
Using Enhanced Concept Map for Student Modeling in Programming

Tutors

Amruth N. Kumar

Ramapo College of New Jersey
505 Ramapo Valley Road

Mahwah, NJ 07430
amruth@ramapo.edu

Abstract
We have been using the concept map of the domain,
enhanced with pedagogical concepts called learning
objectives, as the overlay student model in our intelligent
tutors for programming. The resulting student model is fine-
grained, and has several advantages: (1) it facilitates better
adaptation during problem generation; (2) it makes it
possible for the tutor to automatically vary the level of
locality during problem generation to meet the needs of the
learner; (3) it clarifies to the learner the relationship among
domain concepts when opened to scrutiny; (4) the tutor can
estimate the level of understanding of a student in any
higher-level concept, not just the concepts for which it
presents problems; and (5) two tutors in a domain can affect
each other’s adaptation of problems. Prior evaluations have
shown that tutors that use enhanced concept maps help
improve learning.

Student Modeling
Traditionally, student models in tutoring systems have
consisted of cognitive, affective and inferential
components. The cognitive student model has been
popularly built as an overlay of the domain model.
Researchers have used various organizations for the
domain model and the resulting overlay cognitive student
model. These representations include conceptual graphs
[5], Bayesian networks [22], directed acyclic graphs [10],
tables [3] and Prolog clauses [19].
 Conceptual graphs have been used because they are
graphically inspectable, and facilitate interaction planning
and student diagnosis [6]. Bayesian networks have been
used to model cause and effect relationships among
concepts (e.g., if you know 'for' and 'while' statements, you
know loops). Tables and Prolog clauses provide a
mechanism to aggregate concepts but do not explicitly
represent any inherent relationships among them.
 Other organizations used for domain model include
networks and trees. In WADEIn [2] used to teach students

Copyright © 2006, American Association for Artificial Intelligence
 (www.aaai.org). All rights reserved.

expression evaluation in C, the student model and domain
model are a network of knowledge elements. In ELM-ART
[21], overlay of a hierarchical network of concepts is used
for declarative knowledge and distributed episodic model is
used for procedural knowledge. In KERMIT [8] used to
teach conceptual database design, constraints are grouped
into a hierarchy where the leaf nodes are individual
constraints and intermediate nodes are pedagogically
important domain categories. In SAM [10] used to teach the
use of a text editor, the student model is a directed acyclic
graph, with the leaf nodes being the commands in the
editor. The intermediate nodes are partial models
introduced explicitly to build a hierarchical structure. They
have no pre-defined semantics.
 In this paper, we will discuss using the concept map of a
domain as the domain model, and an overlay of it as the
student model. We will discuss enhancing the concept map
with pedagogic concepts called learning objectives in order
to help build a finer-grained student model. There are
several advantages in organizing the domain model and the
overlay student model as a concept map - we will examine
these in the context of programming tutors.

Tutors for Program Analysis
We have been developing tutors to help students learn
C++/Java by solving problems. Our tutors provide
problems on program analysis as opposed to program
synthesis, which has been the traditional focus of
intelligent tutors (e.g., LISP Tutor [20], ELM-ART [21]). The
tutors generate problems, grade the student’s answer,
provide feedback to the student and log the student’s
grade. The tutors generate problems as instances of
parameterized templates. Each tutor contains 200+
templates. Since each template can be instantiated to
generate a large number of syntactically different, but
semantically similar programs, each tutor is capable of
generating problems ad-infinitum. The types of problems
generated by the tutors include: predicting the output of a
program, debugging a program, and evaluating an
expression. The tutors adapt the problem sequence to the

