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Abstract

Wireless sensor networks are composed of a number
of sensors probing their surroundings and disseminat-
ing the collected data to a gateway node for processing.
Numerous military and civil applications have emerged
over the last few years for wireless sensor networks. In
many of these applications, sensors and gateways are
placed in harsh environments. Therefore, protecting
snsors and the gateway is critical for ensuring the ro-
bustness of the network operation. Gateway relocation
has been pursued as means for boosting network-related
performance metrics, such as throughput and energy
consumption. However, we argue that relocating with-
out taking safety concerns into consideration may cause
the gateway to move dangerously close to one or mul-
tiple serious events in the environment. In this paper,
we present GRASP, a new algorithm for Gateway Re-
location for Adaptive Safety and Performance require-
ments/goals. GRASP employs an evolutionary neural
network to estimate the risk at the new proposed gate-
way position before the relocation process takes place.
Our experimental validation results have demonstrated
the effectiveness of GRASP.

Introduction and Preliminaries
In the past few years, wireless sensor networks (WSN) have
received increasing interest from the scientific and engineer-
ing communities due to their potential use in many appli-
cations such as target tracking, disaster management, border
control and battlefield surveillance (Akyildiz et al. 2002; Es-
trin et al. 1999; Karl & Willig 2005; Min et al. 2001; Pottie
& Kaiser 2004). Components of the WSN include sensors,
gateways, command nodes, and monitored phenomena (Fig-
ure 1). Sensors are miniaturized battery-operated devices
equipped with a communication subsystem. The main func-
tion of WSN is to collect data and report any abnormal con-
ditions happening in an area of interest. These conditions are
reported by close-by sensors and transmitted as packets, of-
ten over multi hop paths, to a central unit called gateway for
analysis. The gateway interfaces the WSN to command and
control centers, reporting serious findings and/or required
data. The reported data may indicate that some moving tar-

Copyright c© 2006, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

gets crossed in from outside the deployment area, the irrup-
tion of a fire, etc. Sensors consume energy every time they
are involved in data transmission. Thus, highly active sen-
sors tend to lose their energy faster than inactive ones. Once
all the onboard energy supply drains, the sensor becomes
dysfunctional. Therefore, an important goal in WSN is to
minimize the transmission power in order to keep sensors
alive for the longest time possible.

Command Node

Sensor nodes

Gateway Node

Area of Interest

Figure 1: A sample sensor network where packets are transferred
through sensors to reach the gateway and then to the command
center

Gateway relocation is one of the approaches pursued to
improve the performance of the network (Akkaya et al.
2005; Tirta et al. 2004). By relocating the gateway towards
highly active sensors, the packets will be routed to the gate-
way through fewer sensors. The shortened data paths help in
preserving sensors’ energy, lowering the packet loss rate and
reducing delivery latency. In general, most gateway reloca-
tion techniques identify bottlenecks in the current network
topology and tend to move the gateway close to these bottle-
neck positions. However, such performance-centric reloca-
tion may move the gateway dangerously close to one or mul-
tiple targets/events in the environment and thus may expose
the gateway to the risk of getting damaged, captured, etc. In
this paper, we present a solution to the gateway relocation
problem that balances between the WSN performance and
the gateway safety goals. The idea is to identify a position
for the gateway to better serve the area/event that triggers
the most data traffic without negatively impacting the track-
ing of other events and at the same time not put the gateway
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at risk. Since the physical security of the gateway is usually
measured qualitatively, we employ decision support systems
to generate a quantitative assessment.

A Decision Support System (DSS) is an intelligent mod-
ule that makes decisions based on historical data. The pro-
cess for enabling such an intelligent decision-making system
consists of three main steps. First step is to collect historical
data and use it to train the DSS. Second step is to define and
build the decision model. Third step is to utilize the trained
DSS in making future predications and decisions. Recent
developments in DSS have shown that heuristics - including
artificial neural networks, fuzzy sets, and genetic algorithms
- offers opportunities for combining multiple criteria and ex-
ploring new patterns, which eventually enhances the qual-
ity of the decision making process (Anderson 1995; Chen
et al. 2004; Negnevitsky 2002). The selection of the right
heuristics to use is problem-dependent and varies based on
many different factors (Negnevitsky 2002). Artificial Neural
Networks (ANN) proved to be superior to traditional statis-
tical methods when data exhibit unpredictable non-linearity,
when patterns important to the decision-making process can-
not be clearly identified, or when data are fuzzy in nature,
involving human opinions or subject to some degree of un-
certainty.

