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Abstract

We describe theWHY2-ATLAS intelligent tutoring system for
qualitative physics that interacts with students via natural lan-
guage dialogue. We focus on the issue of analyzing and re-
sponding to multi-sentential explanations. We explore ap-
proaches for achieving a deeper understanding of these expla-
nations and dialogue management approaches and strategies
for providing appropriate feedback on them.

Introduction
In a tutorial system that interacts with a student through nat-
ural language, the system needs to understand the user just
well enough to respond appropriately. What it means to un-
derstand well enough and what it means to respond appro-
priately vary according to the application.

Most natural language tutorial applications have focused
on coaching either problem solving or procedural knowl-
edge (e.g Steve (Johnson & Rickel 1997), Circsim-tutor
(Evenset al. 2001), BEETLE (Zinn, Moore, & Core 2002),
SCoT (Pon-Barryet al. 2004),inter alia). When coaching
problem solving, simple short answer analysis techniques
are frequently sufficient because the primary goal is to lead
a trainee step-by-step through problem solving. There is a
narrow range of possible responses and the context of the
previous dialogue and the question invite a short answer.

Any deeper analysis of short answers in these cases results
in a small return on investment when the focus is eliciting a
step during problem solving. It isn’t until the instructional
objectives shift and a tutorial system attempts to explore a
student’s chain of reasoning behind an answer or decision
that deeper analysis can begin to pay off. And having the
student construct more on his own is important for learning
perhaps in part because he reveals what he does and does
not understand (Chiet al. 2001). But the difficulty in un-
derstanding the explanation increases with the length of the
chain of reasoning being elicited. If just one step in the rea-
soning is sought, then only deeper single sentence analysis
is needed. This was the case with theGEOMETRY EXPLA-
NATION TUTOR (Alevenet al. 2003). Since all the reasons
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sought were definitions, terminological classification was a
good fit for understanding well enough to respond appropri-
ately.

When the student is invited to provide a longer chain of
reasoning, the explanations become multi-sentential. Com-
pare the short explanations requested in Figure 1 to the
longer ones in Figures 2 and 3. The explanation in Figure 2
is part of an initial student response and Figure 3 shows the
explanation from the same student after several follow-up
dialogues with theWHY2-ATLAS tutoring system. A longer
explanation is unlikely to strictly follow the problem solving
structure because the student may reorganize it (e.g. give an
overview before going into details) and may leave out some
of the reasoning, which are both common things to do in
natural language.

GEOMETRY EXPLANATION TUTOR: Base angles in what type
of geometric figure are congruent
Student: the bottom angles in an isoceles triangle are congruent
<approximately 3 propositions expressed> (Alevenet al. 2003)

WHY2-AUTOTUTOR: Once again, how does Newton’s third law
of motion apply to this situation?
Student: Does Newton’s law apply to opposite forces?
<approximately 2 propositions expressed> (Graesseret al.
2005).

WHY2-ATLAS: Fine. Using this principle, what is the value of
the horizontal component of the acceleration of the egg? Please
explain your reasoning.
Student: zero because there is no horizontal force acting on the
egg<approximately 3 propositions expressed>

Figure 1: Examples of 1 sentence explanations from the do-
mains of geometry and qualitative physics.

The only previous tutoring system that has attempted to
address longer explanations isAUTOTUTOR (Graesseret al.
2005). It uses a latent semantic analysis (LSA) approach
where the structure of sentences is not considered. Thus the
degree to which details of the explanation are understood is
limited. But this approach is appropriate givenAUTOTU-
TOR’s pedagogical strategy of eliciting a single unit of the
explanation (about one sentence or more), when LSA deter-
mines it is missing. It first hints with a short answer question
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Question: Suppose a man is in an elevator that is falling without
anything touching it (ignore the air, too). He holds his keys
motionless right in front of his face and then just releases his
grip on them. What will happen to them? Explain.

<omitted approximately 15 correct propositions>... Yet the
gravitational pull on the man and the elevator is greater because
they are of a greater weight and therefore they will fall faster then
the keys. I believe that the keys will float up to the cieling as the
elevator continues falling.