527

learning needs of the user. The tutors provide a reified
interface for the user to enter the answer – the user enters
the output of a program one line at a time, identifies bugs in
a program by line number and the program object to which
the bug applies, and lists the steps in the evaluation of an
expression one operator at a time [13]. For each problem,
the tutors log whether the student attempted the problem,
the number of steps that the student solved
correctly/incorrectly, the bugs the student missed, etc. The
tutors use a model-based domain model [11,14,15], i.e., a
custom-built interpreter to solve the problems and generate
feedback. As part of the feedback, the tutors provide
explanation of the step-by-step execution of the program
[11]. To date, we have developed and evaluated tutors on
arithmetic and relational expressions, selection statements,
pretest and counter-controlled loops, C++ pointers
[11,12,16], scope and its implementation and parameter
passing mechanisms . Intelligent tutors have been
categorized as pedagogy-oriented, wherein, the focus is on
sequencing and teaching canned content, and
performance-oriented, wherein, the focus is on interaction
and feedback [18]. Our tutors fall under the performance-
oriented category.

Concept Map and Learning Objectives
We use an epistemological map of the programming domain
as the concept map. It is a hierarchical tree, with
programming concepts as nodes , and is-a and part-of links
as arcs. Part-of links may be either and-links or or-links. The
concept map differs from a generic conceptual graph (e.g.,
as used in [6]) or directed acyclic graphs in that it also
encodes relationships in the domain (concept map =
conceptual graph + domain relationships).
 Traditionally, the nodes in a domain model have been
correct concepts in the domain and/or errors. So, an overlay
student model is tightly coupled with the domain ontology.
Each problem might correspond to a correct concept or
error, and solving it correctly earns the learner credit for
that concept or error. This is the scheme used in ELM-ART
[21] for declarative knowledge.
 We have enhanced the concept map for our tutors by
introducing additional nodes corresponding to learning
objectives for each correct concept in the domain. These
are pedagogic concepts that must be learned in order to
understand a domain concept. For instance, the learning
objectives for the + operator are an understanding of
correct evaluation, precedence, associativity and coercion.
The learning objectives for a variable are an understanding
of declaration, assignment and referencing. In addition, we
treat each potential error associated with a concept as a
separate learning objective, e.g., dangling pointers and
memory leak are learning objectives for pointers. Learning
objectives of a problem are also the expected outcomes of
learning to correctly solve the problem. Learning objectives
differ from domain concepts in the following ways:

• Learning objectives are at a level of granularity such
that whether a learner has met those objectives can be
directly measured. However, the same cannot always
be said about the domain concepts themselves -
traditionally, errors have been directly measurable,
whereas correct concepts have not been. For instance,
a tutor can clearly measure whether a learner
understands overflow error by analyzing the learner's
answer to a problem on overflow error. But, after
analyzing the learner's answer to a programming
problem, the tutor may at best only estimate how well
the student has learned the concept of variables,
especially if the learner's answer is only partially
correct, or incorrect. In contrast, by probing the learner
at the right points in the execution of the program, the
tutor can directly measure whether the learner has
understood some or all of the stages in the lifetime of a
variable - declaration, assignment and referencing.
Since these can be directly measured, they are
considered learning objectives, and a student's
understanding of these objectives can be aggregated
to estimate the student's understanding of variables, a
domain concept. Typically, mu ltiple learning objectives
contribute to each domain concept.

• Problems in a tutor are designed to test domain
concepts, not learning objectives. Often, it is infeasible
to devise problems for individual learning objectives.
E.g., we cannot design a problem to evaluate the
precedence of an operator without also evaluating the
correct evaluation of the operator.
 Since each domain concept is usually associated
with multiple learning objectives, each problem will
affect multiple learning objectives. For instance,
evaluation of the expression 3 + 4 * 5 will affect all the
following learning objectives: correct evaluation of +,
correct evaluation of *, precedence of + and
precedence of *.
 A single problem may affect the same learning
objective multiple times, and in contradictory ways. For
instance, consider a problem involving divide-by-zero
error on line 13 of a program. If the learner does not
identify this error, but instead, identifies a non-existent
divide-by-zero error on line 25, the learner is credited as
having both missed and incorrectly identified a divide-
by-zero error.