Many related work have studied the effect of gateway re-
location on WSN performance in terms of energy, through-
put and latency. The reported results in (Akkaya et al. 2005;
Akkaya & Younis 2004; Younis et al. 2003) showed that
a considerable amount of improvement is achieved by re-
locating the gateway to a location where traffic volume is
the highest within the event area. Such repositioning of the
gateway increases the average lifetime of the sensor nodes
by decreasing the average energy consumed per packet. To
achieve the same goal, continual gateway mobility is also
pursued in (Akkaya & Younis 2004; Kim et al. 2003; Luo
et al. 2005). However, none of these approaches takes into
account any safety concerns related to the movement of the
gateway node. In most environments where WSN are em-
ployed, the movement of the gateway can be restricted by
existing risks such as enemy soldiers, tanks, obstructions
and fires etc. In those cases, the gateway should also con-
sider the risk level for its movement so that it will not be
damaged or captured. To the best of our knowledge, no sim-
ilar work has been done so far for handling such a problem
in WSN. Our work will be among the first to provide perfor-
mance improvements for the sensor network in addition to
caring for the gateway’s safety.

The organization of this paper is as follows. The next sec-
tion covers the artificial neural networks model used. Sec-
tion describes our approach and discusses few implemen-
tation issues. Validation results are presented in Section .
Finally, Section concludes the paper and outlines our future
research plan.

The Artificial Neural Network Model
The general structure of an artificial Neural Network (ANN)
consists of many neurons that are interconnected together to
form one or more layers. Each neuron can be considered as
a simple processor with collective behavior, where its inputs

are weighted variables and its output is a function of the in-
puts, their associated weights, and the threshold value. One
of the main features of neural networks is their distributed
associative memory property, in which the information is
stored in the weighted links, rather than at specified memory
addresses. An ANN can be considered as a generic learning
machine that has been proven to be capable of forming rep-
resentations of complex and non-linear phenomena (Ander-
son 1995; Negnevitsky 2002).

The topology of an ANN is problem-dependent but usu-
ally is a multi-layer network with either forward feed or
backward propagation links. In forward feed networks, the
input of one layer is the output of the previous layer with
no links going backwards. However, in recurrent neural net-
works, the output of one layer can be fed to the input of
a previous layer (Negnevitsky 2002). For an ANN to pro-
vide the desired output, it has to go through a learning phase
first. The learning phase is a multi-step process usually per-
formed after identifying the topology of the ANN. Learn-
ing methods include back propagation or evolutionary tech-
niques. Evolution of neural networks using evolutionary al-
gorithms has gained popularity in recent years giving rise
to a new branch known as Evolutionary Neural Networks
(ENN) (Yao 1999).

In this paper, we pursue heuristics to train the neural net-
work and find values for all weights and thresholds. We
employ an ENN to assess the risk at new locations before
moving the gateway. The objective of the ENN is to find
a better and safer location in the vicinity of the proposed
gateway’s position that boosts (does not degrade) the perfor-
mance. For an n−input ENN, the output is a risk factor r
that indicates the threat that the gateway will be exposed to
at the new location. Each input to the ENN represents the
distance di between current gateway location and event # i
in the environment. The general formula for r is:

r =

n2+n∑
i=n2+1

[
wi

(
n∑

j=1

djl
w[(i−n2)+(j−1)∗n]

)
− Ti−n2

]
− Tn+1

where wi are the weights, and Tj are the threshold values.

Since the historical data used to train the model consists of
multiple positions, the risk factor output would be a vector
of size equal to the cardinality of the historical data set. In
the next section, we describe GRASP in details.

Safe Gateway Relocation Algorithm
In this paper, we present GRASP, a new algorithm for Gate-
way Relocation for Adaptive Safety and Performance us-
ing evolutionary neural networks. GRASP is different from
other methods, such as the one described in (Akkaya et
al. 2005), that only emphasize improvements in perfor-
mance (throughput and energy consumption) of the WSN. In
(Akkaya et al. 2005), the geometric centroid of all sensors
with high-energy consumption is identified, and the gateway
is relocated to this point in order to reduce energy expendi-
ture by surrounding sensors. This relocation method works
fine when there are no dangerous events/targets in the en-
vironment. In other situations where harsh conditions and
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safety threats are often a problem, relocating the gateway
based on performance measures only may cause the gateway
to malfunction. Adding a security expert component to the
repositioning process would improve both the performance
of the network and the safety of the gateway.