Figure 2: Part of a verbatim student response to the stated
problem before interacting with the tutoring system.

<omitted approximately 16 correct propositions>... Since<Net
force = mass * acceleration> and <F= mass*g> therefore
<mass*acceleration= mass*g> and acceleration and gravita-
tional force end up being equal. So mass does not effect any-
thing in this problem and the acceleration of both the keys
and the man are the same.<omitted approximately 46 correct
propositions>...we can say that the keys will remain right in
front of the man’s face.

Figure 3: Part of a verbatim response from the same student
in Figure 2 after completing interaction with the system.

and if that fails, prompts with a fill-in-the-blank question and
if that fails, bottoms-out with the missing unit. One way to
possibly improve is to add pedagogical strategies that elicit
increasingly greater precision as students’ explanations be-
come less vague. (e.g. “what can you say about the forces in
this problem?”, “you are right that the net force is zero but
how did you determine this?”). But to do so, deeper under-
standing of multi-sentential explanations is likely necessary
(Chi et al. 2001).

In this paper we will describe theWHY2-ATLAS quali-
tative physics tutoring system’s approach for supporting a
wider range of pedagogical strategies and for achieving a
deeper understanding. We will end with a discussion of the
system’s most recent evaluation in which student learning
gains were measured. Although the results are promising,
much work remains to be done to assess interactions be-
tween the system’s understanding performance and learning.

Dialogue Management in Why2-Atlas
Lower-level dialogue management. At the lowest-level
dialogue management is a finite state network with a stack
that is implemented using a reactive planner (APE (Freed-
man 2000)). Finite state approaches are appropriate for di-
alogues in which the task to be discussed is well-structured
and the dialogue is to be system-led (McTear 2002), as was
the case forWHY2-ATLAS.

A state in the network is either a push to a sub-network as
with the right-most and left-most nodes in Figure 4 or a tutor
turn plus an optional student response as with the top node
and its three branches in Figure 4. There is a sub-network
for each complex topic to discuss in dialogue so that a state
is the equivalent of a step in a recipe for covering the topic.

Figure 4: Finite State Model with answer classes and op-
tional steps.

A tutor turn is aready-to-utterstring. When a tutor turn sets
up a discourse obligation for the student (e.g. tutor asks a
question as with the top node in Figure 4), there is a set of
anticipated classes to recognize for each conceptually differ-
ent satisfactory and unsatisfactory response. The classifica-
tion of the student response decides the next state to which to
move. Thus each response selects an arc between two states
in the network. Classes that correspond to unsatisfactory re-
sponses lead to a state that is a push to a recipe that addresses
the unsatisfactory response. These remediation recipes are
written to anticipate an eventual return to a state that is the
next step in the parent recipe. By default, if a tutor turn does
not setup an obligation for the student to respond then the
transition is to the next step in the recipe.

The anticipated student response classes for each state are
further categorized as either correct answers, vague answers,
expected wrong answers or unanticipated responses. This
categorization of the answer classes helps determine feed-
back (e.g. “Correct!”) which is prepended to theready-to-
utter strings in the network and helps in tracking the stu-
dent’s performance over time when analyzing the dialogue
history.

Different classification techniques can be designated for
each state. The default classification technique is short-
answer classification since a majority of responses are still
anticipated to be short-answers. But when the response for
a state is expected to be an explanation then the explanation
classifier is designated for that state. Both classification ap-
proaches will be described in more detail later in the paper.

In addition to answer classes, three other conditions can
be used in deciding which state to go to next. One is a test
to skip a state if the content of that state is already in the
discourse history as with the “said” and “not said” arcs in
Figure 4. The second transition condition is a test of which
difficulty level is appropriate for a student. For example,
there could be an alternate state relative to the last node in
Figure 4 and the two alternate states could have different dif-
ficulty levels associated with them. The past performance of
the student is evaluated to determine which is the appropri-
ate one to select. The last transition condition is just before a
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pop from a remediation sub-network and tests that the state
before the push is still in the student’s focus of attention ac-
cording to the dialogue history. If it is not in the student’s
focus of attention then the tutor turn before the push is re-
peated and otherwise the pop is completed. In this case part
of the original network is copied and inserted just before the
pop; just the correct and the unanticipated response condi-
tions and transitions are copied. But the path for the unan-
ticipated response instead leads to a tutor turn that states the
correct answer just before the pop is completed.