• Whereas the concepts in a domain are all unique, the
learning objectives need not be. The same learning
objective could be associated with more than one
domain concept. For instance, precedence,
associativity, and correct evaluation are learning
objectives that apply to every one of the operators in a
language. Similarly, condition is a learning objective
that applies to if-statements as well as all the loops in a
language.
 We distinguish between two learning objectives by
"fully qualifying" them, i.e., appending them to the
sequence of concepts that serve as their ancestors in

528

the concept map. For instance,
Operator.Arithmetic.+.Precedence, and
Operator.Relational.==.Precedence are two fully
qualified learning objectives for expressions.

• Finally, the set of concepts in a domain is determined
by the epistemology of the domain. Learning
objectives on the other hand are determined by the
pedagogic needs for the domain. There is no canonical
set of learning objectives for a domain.

Learning objectives are not pre-requisites included in
other student models. Whereas pre-requisites suggest the
order in which domain concepts should be covered in a
topic, learning objectives describe what should be covered
about each topic. They are leaf nodes in the concept map.
 Our programming tutors automatically build the cognitive
student model as an overlay of the domain's enhanced
concept map. Each tutor enumerates all the learning
objectives in the student model that have not yet been met,
and picks the next problem such that the problem addresses
one or more of these learning objectives. The problems in
the tutors are indexed by fully qualified learning objectives
rather than domain concepts, which helps in the retrieval of
problems appropriate for the learner. After the student
solves each problem, the tutor updates credit for all the
affected learning objectives in the student model, and re-
calculates the set of learning objectives that remain to be
met. Therefore, the tutor continually adapts to the needs of
the learner. This adaptation is dynamically determined and
not scripted, unlike the sequencing that is implemented
using pre-requisites. Therefore, it is more flexible and has a
non-deterministic behavior.
 This overlay student model has enabled us to integrate
the student modeling, credit assignment and learner
adaptation of all our programming tutors, including the
tutors on operators, selection statements, loops and
pointers, even though they are very different in the types
of problems they generate, the feedback they provide and
the activities they support. For instance, the learner is
expected to evaluate expressions in our tutors on arithmetic
and relational operators; predict the output of the program
in the tutor on while loop; and debug the program in the
tutor on pointers. Each topic has its own set of learning
objectives, and their presence ensures that the student
sees a well-rounded set of problems on the topic. However,
the student models that serve these tutors are sub-trees of
the domain model for programming. Therefore, the tutors
update different parts of the same overlay student model. A
typical programming problem may involve learning
objectives from different sub-trees in this model, e.g., a
problem involving a selection statement inside a loop will
affect learning objectives on selection statements, loops,
variables and relational operators. When two tutors share
learning objectives, e.g., tutors on loops and selection
statements both share learning objectives on relational
operators, they will influence each other's adaptation of
problems.

Recording Student Progress
In the cognitive student model, the progress of a student
has been recorded using mechanisms such as slots and
values, fuzzy distributions (e.g., [9]) and Bayesian networks
(e.g., [22]). Slot and value representations have recorded
the percentage of a concept the student knows (e.g., ELM-
ART [21]), percentage of a concept the student has
covered (e.g., SQL Tutor [14]), and percentage of a concept
the student has misconceptions about (e.g., C-POLMILE
[4]). Both Bayes networks and fuzzy distributions are good
at representing uncertainty, but fuzzy distributions have to
be validated empirically and therefore, have not been used
as extensively.
 In our cognitive student model, we record information
about each learning objective as a five-tuple: (G, A, C, I, M),
G being the number of problems generated, A attempted, C
correctly solved, I incorrectly solved and M missed for that
objective. Correct, incorrect and missed are the cognitive
counterparts of correct, erroneous and incomplete beliefs in
STyLE-OLM [6]. Whenever the learner attempts a problem,
we update the five-tuples of all the learning objectives
affected by the problem.
 Maintaining student progress in this raw form enables us
to be flexible about how we interpret it. A few models of
interpretation of the data include:
• A >= M1 - ensures that the student has attempted a

minimum number of problems for the learning
objective.

• (C / A) >= M2 - ensures that the student has solved a
minimum number of problems correctly for the learning
objective.

