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Abstract

Pervasive surveillance implies the continuous tracking of mul-
tiple targets as they move about the monitored region. The
tasks to be performed by a surveillance system are expressed
as the following requirements:(1) Automatically track the
identified targets over the region being monitored: (2) Pro-
vide concise feedback and video data of a tracked target to
multiple operators. The active sensors needed to track the tar-
get keep changing due to target motion. Hence in order to
provide concise and relevant information to a human opera-
tor to assist in decision making, the video feedback provided
to the operator needs to be switched to the sensors currently
involved in the tracking task. Another important aspect of sur-
veillance systems is the ability of track multiple targets simul-
taneously using sensors with motion capability. Current fea-
ture (point) based visual surveillance and tracking techniques
generally employed do not provide an adequate framework to
express the surveillance task of tracking multiple targets si-
multaneously using a single sensor. This paper presents a mu-
tational analysis approach for shape based control to model a
multi-target surveillance scenario. A surveillance testbed has
been designed based on these requirements and the proposed
algorithms and subsystems are implemented on it and a per-
formance analysis of proposed methods have been provided.

Introduction
Networked surveillance systems provide an extended percep-
tion and distributed reasoning capability in monitored envi-
ronments through the use of multiple networked sensors. The
individual sensor nodes can have multiple sensing modalities
such as cameras, infrared detector arrays, laser range finders,
omnidirectional acoustic sensors, etc. Locomotion and ac-
tive sensing greatly increase the range and sensing capability
of the individual sensor nodes. Multiple nodes facilitate si-
multaneous multi-view observation over a wide area and can
aid in reconstruction of 3D information about the tracked tar-
gets. A pervasive surveillance network (PSN) is comprised
of a collection of active sensor nodes equipped with visual
sensing, processing, communication and motion capabilities.

The surveillance network must provide a timely and con-
cise view of the relevant activities within the environment
being monitored to the human operator. Providing multiple
video feedback streams often causes loss of attention span of
the operator and makes it hard to keep track of the various ac-
tivities over the various cameras. Hence only video streams
from relevant sensors should be presented to the operator on a
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Figure 1: Networked Surveillance.

per activity basis. This would involve automatically switch-
ing the active video stream presented to the operator. This
paper presents an analysis of the realtime video transport pro-
tocols (MJPEG, H.263) implemented with specific relevance
to the video surveillance task.

The identified targets can be tracked using visual track-
ing algorithms, such as visual servo control (Hutchinson,
Hager, & Corke 1996) or gaze control (Brown 1990) , which
mainly involve feature (point) based tracking and fail to de-
scribe the basic task of maintaining the target in the sensor’s
active field of view effectively and succinctly. These ap-
proaches cannot address the problem of ensuring the cover-
age of multiple targets using a single sensor. In order to over-
come the above mentioned problems with automated control
approaches found in literature we propose the image based
Hausdorff tracking method which tries to ensure that the mul-
tiple targets specified for the tracking task do not leave the
active FOV of the sensor and the size of the target sets are
maintained at a discernable resolution.

Major contributions of this paper include proposing an au-
tomated multiple target tracking framework using active cam-
eras. A surveillance system with the perceived goals is im-
plemented and the performance of design alternatives for the
switched video feedback subsystem are measured and ana-
lyzed.

Networked Surveillance
Networked surveillance systems have received much atten-
tion from the research community due to their many per-
vasive applications (Regazzoni, Ramesh, & Foresti 2001).
Our implementation of a visual surveillance system consists
of multiple heterogenous sensor nodes, with video cameras
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mounted on them, connected to each other over and IP based
communication network. The nodes have the processing,
communication and limited motion capabilities. The general
architecture of the surveillance system is shown in figure 1.
The tasks to be performed by a surveillance system can be
effectively expressed as the following requirements:

1. Identify multiple moving targets based on predefined mod-
els

2. Automatically track the identified targets over the region
being monitored

3. Provide concise feedback and video data of a tracked target
to multiple operators

Video Feedback
Video feedback is the essential component of the surveil-
lance system. The operator needs the video to make deci-
sions about the tracking task. Automatic image analysis and
video understanding tools (R.T.Collinset al. 2001) can be
facilitated to activate alarms or logs for certain surveillance
tasks.

