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Abstract

We are exploring the differences between expert and
less expert tutors with two goals: cognitive (what does
tutoring tell us about learning) and applied (which fea-
tures of tutoring dialogues should be included in inter-
faces to ITSs). We report results from human tutoring
dialogues where an expert tutor was compared to less
expert tutors. We also report results from a comparison
among four versions of an ITS, that vary in the degree
and kind of feedback they provide. Our results establish
upper and lower bounds for the effectiveness of tutoring
interactions in our domain.

Introduction
Intelligent Tutoring Systems (ITSs) help students master a
certain topic. Research on the next generation of ITSs ex-
plores Natural Language (NL) as one of the keys to bridge
the gap between current ITSs and human tutors. Part of this
inquiry concerns uncovering whether the NL interaction be-
tween students and an ITS does in fact improve learning,
and if yes, which features of the interaction are responsible
for the improvement. Whereas very recently the first results
have appeared, that show that students learn more when in-
teracting in NL with an ITS (Di Eugenioet al. 2005a; Evens
& Michael 2005; Graesseret al. 2005; Litmanet al. 2004;
Peterset al. 2004; Rośe et al. 2003), we still don’t know
what exactly is responsible for these results. For example,
in (Di Eugenioet al. 2005a) we found that students learned
more when given more abstract but also more directive feed-
back in an ITS that teaches troubleshooting; Litman et al.
(2004) found that there was no difference in the learning
gains of students who interacted with a mechanics ITS us-
ing typed text or speech.

It is not surprising that the community is still investi-
gating which features of an NLP interface to an ITS are
more effective for learning, since it is not yet well under-
stood what makes human tutoring effective, notwithstand-
ing the many findings from the literature, e.g. (Fox 1993;
Graesser, Person, & Magliano 1995; Chiet al. 2001).

In this paper, we contribute another piece of the puzzle.
Among the many issues worth of study in this area, we focus
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on what distinguishes expert from novice tutors. In the liter-
ature there are hardly any comparisons between expert and
novice tutors, although there are observations on one or the
other. In particular, there is scant if any evidence that expert
tutors are actually more effective. From the point of view of
computationally modeling a dialogue, the simpler the lan-
guage phenomena, the simpler the computational task. Ex-
pert tutors are likely to use more complex dialogue strategies
than novices (Putnam 1987; Graesser, Person, & Magliano
1995; Lepper, Drake, & O’Donnell-Johnson 1997; Glasset
al. 1999). If expert tutors and novice tutors were equally
effective, modeling novice tutors would make the computa-
tional task easier.

Our domain concerns extrapolating complex letter pat-
terns (Kotovsky & Simon 1973). The student is given a pat-
terned sequence of letters (e.g., MABMCDM) and is asked
to extrapolate the sequence while maintaining the pattern
(i.e., MEFMGHM) – here M works as amarker, and chunks
of two letters form a progression according to the alphabet.

We collected tutoring dialogues with three tutors, one ex-
pert, one novice, and one experienced in teaching, but not
in one-on-one tutoring. The expert tutor was significantly
more effective than the other two tutors. We discuss an ini-
tial analysis of the differences in the dialogues between the
expert tutor and the other tutors.

In the same domain, we also implemented four differ-
ent versions of an ITS. In theno feedbackversion of the
ITS, each letter the subject inputs turns blue, with no in-
dication and no message regarding whether it is correct or
incorrect; in theneutralversion, the only feedback subjects
receive is via color coding, green for correct, red for incor-
rect; in thepositiveversion, they receive feedback via the
same color coding, and in addition, verbal feedback on cor-
rect responses only; in thenegativeversion, they receive
feedback via the same color coding, and in addition, ver-
bal feedback on incorrect responses only. The language in
thepositiveandnegativeconditions was inspired by (but not
closely modelled on) the expert tutor’s language. We ran
a between-subject experiment, in which each group of sub-
jects interacted with one of the systems. We found that, even
if subjects in the verbal conditions do perform slightly better
and make fewer mistakes, these differences are not signifi-
cant; in particular, there are no significant differences with
theno feedbackcondition.
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Our results thus establish an upper / lower bound on what
type of feedback an ITS needs to provide to engender signif-
icantly more learning than simple practice. The lower bound
is established by the ITSs that provide some language feed-
back but are not different from theno feedbackcondition,
that simply draws attention to the task. The upper bound is
established by the expert tutor’s language. Neither the lower
nor the upper bound are as tight as we would like them to
be. In particular, we would like to find a much tighter up-
per bound thanfull dialogue with an expert tutor, since this
would require solving the whole NLP problem. Our corpus
analysis of the expert vs other tutors’ data provides some
initial answers to this question.