Higher-level dialogue management. This level of dia-
logue management oversees the finite state network and
picks between three types of recipes that were authored for
WHY2-ATLAS (1) a high-level walkthrough of the problem
solution or parts of the problem solution, (2) short elicita-
tions of particular pieces of knowledge and (3) remediations.
Walkthrough recipes are selected when the student is unable
to provide much in direct response to the qualitative physics
problem or when the system is unable to classify much of
what the student wrote. Short elicitations are selected if
the student’s response is partially complete with a few scat-
tered gaps in order to encourage the student to fill in missing
pieces of the explanation. Remediations are selected if er-
rors or misconceptions are detected in the response. While
executing a recipe, pushes to recipes for subdialogues that
are of the same three types (i.e. walkthrough, elicitation or
remediation) are possible but typically are limited to reme-
diations.

In the case of single elicitation recipes, the dialogue man-
ager will present a summary of what is correctly covered
according to the response analysis. The content selected for
the summary includes all nodes in a solution graph that are
on the path between the node that is to be elicited and the
first node that is in focus in the dialogue history (i.e. what
was last talked about in dialogue). The summaries are gen-
erated using templates with clause slots, and clauses associ-
ated with the selected nodes of the graph fill those slots.

Authoring. High-level dialogue management is assumed
or built into the dialogue manager but an instructor must au-
thor the lower-level finite state network. Instructors use a
scripting language (Jordan, Rosé, & VanLehn 2001) to do
so. The author must first define recipes and their steps, de-
fine the initial answer class labels, assign optional semantic
labels to be used in implementing optional step and diffi-
culty level transitions, and indicate the difficulty levels for
each arc and which steps are optional. The reasking states,
transition conditions and arcs are generated automatically
from the authored network. Finally the author must define
the answer classes associated with the labels in the script.
How answer classes are defined is done differently for short-
answers and explanations and is described in more detail in
the next section.

Analyzing Student Contributions in
Why2-Atlas

When a student contribution is to be analyzed, first an equa-
tion identifier tags any physics equations in the student’s re-

sponse and then classification is done to complete the as-
sessment of the student’s natural language contributions. In
the case of explanations, the classification is with respect to
steps in correct and buggy chains of reasoning. All answer
classes for explanation states (including the initial response
to the qualitative physics problem) are selected from pre-
computed chains of reasoning. In the case of short answers
the classification is with respect to classes that the author de-
fines specifically for each state. Some of these classes can
be reused for other states but it is much less frequent than
with explanations. First we will describe how explanations
are classified and then short-answers. Finally we will briefly
describe the equation identifier.

Explanation Classification

Explanation classification is broken into two stages, (1) sin-
gle sentence analysis, which outputs a first-order predicate
logic (FOPL) representation and then (2) an assessment of
correctness and completeness of those representations with
respect to nodes in correct and buggy chains of reasoning.
The nodes matched in this final stage determine what classes
are associated with the explanation. First we will discuss
single sentence analysis and then the assessment of correct-
ness and completeness.

Single Sentence Analysis. Single sentence analysis uses
three competing single sentence analysis methods and a
heuristic selection process to choose one of the output rep-
resentations for each sentence (Jordan, Makatchev, & Van-
Lehn 2004). The rationale for using multiple approaches is
that the techniques available vary considerably in accuracy,
processing time and whether they tend to be brittle and pro-
duce no analysis vs. a partial one. There is also a trade-off
between these performance measures and the amount of do-
main specific setup required for each technique and there are
no formal return on investment studies to give us insight into
which technique is the best one to pick for an application.