Since multiple cameras are deployed to track the specified
targets, the feedback video streams required for monitoring
the target might be more than one at the same time and will be
changing from time to time. Providing multiple un-necessary
(un-related to the task) video feedback streams often causes
loss of attention span of the operator and makes it hard to
keep track of the various activities over the cameras. Hence
only video streams from relevant sensors should be presented
to the operator on a per activity basis. This is done through
automatic or manual switching of the camera streams that are
presented to the operator.

In the implementation section of this paper we compared
different video encoding and real time transport protocols
such as MJPEG (Bercet al. 1998) and H.263 (ITU-H.263
1996) transported over RTP transport protocol (Schulzrinne
et al. 1997). Their performance under certain situations are
measured and the advantages and disadvantages of different
protocols are analyzed.

Automated Surveillance
In order to perform automated surveillance there are two ma-
jor subtasks: target detection and target tracking. A tar-
get perception and video understanding module is respon-
sible for detecting and classifying the various targets in the
active field of view (FOV) of the sensor and performing
temporal consolidation of the detected targets over multiple
frames of detection. Moving target detection and classifi-
cation is known to be a difficult research problem and has
been the focus of many recent research efforts (Toyomaet
al. 1999). Many approaches such as active background sub-
straction (T.Matsuyama & N.Ukita 2002) and temporal dif-
ferentiation have been suggested for detecting and classify-
ing various types of moving targets including single humans
and human groups to vehicles and wildlife (R.T.Collinset al.
2001).

When a target is recognized in the active FOV of a sen-
sor, it can be tracked using image based tracking meth-
ods like visual servoing and gaze control (R.T.Collinset al.
2001) (T.Matsuyama & N.Ukita 2002). However, these ap-
proaches only try to maintain an image feature (point) at the
center of the screen and the algorithm used are very sensitive

to feature detection and do not express the objectives of the
task adequately. Another significant disadvantage of these
techniques is that they can describe the tracking task for only
one target at a time. However, in a wide area surveillance
scenario a sensor may be tasked with maintaining visibility
of multiple targets at a time.

In order to solve the active target tracking problem, we
propose to use a mutational analysis approach (Aubin 1993).
Multiple target coverage can be readily expressed in a set
based topological framework using shape analysis and shape
functions ((Cea 1981) (Sokolowski & Zolesio 1991)). Thus,
the variables to be taken into account are no longer vectors of
parameters but the geometric shapes (domains) themselves.
Unfortunately, due to the lack of a vectorial structure of the
space, classical differential calculus cannot be used to de-
scribe the dynamics and evolution of such domains. Mu-
tational analysis endows a general metric space with a net
of “directions” in order to extend the concept of differen-
tial equations to such geometric domains. Using mutational
equations, we can describe the dynamics (change in shape) of
the sensor field of view (FOV) and target domains and further
derive feedback control mechanisms to complete the speci-
fied task.

The surveillance task can be expressed, using shape func-
tions (Cea 1981), as the minimization of a Hausdorff distance
based metric or the size of the target etc. The shape function
essentially represents the error between the desired and ac-
tual shapes and reducing it to zero will accomplish the task.
The remainder of this section presents the method of Haus-
dorff tracking using mutational equations for performing the
surveillance task.

Hausdorff Tracking

Shape or a geometric domain can be defined as the setK ∈
K(E), E ⊂ Rn whereK(E) represents the space of all non-
empty, compact subsets ofE. The target and the camera cov-
erage can be readily expressed as shapes. Mutational equa-
tions can then be used to express the change (deformation) in
the coverage and target sets based on the motion of the sensor.
Shape analysis (Cea 1981) can be used to address problems
involving geometric domains or shapes. Shape functions,
which are set defined maps fromJ(K) : K(E) 7→ R, can
be used to provide a ”measure” of acceptability and optimal-
ity of the shapeK. For example we can use a shape function
to see if a reference set̂K is contained within a current set
K. In order to accomplish the task defined using shape func-
tions, we need to derive a feedback mapU : K(E) 7→ U ,
whereu = U(K(t)) is the input to the sensor, which will
reduce the shape function to zero. The convergence of the
shape function can be analyzed using the shape Lyapunov
theorem (Doyen 1994). The convergence to zero of the task
function would imply task accomplishment.