The paper is organized as follows. We first discuss the
human tutoring data we collected and analyzed, and the
comparison between expert and non expert tutors. We then
present our ITS with its 4 conditions, and the results we ob-
tained. Finally, we conclude and discuss future work.

The human tutoring data

To investigate whether expert tutors are more effective than
less experienced tutors, we ran an experiment in the letter
pattern domain. Subjects were individually tutored by three
different tutors: theexpert, who had years of experience as a
professional tutor; thelecturer, who had years of experience
as a lecturer but scarce experience in one-on-one tutoring;
the novice, an undergraduate with no teaching or tutoring
experience.1 A control group was not tutored at all.

There were 11 subjects in each condition, including in the
control group. In the three tutoring conditions, the subjects
went through a curriculum of 13 problems of increasing dif-
ficulty, using paper and pencil, and then solved two post-test
problems via a computer interface. The post-test presented
subjects with 2 patterns, each 15 letters long. Subjects had
to reproduce the same pattern 6 times, but each time, starting
with a different letter. For example, if one post-test problem
were TRPNL, they would be asked to reproduce the pattern
once starting from Q (correct answer is QOMKI), once start-
ing from J (IGECA), etc. Subjects had 1 minute for each trial
and did not receive any feedback of any kind. The subjects
in the control condition received no instruction, and solved
the same post-test problems with the same interface.

Figure 1 illustrates performance for all conditions on
Problem 2. Performance is measured, per trial, in number
of letters correct out of the 15 letters each pattern is com-
posed of.

On the whole, we found that the expert tutor is indeed
more effective. Specifically (all our statistical results are
based on ANOVAs; when significant, ANOVAs are followed
by Tukey’s tests to determine which condition is signifi-
cantly different from the others):

1From the literature, it is unclear who exactly should qualify
as an expert tutor. Here we equate tutor expertise with general tu-
toring experience, not with experience in tutoring in the specific
domain. While the latter is certainly important (Glasset al. 1999),
it seems less relevant here, since the letter sequence pattern prob-
lems don’t require anything beyond knowledge of the alphabet.

Figure 1: Performance on post-test problem 2

Novice Lecturer Expert
Problem 2 10.33 17.00 34.83
Problem 9 16.17 69.50 69.83

Table 1: Tutor utterances per problem

• The expert tutor is significantly more effective than the
other two tutors on both post-test problems (p < 0.05 in
both cases)

• Collectively, the tutors are significantly better than control
(no tutoring) on post-test problem 2 (p < 0.001)

• The expert tutor is significantly more effective than con-
trol on post-test problem 2 (p < 0.005)

The next question is, what does the expert tutor do that
is more effective?. The tutoring dialogues were videotaped,
and a selected subset has been transcribed. We choose to
transcribe two specific problems, #2 and #9, to have a sam-
ple of what tutors do at the beginning of the curriculum, and
what they do later on a much more complex problem. The
dialogue excerpts for six subjects per tutor were transcribed
and annotated, where the same subject solved problems 2
and 9, for a total of 36 dialogue excerpts. Our transcription
guidelines are a small subset of the CHILDES transcription
manual (MacWhinney 2000).

Table 1 illustrates the average number of tutor utterances
per problem. Table 2 illustrates the average number of tutor
and student words, and of tutor and student utterances, per
tutor. Numbers in boldface refer to significant differences,
that we will discuss below.