The first method, CARMEL, provides combined syntac-
tic and semantic analysis using the LCFlex syntactic parser
along with semantic constructor functions (Rosé 2000).
Given a specification of the desired representation language,
it then maps the analysis to this language. Then discourse
level processing attempts to resolve nominal and temporal
anaphora and ellipsis to produce the final FOPL represen-
tation for each sentence (Jordan & VanLehn 2002). Since
the knowledge engineering effort for creating semantic con-
structor functions is considerable there are gaps in the cov-
erage of these functions. Also there are known gaps in the
discourse level processing with respect to theWHY2-ATLAS
domain.

The second method, RAINBOW, is a tool for developing
bag of words(BOW) text classifiers (McCallum & Nigam
1998). The classes of interest must first be identified and
then a text corpus annotated for example sentences for each
class. From this training data a bag of words representation
is derived for each class and a number of algorithms can
be tried for measuring similarity of a new input segment’s
BOW representation to each class.

For WHY2-ATLAS, the classes we use are targeted nodes
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in the correct and buggy chains of reasoning. But there were
many misclassifications of sentences due to overlap in the
classes; that is, words that discriminate between classes are
shared by many other classes (Pappuswamyet al. 2005).
By aggregating classes and building three tiers of BOW text
classifiers that use a kNN measure, we obtained a 13% im-
provement in classification accuracy over a single classifier
approach (Pappuswamyet al. 2005). The first tier classifi-
cation identifies which second tier classifier to use and like-
wise the second tier classifier selects the third tier classifier.
The third tier then identifies which if any node a sentence
expresses. But even with these improvements, the current
training data forWHY2-ATLAS is too sparse for some classes
to achieve good accuracy.

With the BOW approach, an assessment of correctness
and completeness can be skipped since a BOW class equates
to a targeted node. However, a representation of the class
is still needed by the single sentence selection process de-
scribed below. This representation translation is obtained by
looking up a stored translation of the node associated with
the identified class.

Finally, the third method, RAPPEL, is a hybrid approach
that uses symbolically-derived syntactic dependency fea-
tures (obtained via MINIPAR (Lin & Pantel 2001)) to train
for classes that are defined at the representation language
level (Jordan, Makatchev, & VanLehn 2004). Each proposi-
tion in the representation language corresponds to a template
in RAPPEL. Each template has its own set of classes that
cover all possible ways in which the template’s slots could
be filled. A class indicates which slots in a particular propo-
sition template are filled with which constants. There is a
one-to-one correspondence between a filled template and an
instance of a proposition in the representation language. An
exception is body slots which are handled by separate binary
classifiers; one for propositions involving one body and an-
other for those involving two bodies.

A separate classifier is trained for each template. For ex-
ample, there is a classifier that specializes in the velocity
template and another that specializes in the acceleration tem-
plate. For theWHY2-ATLAS domain, there are 27 templates
and thus 27 classifiers. Each classifier returns either a nil
which indicates that no form of that proposition is present or
a class label that corresponds to one of the possible comple-
tions of the template. Classifiers and classes have been de-
fined that cover the entireWHY2-ATLAS representation lan-
guage but the training data is sparse relative to the number
of classes.

Next one of the three possible outputs of the single sen-
tence analyzers must be selected. The selection process is
independent of the single sentence analysis techniques used;
it depends only on the system’s FOPL representation lan-
guage. Heuristics estimate whether a resulting representa-
tion either over or under represents the sentence by match-
ing the root forms of the words in the natural language sen-
tence to the constants in the representation returned by each
method.

If the selected representation is not a product of the multi-
level BOW approach, then the representation is assessed for
correctness and completeness, as described next. Recall that

the multi-level BOW approach directly identifies which tar-
geted node in the chain of reasoning a sentence represents.

Analyzing correctness and completenessAs the final
step in analyzing a student’s explanation, an assessment of
correctness and completeness is performed by matching the
FOPL representations of the student’s response to nodes of
an augmented assumption-based truth maintenance system
(ATMS) (Makatchev & VanLehn 2005). An ATMS for each
physics problem is generated off-line. The ATMS compactly
represents the deductive closure of a problem’s givens with
respect to a set of both good and buggy physics rules. That
is, each node in the ATMS corresponds to a proposition that
follows from a problem statement. Each anticipated student
misconception is treated as an assumption (in the ATMS
sense), and all conclusions that follow from it are tagged
with a label that includes it as well as any other assump-
tions needed to derive that conclusion. This labelling allows
the ATMS to represent many interwoven deductive closures,
each depending on different misconceptions, without incon-
sistency. The labels allow recovery of how a conclusion was
reached. Thus a match with a node containing a buggy as-
sumption indicates the student has a common error or mis-
conception and which error or misconception it is.