Target, Coverage Sets and Shape FunctionsThe target
blob is represented as the setK̂ of pixels comprising it and
the sensor coverage set is represented as rectangle centered at
the image center,K, as shown in figure 2. The task require-
ments of maintaining the target within the active FOV of the
sensor with an adequate resolution can be mathematically ex-
pressed as a shape function having the form:

J(K̂) =
∫

K̂

f(q) dq (1)
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Figure 2: Targets and coverage set for image based Hausdorff
tracking.

where,q ∈ K̂ andf(q) is a function of the resolution of the
target image and the directed Hausdorff demi-distance dis-
tancedK(q) = {‖q − p‖ ‖p ∈ K, q ∈ K̂} of the targetK̂
from the coverage setK.

Dynamics Model Using Mutational Equations The de-
formation of the target set w.r.t. the motion of the camera
can be represented using a mutational equation and can be
modeled using optic flow equations.

Assuming that the projective geometry of the camera is
modeled by the perspective projection model, a pointP =
[x, y, z]T , whose coordinates are expressed with respect to
the camera coordinate frame, will project onto the image
plane with coordinatesq = [qx, qy]T as:[

qx

qy

]
=

λ

z

[
x
y

]
(2)

where λ is the focal length of the camera lens (Hutchin-
son, Hager, & Corke 1996). Using the perspective projec-
tion model of the camera, the velocity of a point in the im-
age frame with respect to the motion of the camera frame
(Hutchinson, Hager, & Corke 1996) can be expressed. This
is called the image Jacobian by (Hutchinson, Hager, & Corke
1996) and is expressed as:[

q̇x

q̇y

]
= ϕc(q) = Bc(q)

[
u

λ̇

]
= Bc(q)uc (3)

Bc(q) =

[
−λ

z 0 qx

z
qxqy

λ − (λ2+q2
x)

λ qy
qx

λ

0 −λ
z

qy

z

λ2+q2
y

λ − qxqy

λ −qx
qy

λ

]
where,u = [vx, vy, vz, ωx, ωy, ωz]T is the velocity screw
of the camera motion anḋλ is the rate of change of the focal
length.

Using above equation 3 the mutational equation (Aubin
1993; Goradiaet al. 2005) of the target set can be written
as:

q̇ = ϕ(q) = ϕ(q)
˚̂
K 3 ϕ(K̂) (4)

Feedback Mapu The problem now is to find a feedback
mapuc such that the shape functionJ is reduced to zero. For
this purpose we need to find the shape directional derivative
J̊(K̂)(ϕ) of J(K̂) in the direction of the mutationϕ(K̂).
From (Aubin 1993) and (Sokolowski & Zolesio 1991), the
directional derivative of the shape function having the form
of equation 1 can be written as:

J̊(K̂)(ϕ) =
∫

K̂

div(f(q)ϕ(q)) dq (5)

Assuming a relatively flat object, i.e., thez coordinate of
all the points on the target are approximately the same we can
derive an expression for̊J(K̂)(ϕ) by substituting equations
1 and 4 into 5 as:

J̊(K̂)(ϕ) 6
[

1
zt

C1(q) C2(q)
]
uc (6)

where,uc = [vx, vy, vz, λ̇, ωx, ωy, ωz]T and zt is an esti-
mated minimum bound on the targetz position andzt > z
will guarantee the inequality in 6.

Using the shape Lyapunov theorem (Doyen 1994), we can
find the assumptions on inputuc such that the shape function
J(K̂) tends to zero as:[

1
zt

C1(q) C2(q)
]
uc 6 −αJ(K̂) (7)

The feedback mapuc which is an input to the camera mod-
ule can be calculated from the above equation 9 using the
notion of a generalized pseudoinverseC#(q) of the matrix
C =

[
1
zt

C1(q) C2(q)
]

as:

uc = C#(αJ(K̂)) (8)

It should be noted that the estimatezt of the target dis-
tance only affects the gain of the control and not its validity.
Further it is important to note that the gain distribution
between the various redundant control channels depends on
the selection of the null space vector when calculating the
generalized pseudoinverseC# of matrixC.

Surveillance System Requirements and
Implementation

We have built a pervasive surveillance network testbed to
demonstrate the integration of multiple active sensors with
active target tracking algorithms to perform a coherent per-
vasive surveillance task of tracking multiple targets as they
move across the monitored landscape. The testbed consists
of multiple active cameras attached to processing, commu-
nication units mounted on pan-tilt drives or robots for mov-
ing the cameras. The surveillance testbed developed has the
functionality of an end-to-end, multicamera monitoring sys-
tem which allows a single or multiple human operator(s) to
monitor activities in the region of surveillance.