Novice Lecturer Expert
Tu. words 107.33 369.17 419.17
St. words 55.00 209.00 83.00
St. words /Tu. words .51 .57 .20
Tu. Utts. 13.25 43.25 52.33
St. Utts. 7.74 29.50 17.67
St. Utts. / Tu. Utts. .58 .68 .32

Table 2: Average numbers of words and utterances, per tutor
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Annotation for tutor moves
The transcribed excerpts have been annotated for tutor
moves, and are being annotated for student moves. We de-
veloped our annotation scheme based on the literature, e.g.
(Chi et al. 2001; Litmanet al. 2004), and with simplicity
in mind. Our tutor moves include four high level categories,
reaction, initiative (further categorized, see below),support,
conversation. Supportis used when the tutor encourages the
student in his/her work without referring to particular ele-
ments of the problem;conversationis used for acknowledg-
ments, continuers, and small talk.
Tutor reaction – the tutor reacts to something the student
says or does – is subcategorized as follows:

• Answering: answering a direct question from the student
• Evaluating: giving feedback about what the student is do-

ing
• Summarizing: summarizing what has been done so far

Tutor initiative is subcategorized as follows:

• Prompting: prompting the student into some kind of ac-
tivity, further subcategorized as:

– General: laying out what to do next
Why don’t you try this problem

– Specific: trying to get a specific response from the stu-
dent What would the next letter be?

• Diagnosing: trying to determine what the student is doing
Why did you put a D there?

• Instructing: providing the student with information about
the problem. Further subcategorized as:

– Declarative: providing facts about the problem
Notice the two Cs here? They are separating different
parts of the problem

– Procedural: giving hints or tricks about how to solve
problem Start by counting the number of letters in
each period

• Demonstrating: showing the student how to solve the
problem. Watch this. First I count the number of
letters between the G and J here.

Two annotators (undergraduate psychology students)
coded all the dialogues. After a first round of coding, the an-
notators met with a graduate student overseer and discussed
their disagreements. They recoded the most problematic di-
alogues, and the intercoder reliability statistics were com-
puted. In further discussions they came to an agreed upon
coding for all the dialogues.

Tables 3 and 4 report the rates of intercoder agreement
respectively across all categories per tutor, and for the indi-
vidual categories and subcategories. We use the Kappa coef-
ficient of agreement, as has become standard in NLP (Krip-
pendorff 1980; Carletta 1996; Di Eugenio & Glass 2004). In
both Tables 3 and 4, boldface highlights acceptable Kappa
values. There is debate in the literature on what exactly
Kappa values mean. Here we follow (Rietveld & van Hout
1993) in assessing that0.60 < Kappa ≤ 0.80 denotes sub-
stantial agreement, and0.80 < Kappa ≤ 1 almost perfect
agreement.

Level Novice Lecturer Expert Overall
Full .688 .553 .452 .528
High Level .750 .655 .597 .644

Table 3: Kappa values by tutor

Category Subcategory Kappa
Answering 0.75
Evaluating 0.56
Summarizing 0.60
Prompting 0.82

General 0.34
Specific 0.73

Diagnosing 0.63
Instructing 0.55

Declarative 0.33
Procedural 0.37

Demonstrating 0.39
Instr-Demon 0.63
Support 0.39
Conversation 0.55

Table 4: Tutor moves: Kappa values

Table 3 reports two results: for the full scheme (13 cat-
egories), and with no subcategorization forinstructingand
prompting(high level, 9 categories). In both cases, the dia-
logues with the novice are the easiest to annotate, followed
by those with the lecturer and then those with the expert.

In Table 4, we report the Kappa values for different cate-
gories and subcategories. Some categories are very reliable,
such asprompting, and its subcategoryspecific prompting;
some categories are acceptable, such asdiagnosing; some
categories are not, such assupportandinstructing. The for-
mer is not problematic for our analysis, since there are very
few instances ofsupportin our coded data. The latter instead
is, sinceinstructingis one of the categories where tutors dif-
fer. Only when we collapseinstructinganddemonstrating
(seeInstr-Demon), which in fact the coders reported as hard
to distinguish, we obtain an acceptable Kappa value.