GRASP consists of three modules that perform the fol-
lowing functions: collect historical data, use genetic algo-
rithms to resolve ANN weights and thresholds, and finally
utilize the resultant ENN to make relocation decisions and
predications. Details about these modules are provided in
the next few subsections.

The GRASP-History Module
In this module, the past gateway locations are manipulated
to generate the learning data set. The manipulation process
starts by estimating the threat level at each location the gate-
way visited. The threat level is estimated as a function of the
number of events in the environment, the proximity of the
gateway to the target, and the severity of the events. Since
the number of locations the gateway can relocate to is infi-
nite, a method was developed to discretize the environment
and evaluate the risk probability at each discrete location.
The idea is to divide the deployment area into a two dimen-
sional grid of size m × m, resulting in m2 cells. The risk
probability at the center of each cell location is calculated
as:

risk(cell(l)) = thigh/(thigh + tlow)

where thigh represents number of times the next gateway
location was a higher threat level point than the current loca-
tion, and tlow represents number of times the next gateway
location was a lower threat level point. Figure 2 outlines the
GRASP-History module.

Algorithm GRASP-History (HstryDataSet)
For each location l ∈ HstryDataSet

Tl ← estimate threat level(l)
cell[i, j] ← cluster Area into m× m

2-dim grid;
For each cell location

th ← Count(gateway moves to locations
with higher threat level);

tl ← Count(gateway moves to locations
with lower threat level);

For each location l ∈ cell[i, j]
Pr{Riskl} = th/(th + tl)

End;

Figure 2: The GRASP-History module

The GRASP-GA Module
In this module, we use genetic algorithms to efficiently and
effectively identify all the weights and thresholds of the
ENN (Goldberg 1989). Each learning data sample would
yield an equation in (n2 + 2n + 1) variables, which repre-
sents the total number of weights and thresholds in the ENN.
The number of equations equals the cardinality of the learn-
ing data set provided. The GRASP-GA module is outlined

in Figure 3. Details about the implementation of each com-
ponent of the genetic algorithm are provided next.

Algorithm GRASP-GA ( LD : Learning data)
generate a random initial population P
repeat

Select two parents p1 and p2
u ← crossover(p1, p2)
LocalOptimize(u, LD)
mutate(u)
replace(u, p1, p2, P , LD)

until (there is no improvement)
return the best member of P ;

End;

Figure 3: The GRASP-GA module

• Encoding. Each individual member in the population is
represented as an array of floating point coefficients. Each
entry in the array corresponds to a single coefficient in
the neural network. The size of the array is dependent on
the number of events in the environment. For example,
if n is the number of events reported, then the individual
member length is n2 + 2n + 1.

• Initial Population. An initial population of size 100 is
randomly created. The size of the population remains
constant throughout the algorithm. Also, all members of
the population have the same individual length.

• Fitness. The fitness of each member in the population is
calculated as the total hamming distance between the indi-
vidual and each member in the learning data set. The less
the total hamming distance, the more fitted the individual
member is.

• Parent Selection Scheme. We used the Tournament
selection scheme in GRASP. This method adopts a
tournament-like competition, where four parents compete
with each other in a pair-wise competition. The best two
parents are selected and returned while the worst member
is saved for the Replacement scheme.

• Crossover Operator. We used a fixed 3-point crossover
operator in GRASP. The fitness of the two resulting off-
spring are calculated and the one with the better fitness is
returned for mutation.

• Mutation Operator. Mutation is used mainly to intro-
duce some randomness into the population. In GRASP,
we used a 10% mutation operator, where mutation is per-
formed on each newly created offspring as follows. For
each chromosome of the offspring and with probability p,
the chromosome is selected for mutation. Its value is then
changed by a randomly generated amount δ and the new
value is stored.

• The Local Optimization Process. After mutation, the
new offspring is optimized. The local optimization pro-
cess has two main stages. The first stage is to scan the
input mutated offspring, and for each chromosome of
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the offspring, slightly change its value and check the ef-
fect of this change on fitness. If fitness improves, keep
the change; otherwise discard it. The second stage is to
change the threshold value. This is done by summing up
the input values, and then the threshold is set to the nega-
tive of this value. The fitness of the new sequence is cal-
culated and new optimized sequence is stored if its fitness
is better than the fitness of the original sequence.

• Replacement Scheme. The optimized offspring is com-
pared with the worst member obtained from the tourna-
ment selection method. If the fitness of the offspring is
better, the member is replaced in the population. Other-
wise, the offspring is discarded.