• (C – I) / A >= M3 - provides for negative grading.
• (C – M) / A >= M4 - takes consistency of student

performance into account.
The constants M1 … M4 can be selected appropriately for
each topic. Currently, we use a combination of the first two
models in our programming tutors, with M1 = 2 and M2 =
60%.

Advantages of Using the Concept Map
There are several advantages to using an enhanced
concept map as the domain and student model. We will
briefly discuss some of these advantages in this section.
 Most student models are based on independent skill
assessments that do not influence each other, or
probabilistic models that adequately capture inter-
dependencies among concepts, but are intractable for large
domains. Concept maps embody the best of both these
approaches – they permit individual assessments to
influence each other, and are a scalable solution.
 A tutor may want to focus on a particular topic in a
session, the topic being a subset of the domain model. In
order to do so, the tutor has to simply consider the node

529

corresponding to that topic as the root of the domain model
and the overlay student model for that session. This is
similar to making a point query on a term in a digraph
representing an ontology map of the domain in order to
extract the relevant student model [1] - by focusing on only
the relevant concepts in the student model, the efficiency
of accessing and communicating the student model can be
significantly improved.
 We may want to use different criteria of proficiency for
different concepts in the domain. For instance, we may
want the learner to solve at least 2 problems and correctly
solve at least 75% of the attempted problems on arithmetic
operators, which are relatively easy. For logical operators
on the other hand, since they are harder, we may want the
learner to solve at least 4 problems and correctly solve at
least 60% of the attempted problems. In order to implement
differential proficiency criteria, a tutor would have to
maintain a look-up table of proficiency criteria for all the
concepts in the domain. The advantage of using a concept
map as the domain model is that inheritance can be used to
parsimoniously specify proficiency criteria. E.g., in the
domain model of our tutors, we have specified different
proficiency criteria for the nodes - Program, Operators, and
Boolean operators. The criteria associated with the Program
node are inherited by all its children, such as loops and
selection statements. The criteria associated with Operators
are inherited by arithmetic, relational and bitwise operators,
but not boolean operators since different proficiency
criteria have been specified for boolean operators.
 A tutor can estimate the proficiency of the learner in any
concept that is part of the concept map, not just the
learning objectives that are the leaf nodes of the concept
map. In order to estimate a learner's proficiency in a
concept, the tutor can combine the evidence of the learner's
proficiency in all the learning objectives that are leaf nodes
in the sub-tree of which the concept is the root. The basis
for such combining is the epistemic relationship (is -a/part-
of) between the nodes in the concept map. Once again,
many different models could be used by the tutor to
combine the evidence from the learning objectives (or
pedagogic concepts) to estimate a student's proficiency in
a domain concept:
• The tutor could calculate the 5-tuple for the

concept/root node as the matrix summation of the 5-
tuples of all its leaf nodes, and use one of the models
described earlier to interpret the resulting 5-tuple;

• The tutor could use a weighted matrix sum instead, the
weights representing the relative significances of the
various learning objectives to the understanding of the
domain concept;

• The tutor could first interpret the data for the various
learning objectives (using one of the models described
earlier) and estimate the student's proficiency in the
domain concept as either the minimum of these
interpretations (pessimistic model), the maximum of
these interpretations (optimistic model) or a weighted
sum of the interpretations.

• The tutor could use fuzzy logic or Bayes theorem to
combine evidences. In the latter case, the concept map
would serve as the Bayesian network.