Table 5 reports the percentages of moves by tutor. Note
that the columns don’t add up to exactly 100%, because of
few utterances left without any tag, and vice-versa, few ut-
terances with more than one tag – coders were allowed to use
more than one code, although they were not encouraged to
do so. We’ll discuss some differences between tutors below.

Annotation for student moves

The dialogues have been annotated for five student moves:

• Answering: directly answering a tutor’s question
• Explaining: explaining what the student said or did, rea-

soning, or thinking aloud
• Reflecting: evaluating own’s understanding
• Questioning: asking the tutor a question
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Category Novice Lecturer Expert
Answering 10.1% 5.4% 1.4%
Evaluating 16.4% 13.0% 8%
Summarizing 6.9% 16.9% 16.7%
Gen. Prompting 5.0% 3.7% 4.1%
Spec. Prompting 17.6% 27.6% 13.9%
Diagnosing 2.5% 3.3% 3.3%
Decl. Instructing 22.6% 6.2% 4.0%
Proc. Instructing 0.6% 4.3% 17.0%
Demonstrating 6.3% 0.0% 11.1%
Support 0.6% 0.6% 5.4%
Conversation 9.4% 17.1% 10.5%

Table 5: Percentages of tutor moves, by tutor

• Action response: performing some action (e.g., writing
down a letter) in response to the tutor’s question or prompt

We don’t report distributional data since it is not final yet:
the coding is undergoing revisions in response to the first
round of intercoder reliability results. Below, we comment
on some preliminary trends.

Discussion
All the tables shown so far suggest that there are some sub-
stantial differences between tutors. In particular, there is ev-
idence that the expert tutor behaves differently from the pre-
dictions on effective tutoring from the literature. As regards
Table 1, we ran ANOVAs, where the tutor and the problem
are independent variables, and number of tutor utterances is
the dependent variable. We found:

• a main effect of problem (p < 0.05): there are more ut-
terances for problem 9 than problem 2

• a main effect of tutor (p < 0.05): the novice has sig-
nificantly fewer utterances than the other two, i.e., both
expert and lecturer have longer dialogues with subjects

• an interaction between problem and tutor (p < 0.05): the
novice’s utterances don’t significantly increase, the other
two tutors’ do.

As regards the expert tutor’s behavior, (Chiet al. 2001)
shows that subjects learn best when they construct knowl-
edge by themselves, and that as a consequence, the tutor
should prompt and scaffold subjects, and leave most of the
talking to them. In contrast, Table 2 shows that our expert
tutor’s subjects do not talk more: the ratio of student utter-
ances to tutor utterances is significantly lower for the expert
tutor (p < 0.05), and so is the ratio of student words to tutor
words (p < 0.001).

Further looking at tutor moves, i.e., at Tables 3 and 5, we
see that, first, the expert dialogues are the hardest to code.
This supports the intuition that expert tutors use more so-
phisticated strategies, but does not bode well for compu-
tational modelling of expert tutors: if it is harder to code
expert dialogues, the data on which to train the NL interface
will be less reliable than for other types of tutors. As far
as individual moves are concerned, we found that again the
expert tutor does not behave as one would expect him to:

• the expert does not prompt his subjects more (the lecturer
does,p < 0.05; and consistently, the student move anno-
tation shows that his students explain more)

• the expert does not answer more questions from subjects
(the novice does,p < 0.05; consistently, subjects ask
more questions of the novice, perhaps because in fact they
are more confused when interacting with her)

• the expert uses more procedural instructing (p < 0.05)2

Other findings are that the novice summarizes less than
the other two (p < 0.05), and uses more declarative instruct-
ing (p < 0.05). From the student move annotation, we see
that the subjects interacting with the expert reflect more, i.e.,
assess their understanding of the problem more often. Some
of these findings agree with our informal impressions that
the expert talks more than the others; seems to spend more
time on problem 2 than the other two tutors, as if to lay the
foundation for what will come next (partially supported: his
dialogues for problem 2 are marginally significantly longer
than the novice’s (p = 0.06), but not than the lecturer’s);
gives subjects “tricks” on how to easily go forward and back-
ward in the alphabet, and how to detect patterns (his usage
of procedural instructing).