The architecture of the implemented systems is shown in
figure 1. It consists of multiple active camera sensors inter-
connected using an IP network which consists of wired ether-
net as well as wireless links. There are multiple clients which
can pass queries to the network regarding the respective tar-
gets they want to track. Visual feedback is provided to the
clients based on the queries they have requested. The remain-
der of this section provides the details of the implementation
of the surveillance testbed.

System Hardware
The sensor node setup consists of three Sony EVI-D30 active
PTZ (pan-tilt-zoom) cameras as shown in figure 3. The cam-
eras were connected to Pentium 4 2.4 GHz computers which
had PCI based video capture hardware cards attached to
them. The PTZ drives are controlled through serial port com-
munications. The various computers were connected to each
other using wired ethernet and wireless 802.11g connection
over and IP network. The individual sensor nodes were pro-
vided with publicly addressable IP address and hence could
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Figure 3: Sony EVI-D30 cameras with PTZ drives.

be accessed from the Internet. The human interface clients
could be connected to the surveillance network through a di-
rect wired or wireless connection or through the Internet.

Video Subsystem

The video subsystem is designed to support video feedback to
multiple clients over an IP network. The video service is de-
signed to support various types of live video stream feedback
form the sensors to the individual clients such as MJPEG and
H.263. Various resolutions such as CIF, QCIF and 4CIF are
supported for the live video streams. In order to transmit real-
time video over a network, it is necessary to convert the out-
put of the encoder into a packet sequence i.e., packetize it.
Traditional TCP and UDP services are not sufficient for real-
time applications and applications oriented protocols such as
the Real-time Transport Protocol RTP provide an alternate
solution for managing the essential tradeoffs for quality and
bandwidth. RTP provides end-to-end delivery services such
as payload type identification, sequence numbering and time
stamping. Characteristics and implementation details of the
various video subsystems implemented are summarized in
the following discussion.

MJPEG MJPEG stands for Motion-JPEG and is a tech-
nique which simply performs a JPEG compression on each
video frame before transmission. Unlike MPEG and H.263
codecs, MJPEG does not support temporal compression but
only supports spatial compression.

The main advantages to using this approach is that JPEG
compression can be implemented relatively easily in hard-
ware and it supports a wide variety of resolutions. This im-
plies that a wide variety of hardware can be supported incase
of a network with heterogenous video capture hardware. Fur-
ther it uses no inter-frame compression which results in low
latency in the video transmission system. However, the major
disadvantage for using MJPEG technology is its inefficient
use of bandwidth. Due to the lack of inter-frame (temporal)
compression, MJPEG streams require a high bandwidth of
the order of 2 Mbits/s for a 30 fps NTSC resolution stream.
Though at lower frame rates and lower resolutions MJPEG
can be used effectively, its use cannot be justified in low
bandwidth applications such as wireless sensor networks.

H.263 H.263 is video coding standard by the International
Telecommunications Union (ITU). It was designed for data
rates as low as 20 Kbits/s and is based on the ITU H.261
standard. It supports 5 resolutions (CIF, QCIF, sub-QCIF,
4CIF and 16CIF, where CIF is standard 352×288 pixels res-
olution). It uses both temporal and spatial compression and
provides for advanced coding options such as unrestricted
motion vectors, advanced prediction and arithmetic coding
(instead of variable length coding) for improvement of video
quality at the expense of video codec complexity. It allows

for fixed bit rate coding for transmission over a low band-
width network as well as variable bit rate coding for preserv-
ing a constant image quality and frame rate for storage and
transmission over high bandwidth networks.

Automated Tracking
The sensor outputs are processed on the local computer for
target detection and identification. The targets to be tracked
using the automated tracking system were multiple humans
moving around in the monitored region. For ease of target
detection and identification, the human targets were wearing
solid color clothing andCMVisionwas used for color analy-
sis and blob detection and merging (Bruce, Balch, & Veloso
2000). The acquired 640×480 pixel images were quantized
on a 128×96 grid for reduced computation load. The iden-
tified targets were represented using their bounding boxes
which were quantized on the 128×96 grid. The coverage
set is also quantized on the grid and the distances of the grid
points to the target set are pre-computed and stored.