• Stopping Criteria. The genetic algorithm stops after
reaching certain number of iterations (50, 000 in the ex-
periments) or after evolving for many iterations (1, 000)
with no improvements in fitness of the whole population.

The GRASP-Location Module
The GRASP-Location module is responsible for making the
safety/performance decision. It utilizes the resultant ENN to
relocate the gateway to a safer location than the current loca-
tion. The ENN handles the safety estimation of the gateway,
however, for the WSN performance, GRASP-Location uses
the network throughput and the average remaining energy
of some relaying sensors in its vicinity to make the perfor-
mance decision. A predefined importance weights is set at
the beginning of the module to indicate the relative impor-
tance of the performance and the security in the relocation
function, i.e. the objective function. The objective function
returns an index, called the Relocation Index for each input
location. GRASP-Location implements a depth-constrained
algorithm that exhaustively searches the vicinity of the pro-
posed gateway location and within a predefined radius r.
The algorithm divides the area into coronas and wedges and
the location that has the best value of the objective function
is selected. As an example, the relocation index (RI) at
point l1 can be calculated as:

RI(l1) = (a ∗ SafeIndex(l1)) + (b ∗ PerfIndex(l1))
{where a is the risk weight, and b is the performance weight.}

Experimental Validation
In this section, we describe the validation of GRASP in a
simulated target tracking application setup similar to that
used in (Akkaya et al. 2005). The simulator was imple-
mented, along with all algorithms for GRASP, using C++
and was run on a PC with Pentium IV 2.4GHz Intel proces-
sor with 512MB of RAM. The organization of this section
is as follows. We start by describing the experimental setup.
We follow by briefly discussing conducted experiments then
we give details about selected sample experiments and re-
sults obtained. We then summarize all results obtained. Fi-
nally, we present results and statistics about the complexity
of the genetic algorithm.

Setup and Metrics
In all the experiments, the network consists of varying num-
ber of sensor nodes (50 to 200) that are randomly placed

in a 500 × 500 m2 area. Each node is assumed to have an
initial energy of 5 joules. For each conducted experiment,
we collected safety and performance results. For safety,
the distance between the gateway and each target was re-
ported. For performance, we used the network throughput
and the average energy per packet. In all experiments, three
approaches were compared (1) when relocation was not al-
lowed (2) when the gateway was allowed to relocate based
only on performance metrics only (3) when using GRASP.
In the genetic algorithm, Mersenne Twister random number
generator was used to generate uniformly distributed ran-
dom numbers (Matsumoto & Nishimura 1998).

Experimental Results

For the first and second approach, we conducted 9 exper-
iments each. Meanwhile, for GRASP, we conducted the
following experiments. We tested 5 different numbers of
targets in the environment, (3, 4, 5, 6, and 8). We stud-
ied the impact of changing the grid size when generating
the learning data, as in the set (50, 100, 125, 250). For
risk/performance weights of the objective function in the
GRASP-Location module, we tested 5 different setups, ((0,
1), (0.2, 0.8), (0.5, 0.5), (0.8, 0.2), and (1, 0)). For the search
radius r of the GRASP-Location algorithm, we used 4 dif-
ferent radius, as in the set (10, 20, 30, and 50). Thus, the
total number of experiments performed was 18. Moreover,
we have applied 5 distinct seeds in order to generate random
network topologies. Each experiment lasted 12, 000 sec. We
observed that with confidence level > 90%, the simulation
results stayed within 6%− 10% of the sample mean. Due to
space limitations, we report on the results of a subset of the
conducted experiments.

Experiment 1 In this experiment, we studied the effect of
using GRASP on positions visited by the gateway. We have
conducted two tests. First, we applied the performance-
based relocation scheme of (Akkaya et al. 2005). Figure
4(a) shows a plot of some locations visited by the gateway
during this sample experiment. The second test involved
GRASP. Figure 4(b) shows locations visited by the gateway
in this case. It is clear from the first figure that the gateway
jeopardizes its safety by moving dangerously close to one
or more targets in the environment. While, through GRASP,
the gateway managed to stay further away from risky targets
to ensure its safety.