Four ITSs for the letter pattern problem
In parallel with the data collection and analysis, we started
developing an ITS to solve the letter pattern problems. We
developed four versions of the ITS, which differ in the kind
of feedback they provide the student. We built our four
ITSs by means of the Tutoring Development Kit (TDK)
(Koedinger, Aleven, & Heffernan 2003), based on the ACT-
R theory (Andersonet al. 1990). This theory postulates that
skills involved in a complex task can be modeled as pro-
duction rules:correct rules model the solution(s) for each
problem andbuggyrules capture possible errors. The same
set of rules (correct and buggy) provide the backbone for the
corresponding model-tracing tutor.

As we will see, none of the four ITSs models the expert
tutor in any deep sense, although that is our ultimate goal.
This development strategy is due to a series of general ques-
tions on the role of feedback in learning we are interested in,
and to the need to provide one or more baselines to which to
compare the final ITS that will model the expert tutor.

In previous studies of ours, subjects learned to extrap-
olate complex letter patterns of the kind discussed above
and were provided positive and/or negative graphical feed-
back (Corrigan-Halpern & Ohlsson 2002). The pattern con-
tained a hierarchical structure and could be decomposed into
chunks. Feedback could be given for each letter in a chunk
(local feedback), or for an entire chunk (global feedback).
Feedback consisted of the color coded wordsCorrect in
green andWrong in red – these words appeared below the
corresponding letter or chunk. In one study, performance
was compared as a function of feedback scope and type (pos-
itive or negative). There was an interaction between feed-
back type and scope. Subjects given negative feedback per-

2This finding should be taken with a grain of salt because of the
low Kappa value for this category.
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formed best when it was given locally. Subjects given posi-
tive feedback performed best when it was given globally.

These previous studies suggested a design in which sub-
jects in one condition (neutral) were given graphical feed-
back (green or red); further, to tease apart the functions of
positive and negative feedback, the graphical feedback was
augmented with language feedback only for positive feed-
back (positive), or for negative feedback (negative), but the
two kinds of messages were not mixed together. Note that
the feedback is always local. Finally, a fourth condition (no
feedback) in which each letter turns blue (i.e., no indication
is given as to whether it is correct or incorrect) was added to
check whether practice and drawing attention to the task are
predictive of performance.

The ITSs presented the subjects with the same curriculum
that had been used in the human data collection. Subjects
also solved the same post-test problems as in the human data
collection, via the same computer interface (separate from
the ITSs).3 In a fifth control condition, subjects solved the
post-test problems without any training. Further details on
the ITSs can be found in (Di Eugenioet al. 2005b).
Method and Results. We ran a between-subjects study in
which each group of subjects (positive [N = 33], negative [N
= 36], neutral [N = 37], no feedback [N=31]) interacts with
one version of the system.

The ITSs collect detailed trace information for each sub-
ject as s/he works through the training: time stamps on and
location of every response the subject provides, which pro-
duction rule (correct or buggy) fires and when, and when the
subject closes the feedback message window (a new window
pops up with every new feedback message).

We first discuss how the four ITS versions fared against
each other. The main result is that, surprisingly, there was
no difference between conditions other than with respect to
control (see Table 6). There are no differences between the
no feedbackcondition and the three feedback conditions, or
among the three feedback conditions. Subjects in the pos-
itive condition did slightly better than subjects in the other
conditions on each post-test problem, and overall. However,
none of these differences is significant. We also performed
a linear regression analysis with post-test scores as the de-
pendent variable and condition, time spent on training, and
number of bug messages as the predictors. We found that
the more time spent on training and the higher number of er-
rors (bugs) made during training, the worse the performance.
More details on the regression analysis can be found in (Di
Eugenioet al. 2005b).