The automated tracking task was defined as maintaining
the visibility of multiple moving targets in a region with ade-
quate resolution. The shape function used to track the targets
is:

J(K̂) =
∑N

i=1 JFOV (K̂i) + JAmin(K̂i) + JAmax(K̂i)(9)

JFOV (K̂i) =
∫

K̂i
d2

K(p) dq

JAmin(K̂i) = max(
∫

K̂i
dq −AREA MINi, 0)

JAmax(K̂i) = min(AREA MAXi −
∫

K̂i
dq, 0)

where,N is the number of targets,q is a point on the tar-
get setK̂ and AREA MAXi and AREA MINi denote
the maximum and minimum admissible areas of the tar-
get setK̂i for maintaining adequate resolution. Note that
the shape functionJ(K̂) is zero only when set of targets⋃N

i=1 K̂i is completely covered by the sensor coverage set
K and when the area of each target setK̂ is within the lim-
its (AREA MIN,AREA MAX) specified for that target.
OtherwiseJ(K̂) is a non-zero positive value.

Based on the value of the shape functionJ(K̂), the
velocity input vectoru to the camera motion units (PTZ
drives or robot) is calculated and applied at the rate of image
acquisition i.e., 25 frames per second (fps)(Goradiaet al.
2005).

Architecture of Sensor Node
Figure 4 the general architecture of a sensor node. The target
perception module is responsible for detecting and classify-
ing the various targets in the active field of view (FOV) of
the sensor and performing temporal consolidation of the de-
tected targets over multiple frames of detection. The video
transmission consists of a video server which compresses
and transmits the video information from the sensor node
to clients requesting the video information. Compression
and transmission of the video stream is accomplished using
MJPEG or H.263 bit stream mounted over the RTP/UDP/IP
transport protocol.

The individual sensor nodes maintain information regard-
ing the observations of their neighboring nodes and broad-
cast (within their locality) their own observations. Based on
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Figure 4: Architecture of Sensor Node.

the combined observations, each node develops a list of tar-
gets being actively tracked and the status of its peer nodes
and stores this information in the targets table and the sen-
sor nodes table, respectively. In the targets table, the native
as well as observed characteristics of the target objects, ob-
served by the respective sensors are stored. The targets table
also stores information indicating the node that sensed these
characteristics. Nodes also store peer information, such as lo-
cation, active FOV and total capable FOV of the peer. When
targets is recognized in the active FOV of a sensor, they can
be tracked using image based Hausdorff tracking.

Performance Analysis of the Implemented
System

Video system

The real-time performance video subsystem implemented
was measured and analyzed for use in the surveillance net-
work scenario. The parameters which affect the performance
of a video transport scheme in the context of a switched sur-
veillance scenario are time taken to deliver the video stream
to the operator, size and quality of the image, the rate of video
frame update (frame rate) and the initialization time for the
client to receive one complete image frame from the server.
We compared the performance of using H.263 and MJPEG
as the compression scheme for the visual surveillance tasks.

Video size and image quality The H.263 standard is very
limited in its capability for selection of the frame size which
is limited to 5 standard resolutions namely, CIF, QCIF, SIF,
4CIF and 16CIF. This may be a limitation when integrating
multiple types of camera sensors. On the other hand MJPEG
allows for almost all resolutions and can be used to trans-
mit very high definition images when required. The viewing
quality of the transmitted images can be largely regarded as
same as both the schemes use DCT (discrete cosine trans-
form) and quantization for compression. However, it should
be noted that using MJPEG the complete image is updated at
once while for H.263 the image is updated in parts and may
cause a visual degradation of the perceived image quality.

Video bitrate and frame rate Due to the inter-frame (tem-
poral) compression implementation, the video bitrate gener-
ated per frame for H.263 is lower than compared to MJPEG.
This makes H.263 more suitable for video communications
over a restricted bandwidth network. The frame rates and bi-
trates for the two schemes generated for various quantization
Q’s (Bercet al. 1998) are tabulated in table 1.