Completeness inWHY2-ATLAS is relative to an informal
two-column proof generated by a domain expert. A human
author should control which proof is used for checking com-
pleteness, and it is probably less work for an author to write
an acceptable proof than to find one in the ATMS. The in-
formal proof for the problem in Figure 2 is shown in Fig-
ure 5 where facts appear in the left column and justifications
that are physics principles appear in the right column. Jus-
tifications are further categorized as vector equations (e.g.
<Average velocity = displacement / elapsed time>, in step
(12) of the proof), or qualitative rules (e.g. “so if average
velocity and time are the same, so is displacement” in step
(12)). A two-column proof is represented in the system as a
directed graph in which nodes are facts, vector equations, or
qualitative rules that have been translated to the FOPL rep-
resentation language off-line. The single sentence analyzer
can be used to assist in this translation but a developer must
still review and refine the result. The edges of the graph
represent the inference relations between the premise and
conclusion of modus ponens.

Matches of input representations against the ATMS and
the two-column proof (we collectively referred to these ear-
lier as the correct and buggy chains of reasoning) do not
have to be exact. Further flexibility in the matching process
is provided by examining a neighborhood of radius N (in
terms of graph distance) from matched nodes in the ATMS
to determine whether it contains any of the nodes of the two-
column proof. This provides an estimate of the proximity of
a student’s utterance to nodes of the two-column proof. Ad-
ditional details on correctness and completeness analysis are
provided in (Makatchev & VanLehn 2005).

Short-answer classification

Short-answer classification is accomplished using the
LCFlex flexible left corner parser that is part ofCARMEL
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Step Fact Justification
1 The only force on the keys and the man is the force of

gravity
Forces are either contact forces or the gravitational force

2 The magnitude of the force of gravity on the man and the
keys is its mass times g

The force of gravity on an object has a magnitude of its mass times
g, where g is the gravitational acceleration

... ... ...
10 At every time interval, the keys and the man have the

same final velocity
<Acceleration = (final velocity - initial velocity)/elapsed time>, so
for two objects, if the acceleration, initial velocity and time are the
same, so is final velocity.

11 The man and the keys have the same average velocity
while falling

If acceleration is constant, then<average velocity = (vf+vi)/2>, so
if two objects have the same vf and vi, then their average velocity is
the same.

12 The keys and the man have the same displacements at all
times

<Average velocity = displacement / elapsed time>, so if average
velocity and time are the same, so is displacement.

13 The keys and the man have the same initial vertical po-
sition

given

14 The keys and the man have the same vertical position at
all times

<Displacement= difference in position>, so if the initial positions
of two objects are the same and their displacements are the same,
then so is their final position

15 The keys stay in front of the man’s face at all times

Figure 5: Part of the informal “proof” used inWHY2-ATLAS for the Elevator problem in Figure 2.

(Rośe 2000) and a separate semantic grammar for each
state in which a short answer response is expected, al-
though some rules may be shared by other states. The
classes in each state grammar correspond to the expected re-
sponses. For instance, if the anticipated responses for a state
are “down” and “up”, then the semantic grammar would
have two rules such as “state1respclass1 => down class”
and “state1respclass2 => up class” where downclass and
up class are classes that may be shared by semantic gram-
mars for other states. The classes are further defined by rules
such as “downclass => ’down’ or ’downward’ or ’toward
earth’. Because the LCFlex parser can skip words, it can find
certain key words or phrases in the student’s response even if
they are surrounded by extra words, (e.g. “It is downward.”).
Thus when the author scripts the answer classes for a state,
the author needs to list as many phrasings as possible that
have similar semantics but can omit words that won’t help
distinguish it from a phrase with different semantics (e.g.
“it” or “is”).