Finally, we compared the performance of the subjects in
the ITS conditions with the subjects in the human tutoring
condition – as control, we used the control group from the
ITS experiments, because it is larger.4 Table 6 reports the
performance on the two problems for every condition.

3The only difference is that the subjects in the human data col-
lection had 6 trials per problem, the subjects who used the ITSs 10
trials. In the comparison below, we use only the first 6 trials per
problem from the ITSs and control conditions.

4Note that the cardinality of the conditions are different, being
11 each for the human tutors, and above 30 for the ITS conditions.

No differences were found in the correct answers of the
human tutors and the ITSs in problem 1. However, the ex-
pert tutor and all the verbal ITS conditions scored better than
control for problem 1. For problem 2, subjects in the expert
tutor condition answered correctly more often than subjects
in any other condition. All subjects in the human tutor and
ITS conditions scored higher than control subjects on prob-
lem 2. Overall, all subjects in all human tutor conditions
answered more questions correctly than did subjects in the
control condition. Additionally, subjects in the expert tutor
condition had more correct answers than subjects in the neg-
ative, neutral and no feedback ITS conditions.

Post-test problem 1 Post-test problem 2 Total
Expert 50.45 71.64 122.09
Lecturer 33.45 58.00 91.45
Novice 30.27 54.82 85.09
Positive 42.21 45.30 87.52
Negative 40.06 37.58 77.64
Neutral 39.11 37.51 76.62
No Feedback 33.58 42.19 75.77
Control 18.16 18.78 36.94

Table 6: Performance for all conditions

Discussion and future work
Through our collection of tutoring dialogues with human tu-
tors of different expertise, and our experimentation with us-
ing simple feedback in the different versions of the ITS we
built, we have established lower and upper bounds for the ef-
fectiveness of verbal feedback, in our domain. Clearly, there
is a vast space between the two bounds, and our current and
future work is trying to bring the bounds closer.

Although verbal feedback did not make a difference in
our ITS experiment, it would obviously be premature to con-
clude that it does not help in general. First, the nature of the
task may be such that feedback does not make too much of a
difference with respect to simple practice, since theno feed-
backcondition did not perform differently from the feedback
conditions. However, the fact that the expert tutor is more
effective than any other condition, at least on post-test prob-
lem 2, seems to rule this out. Second, subjects may have not
really read the feedback, especially since it may sound too
repetitive after a while – indeed students don’t read long or
repetitive feedback (Heift 2001).

The real reason why verbal feedback may have not been
effective is that it is not sophisticated enough. Again, the ef-
fectiveness of the expert tutor seems to suggest this. More-
over, in (Di Eugenioet al. 2005a) we compared three dif-
ferent versions of an ITS that teaches troubleshooting. We
found a significant difference in learning between two ver-
sions where the feedback is very detailed and a third version
that highlights the functions played by the subparts of the
systems by using language that abstracts away from individ-
ual parts.

The next step in the letter pattern project is indeed to build
a more sophisticated version of the ITS that provides feed-
back based on expert tutor dialogue patterns. This requires
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the annotation of student moves which is under way, and the
transcription and annotation of more dialogues, which we
have recently started. We will then use machine learning
techniques to extract dialogue patterns from the annotated
data, and embody the patterns we uncover in the sixth and
final version of the letter pattern ITS.

Finally, our findings on the effectiveness of the expert tu-
tor, and on the somewhat unusual features of his tutoring,
are based on a small dataset, and on one single tutor. They
clearly need to be repeated with different tutors and / or in
different domains. We are halfway through a different tu-
toring dialogue collection that again compares expert and
non-expert tutors. The domain is introductory Computer
Science, i.e., basic data structures and algorithms. In this
setting, subjects take a pretest, then interact with one of two
tutors, then take the post-test. One tutor, the expert, is a
retired Math and Computer Science college professor with
many years of experience in one-on-one tutoring; the other,
the novice, is a senior in Computer Science, with just a few
hours under his belt as a volunteer tutor for some introduc-
tory classes. As for the letter pattern domain, we intend to
extract successful dialogue patterns, to be used in a NL in-
terface to an ITS that tutors basic Computer Science.
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