Server switching for camera handoff The initialization
time of both H.263 and MJPEG is also measured. The ini-

Table 1: MJPEG and H.263 frame rate v/s bitrate
MJPEG H.263

Q FPS
Bitrate(KBPS)

Q FPS
Bitrate(KBPS)

panning static panning static

30

25 1700 1700

10

25 1300 48

20 1300 1300 20 1000 38

10 668 668 10 700 20

70

25 3000 3000

1

25 1900 175

20 2500 2500 20 1300 156

10 1200 1200 10 1000 106

Figure 5: Image based Hausdorff tracking.

tialization time is defined as the time from when the server
starts broadcasting to when the client receives the first im-
age frame. In both cases, the initialization is around 10ms.
However for H.263, since inter-frame coding is used, there
will be long delay when a client joins a session where server
is already broadcasting to other clients. The effect is termed
as “late entry”. This is because for inter-frame encoding, the
server is only required to transmit those master blocks that
have changed through consecutive changes. Thus the client
has to wait until all the master blocks to be transmitted once
to be able to see the whole scene. The delay can be large espe-
cially when the scene is relatively static. The H.263 standard
recommends all the master blocks be transmitted once per
132 frames. In our experiment, when we set the frame rate to
be 1 fps, H.263 has to wait for approximately 32 seconds to
receive the the complete image.

However, it should be noted that for the H.263 coding
scheme, all the information needed to initialize the decoder
is stored in an intra coded ‘I’ reference frame, which is
transmitted periodically. One method to combat this late
entry problem would be transmit an ‘I’ frame every time
a new client joins the session and can be implemented us-
ing the RTCP (control commands) part of the RTP protocol.
This may lead to higher bandwidth consumption which again
could be acceptable in surveillance applications.

Automated Target Tracking with Active Camera
The surveillance task is to maintain the multiple targets in the
active FOV of the sensor. The targets were two humans mov-
ing around and interacting with each other. Assumptions on
the inputu = [ωx, ωy]T to the camera system were derived
using equation 8, whereωx, ωy are the pan and tilt velocities.
At, t = 0, the targets are just in the active FOV of the sensor
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Figure 6: Image based Hausdorff Tracking: Estimated posi-
tion of targets.

and task criterion is not satisfied. The camera then moves to
reduce the shape functionJ to zero so the targets are now
covered. The targets then randomly move around the room
and the camera tries to maintain both targets continuously in
the active FOV.

Figure 5 depicts theJ and the input velocitiesu =
[ωx, ωy]T applied to the camera. Notice the initial large value
of the shape function J, which is quickly reduced to zero. Fig-
ure 6 depicts the positionX, Z estimated of the two targets.
We see that despite the seemingly random motion of the two
targets, the camera always tries to keep both of them in the
active FOV. Further, the energy efficiency of the proposed
method is demonstrated by the relatively infrequent input ap-
plied to the camera only when one of the objects escapes the
active FOV.

Discussions and Conclusions
This paper presents the design and implementation of a per-
vasive surveillance system for multi target tracking. In order
to implement the system we developed a realtime multiple
target tracking framework using mutational analysis and a
switched video transport interface which enables the concise
interaction of a human operator with the network.

The major advantage of the Hausdorff tracking algorithm
is that it can be used to succinctly describe a tracking task in-
volving multiple targets. The capability of defining the track-
ing task involving multiple targets also allows flexibility for
the system to be overloaded and un-encumbered by the re-
striction placed on most surveillance systems for number of
targets being actively tracked being less than the number of
sensors involved (T.Matsuyama & N.Ukita 2002).

The video subsystem is implemented with MJPEG and
H.263 mounted over RTP transport protocol and a compara-
tive analysis for these two schemes is presented. The MJPEG
system can transmit video frames of various sizes and hence
has the advantage of being able to handle heterogenous hard-
ware for video capture. Further it has a low coding and ini-
tialization latency and allows for a direct hardware imple-
mentation which is advantageous for using lower processing
power on the sensor node. It does not suffer from the late
entry problem during switching. However, it requires a con-
sistently high bandwidth which may limit its application on
wireless or low bandwidth communication channels.

For H.263 the encoding schemes requires low bandwidth
consumption for relatively static scenes. Thus high frame rate
can be achieved. This is quite important for continuous and
responsive real-time monitoring. The drawbacks of H.263
is that it can handle video frames of certain specified sizes
only and that both initialization time and switching time are
higher than MJPEG. It also suffers for the late entry problem
which can be detrimental for systems involving video stream
switching and nodes linked over un-reliable channels. How-
ever, the late entry problem can be solved at the expense of
transmitting the complete intra frame encoded image when
requested using the RTCP protocol.
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