Equation Identification

Equations can be expressed in natural language (e.g. net
force is the mass times the acceleration), in algebraic form
(e.g. f=ma), or in natural language mixed with algebraic
symbols (e.g. net force is ma). The equation identifier tags
each of these expressions in a student’s input as a seman-
tic unit. Since there is a small set of equations to consider
(twelve correct and seven buggy ones) it is feasible to match
directly against the representations of these equations. The
equation identifier does this matching by applying a series
of regular expressions before invocation of explanation or
short-answer classification. Both types of classification are
tolerant of formulas that have been replaced by tags since
they can either skip unknown words (CARMEL), treat them
as nouns (RAPPEL), or be trained with text that has been
tagged for equations (RAPPELandRAINBOW).

System Evaluation

The system was evaluated in the context of testing the hy-
pothesis that even when content is equivalent, students who
engage in more interactive forms of instruction learn more.
To test this hypothesis we compared students who received
human tutoring with students who read a short text.WHY2-
ATLAS and WHY2-AUTOTUTOR provided a third type of
condition that served as an interactive form of instruction
where the content is better controlled than with human tutor-
ing. With the computer tutors only the same content covered
in the text condition can be presented. But if the system mis-
interprets any of a student’s multi-sentential answers it may
skip material covered in the text that the student needs. In
all conditions the students solved four problems that require
multi-sentential answers, one of which is shown in Figure 2.

After conducting a number of experiments with different
subpopulations and adjustments in content and assessment
materials, we found that overall students learn and learn
equally well in all three types of conditions when the con-
tent is appropriate to the level of the student (VanLehnet al.
2005). That is, the learning gains forhuman tutoringand the
content controlled text were the same. Thus, learning gains
alone for this experimental setup can only reveal whether
the computer tutors were the same or worse than the text.
A system could perform worse if it too frequently misinter-
prets multi-sentential answers and skips material covered in
the text that a student may need.

For the version ofWHY2-ATLAS we described, the learn-
ing gains were the same on two of three different types of
post-tests administered. On multiple-choice and essay post-
tests, there was no reliable difference. However, on fill-
in-the-blank post-tests, theWHY2-ATLAS students scored
higher than the text students (p=0.010; F(1,74)=6.33), and
this advantage persisted when the scores were adjusted
by factoring out pre-test scores in an ANCOVA (p=0.018;
F(1,72)=5.83). Although this difference was in the expected
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direction, it was not accompanied by similar differences for
the other two post-tests. These learning measures show that,
relative to the text, the two systems’ overall performance at
selecting content is good. But since the dialogue strategies
in the two systems are different and selected relative to the
understanding techniques used, we next need to do a detailed
corpus analysis of the language data collected to track suc-
cesses and failures of understanding and dialogue strategy
selection relative to knowledge components in the post-test.

During an informal review of theWHY2-ATLAS corpus
we saw that the strategy of walking through a problem had
a positive impact on students who could explain little ini-
tially. But the impact of eliciting missing pieces of an ex-
planation was mixed and requires a detailed corpus analysis.
While similar to WHY2-AUTOTUTOR’s hints, these elicita-
tions first summarize the correct components of a student’s
explanation that lead up to a missing or incorrect compo-
nent. We expect these dialogues to be more cohesive, com-
pared to ones using decontextualized hints, because they use
problem-solving structure to present an integrated partial ex-
planation.

Conclusion
We described a tutoring system that explores deeper un-
derstanding techniques for multi-sentential explanations and
dialogue strategies that depend on deeper understanding.
Compared to a system that uses shallower understanding
techniques, there were no measurable differences in overall
learning. However, overall learning measures do not ade-
quately evaluate the utility of deeper understanding and its
associated dialogue strategies since it assumes that under-
standing performance and strategy choices are correct. Thus
our next step will be a detailed corpus analysis that exam-
ines correlations between student learning and system per-
formance during tutoring.
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Rośe, C. P. 2000. A framework for robust semantic in-
terpretation. InProceedings of the First Meeting of the
North American Chapter of the Association for Computa-
tional Linguistics, 311–318.
VanLehn, K.; Graesser, A.; Jackson, G. T.; Jordan, P.; Ol-
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