they are not 
making any progress when they actually may be.  In 
contrast with the rest of the nodes, mobile nodes need 
accurate and timely information about their usefulness. We 
will assume here that they are updated at every iteration. 
Alternative approaches involving distributed calculation of 
an approximate utility are under experimentation.      
 
In summary, the mobile nodes need the following 
information and data structures to make their decisions: 
 

• Whether the node is globally useful or not. The 
usefulness value is computed by the sink (in light 
of the values of all nodes in the cluster) and 
transmitted to the node. 

• Whether the node is redundant or not. The 
redundancy is a reflection of whether it is 
currently providing a unique �or rare� service or 
not and is computed by listening to the values 
returned within listening range d. The node needs 
a storage array in which it keeps the values heard 
at the last iteration. 

• Inertia state of the node. This consists of the 
node�s speed (0 if it is not moving) and direction 
and the last value of F (to see if it is increasing or 
decreasing). 

The storage requirements overhead that this imposes on 
mobile nodes are therefore limited. 

4. Simulation Results 
We have set up Matlab simulations to test the feasibility of 
the approach proposed. In particular, we wanted to seek 
answers to the following questions: 
1.  Can the �blind-folded� mobile nodes eventually make 

their way towards interesting regions, i.e. regions with 
values of high utility and low density? 

2. What is the difference between gradient-based and 
random direction choices?  

3. What is the impact of the moving nodes on the accuracy 
of the queries? 

4. How well does the network adapt with a dynamic 
phenomenon? 

 
We simulated a setup in which we created a region of 
20x20 as shown in Figure 1. The data values in the region 
vary linearly from 5 to 100 from the �bottom� to the �top�. 
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Given that query Max was simulated, the upper regions 
have high values for the phenomenon being monitored and 
the lower regions have low values. Conceptually, the area 
has four regions going from the upper left corner in a 
clockwise movement the regions are (high usefulness and 
high density, high usefulness and low density, low 
usefulness and low density, and low usefulness and high 
density) as shown in Figure 1. This �simplistic� 
partitioning was selected to visually test the questions. If 
the approach is valid, mostly nodes from the lower left 
corner, where there is low friction and high redundancy, 
would move towards the upper right corner, where there is 
high friction and low redundancy.  
 
The sensor network is initialized with 20 mobile and 20 
stationary nodes randomly placed in the �left� two regions 
and 10 mobile and 10 stationary nodes randomly placed in 
the �right� two regions. So 60 sensors are used in total 
compared to the 400 locations possible resulting in 15% 
coverage. The simulation uses a coefficient of first law of 
motion C=1.1 and a coefficient of redundancy ε=15. The 
initial configuration of the nodes is shown in Figure 2. 
Circles represent stationary nodes and squares represent 
mobile nodes. 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1: Sensor network area being simulated. 

Figure 2: The initial location of the nodes. 

 

 
 

Figure 3: Location of the nodes after 50 iterations using 
random direction.  

 
 

Figure 4: Location of the nodes after 50 iterations using 
gradient-based direction. 

 
We have simulated the behavior of the network using 
random-based movement and gradient-based movement. 
The distribution of the nodes after 50 iterations is shown in 
Figure 3 and Figure 4 for random and gradient-based 
respectively. It is clear that mobile nodes moved and 
scattered in areas of high values. As shown, the network 
exhibits the behavior expected. The mobile nodes scatter 
around to create a coverage which is sparse in areas of 
minimal interest and dense in areas of more interest. This 
clearly answers the first question. Regarding the second 
question, comparing Figure 3 and Figure 4 it is clear that 
gradient-based out performs random-based since more 
mobile nodes have moved to the areas of interest during 
the same amount of iterations.  
To understand the impact of the moving nodes on the 
accuracy of the queries, consider Figure 5, which shows 
the Max query percentage error as time goes on. The figure 
shows the error relatively quickly decreasing to zero and 
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maintains low values. As for the performance with 
dynamic phenomenon, the simulation was conducted with 
data values dynamically changing. The values distributed 
followed a time varying sine wave which moved the 
maximum from the top to the bottom of the area and then 
back to the top. Figure 6 shows the Max query percentage 
error as time goes on. It is clear that as the values change 
the error increases till the network adapts at which point 
the error decreases again. This illustrates that the network 
is capable of adapting coverage according to the dynamics 
of the phenomenon being measured.  
 
 
 

 

 

 

 
Figure 5: Query percentage error versus iteration with 

static phenomenon. 
 
 

 
 
Figure 6: Query percentage error versus iteration with 

dynamic phenomenon. 

5. Conclusions 
This paper developed a scheme that allows adequate 
coverage of large areas using a relatively small number of 
sensor nodes.  The key feature of the approach is a mix of 
static and mobile nodes. The static nodes ensure 
continuous connectedness of the network and the mobile 

nodes ensure accurate detection of dynamic phenomena. 
The approach is distributed and based on local information 
only which makes it scalable. Also the approach does not 
require position information thus there is no need for 
localization. The simulation presented confirmed the 
theory developed and its feasibility. Several issues remain 
to be investigated concerning the ideal parameters to use in 
the algorithm and the performance of the algorithm with 
highly dynamic phenomena. In particular, this approach 
will be tested using data from actual environmental 
phenomenon. 
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