Experiment 2 In this experiment, the effect of increasing
the number of targets on the WSN was examined. The num-
ber of targets was set to (3, 4, 5, 6, or 8). Figure 5 shows
that the gateway managed to securely relocate to positions
that maintained safe distance from targets and provided ac-
ceptable network performance. With the increase in num-
ber of targets, GRASP proved to be an effective technique
and continued to appropriately select the right position for
the gateway. The performance plots in Figure 6 shows that
the simulation results were comparable to these results for
the Performance-Relocation technique and were better than
the No-Relocation technique. The results of this experiment
confirmed the effectiveness of the GRASP approach.
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(a) Performance-Reloc results (b) GRASP results

Figure 4: [a] A sample experiment showing locations visited
by the gateway using the Performance-Relocation approach when
there were 4 targets reported. [b] Gateway locations visited for the
GRASP approach

Figure 5: Average distance between the gateway and targets for
all approaches tested when changing number of targets in the envi-
ronment

Figure 6: Effect of changing number of targets on WSN perfor-
mance for experiment set #2

Experiment 3 In this experiment, we studied the effect of
changing the cell size when generating the learning data on
the gateway safety and performance of the WSN. We used
values in the set (50, 100, 125, and 250). For example, set-
ting the grid size to 50 means that the deployment area was
divided into a grid of size 10 × 10, resulting in learning set
with cardinality of 100. Figure 7 shows that the average dis-
tance between the gateway and targets has increased after
using GRASP for fine grained grid sizes, implying an in-
creased gateway safety. In addition, Figure 8 shows that the
network performance was improved over the No-Relocation
technique for different cell sizes. The degradation in perfor-
mance compared to the Performance-Relocation technique
was minimal. The fluctuation in the curve has resulted from
two things (1) the randomness in the genetic algorithm (2)
the quality of the historical data collected for each experi-
ment. It is clear that for all grid size, GRASP was able to

Table 1: Summary of both network performance and gateway se-
curity results for all performed experiments

Process Security Network Performance

T-put Energy

Perf-Reloc

(compared to No-Reloc) −41.82% 19.28% −8.57%

GRASP

(compared to No-Reloc) −32.50% 11.01% −5.14%

GRASP

(compared to Perf-Reloc) 16.03% −7.46% −3.62%

enhance the security of the gateway and at the same time
some improvements in network performance were noticed.
The choice of which grid size to use is dependable upon the
cardinality of the historical data.

Figure 7: Average distance between the gateway and targets for
all approaches tested when changing the grid size

Figure 8: Effect of changing the grid size (the resolution of the
deployment area when generating the learning data) on the WSN
performance when GRASP is enabled for experiment set #3

Summary Results

Table 1 summarizes all results obtained for all approaches
tested relative to each other. It is observed that the GRASP
approach was able to enhance the safety of the gateway com-
pared to the Performance-Relocation approach. In addition,
GRASP was able to enhance and boost the network perfor-
mance compared to the No-Relocation approach. GRASP
was able to balance the safety and performance goals of the
gateway. All these results have confirmed the effectiveness
of GRASP in securing the gateway while boosting the net-
work performance.
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Genetic Algorithm Complexity
In GRASP, we employed genetic algorithms to train neu-
ral networks. Such approach has been in use for a while.
However, a concern about the time complexity of the algo-
rithm always arises. Figure 9 illustrates some results ob-
tained from the genetic algorithm. It shows the effect of
changing number of targets as well as the grid size on the
running time and quality of the solution obtained. The figure
also confirms that the complexity and quality of solutions in
GRASP stayed always within the acceptable range and did
not burden the system with more than anticipated computa-
tional overhead.

Figure 9: Effect of changing the number of targets and the grid
size on GRASP-GA results

Conclusion
In wireless sensor networks, data are usually routed from
sensors to a gateway node, where it is further processed.
Since the position of the gateway has a significant impact
on the network performance, changing the location of the
gateway is sometimes pursued to optimize the throughput,
delay and energy consumption. However, such performance
centric process may reposition the gateway in the proxim-
ity of harsh events or dangerous targets and thus may get
it exposed to increased risk. To tackle this issue, this pa-
per introduced GRASP, a new adaptive safety and perfor-
mance aware algorithm for gateway relocation in wireless
sensor networks. The main goal of GRASP is to balance
between protecting the gateway and the desire for enhanc-
ing the network performance. GRASP employs evolution-
ary neural networks to assess the risk involved in placing
the gateway at various positions in an area of interest and
identifies locations that gateway can move to. Experimental
results confirmed the effectiveness of GRASP. In the future,
we plan to extend GRASP to use other performance met-
rics like timeliness. We also plan to include the cost of the
relocation as one of the factors affecting the process.
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