The concept map also helps efficiently integrate evidence
from different tutors/topics into a single hierarchy and
facilitates cross-referencing the evidence when necessary.
However, in order to take advantage of this, the various
tutors must refer to one persistent student model.
 An open student model promotes reflection. It enables
the learner to reason about his/her learning, and reconcile
his/her idea of progress on a topic with that maintained by
the tutor. Open student models are typically rendered
graphically to facilitate inspection (e.g., STyLE-OLM [6]).
When the open student model is an overlay of the concept
map of the domain, and is presented graphically, it also
helps the learner understand the relationships among the
various concepts in the domain, and situate his/her
learning. It could be seen as the next step in the evolution
of the cognitive student model - from the student model
that merely serves to record the student’s performance; to a
student model that, when opened up, promotes reflection
and meta-cognition; to a student model that, as an overlay
of the concept map, also provides instruction and
explicates the learning context.
 We use our tutors for both tutoring and testing. When
used for testing, our tutors do not provide feedback.
Typically, before a learner uses our tutors in tutoring mode
to obtain adaptive instruction, s/he first uses them in test
mode to initialize the student model necessary for
adaptation. During tutoring, it is desirable for the tutor to
stay focused on one topic at a time, and wait till the learner
understands it before mo ving on to the next topic. So, a
high degree of locality among domain concepts is desirable
when generating problems for tutoring. On the other hand,
during testing, it is desirable for the tutor to shuffle among
topics to prevent the student from guessing answers to
problems based on the predictability of the sequence in
which the problems are generated. So, a low degree of
locality among domain concepts is desirable when
generating problems for testing. Using a concept map as
the domain model makes it easy to vary the degree of
locality during problem generation. Consider that the tutor
picks one of the many leaf nodes in a tree as the basis for
the next problem. For high degree of locality, the tutor uses
a sub-tree that is at a greater depth in the concept map, and
for a low degree of locality, it uses a sub-tree that is at a
shallow depth in the concept map. Therefore, changing the
degree of locality can be automated since it translates to
selecting a depth in the concept map. Finally, since we use
a concept map, at each level of locality, all the leaf nodes
considered together are conceptually related, which
maintains the coherence of the concepts that are covered
during tutoring.

530

Advantages of Using Learning Objectives
Enhancing the concept map with learning objectives, i.e.,
pedagogic concepts , has several advantages.
 Since the student model is maintained in terms of
learning objectives rather than domain concepts or
problems solved, it is more fine-grained. Since the student
model is updated in terms of learning objectives, and
multiple learning objectives may be updated by a single
problem, it is loosely coupled with domain concepts and
problems solved. The student model does not list the types
of problems that have been solved correctly/incorrectly,
but rather, the learning objectives that have been met
correctly/incorrectly, which is in the spirit of modeling the
student's knowledge rather than the student's progress on
the presented problems.
 Another advantage of using learning objectives is a more
fine-tuned adaptation, since adaptation is done based on
learning objectives rather than problem types. Since
learning objectives may be shared among different domain
concepts, correctly solving problems on one domain
concept may affect how problems are generated on another
concept. For instance, if the learner demonstrates
proficiency in dangling pointers, our tutor on pointers will
skip over the problems on correct dereferencing, because
these two concepts share learning objectives.
 As we had mentioned earlier, learning objectives need
not be unique. A learning objective could be associated
with more than one domain concept. This occurs when a
learning objective is a cross-cutting issue. For instance,
factoring out code is an issue that applies to if-statements,
switch statements, and all the loops. Efficiency is another
issue that applies to all the control structures in a
programming language. Lately, the study of these cross-
cutting issues has emerged as the new discipline of aspect-
oriented programming [7]. In order to build tutors for
aspect-oriented programming, we do not have to re-build
our domain model. We can simply superimpose an
alternative hierarchical tree on the shared learning
objectives in our existing domain model. In order to tutor
cross-cutting issues, our programming tutor would simply
use the alternative tree instead of the domain model. The
tutor could also go back and forth between regular
programming topics and aspect-oriented programming
issues in order to help the learner appreciate the cross-
cutting issues in context and build a better-connected
ontological map of the domain.

Discussion
We have proposed building the student model as an
overlay of the concept map of the domain. We have also
proposed enhancing the concept map with learning
objectives when using it for student modeling. We listed
several advantages of using the enhanced concept map as

the domain model, and building the student model as an
overlay of it. We illustrated our claims with examples from
the programming domain. We have used such a student
model to integrate all of our tutors, including the tutors on
arithmetic expressions, relational expressions, selection
statements, while loops, for loops and pointers. Prior
evaluations of these tutors have shown that they help
improve learning [11,12,16].
 We use a declarative representation for the enhanced
concept map that serves as the domain model, and
therefore, the overlay student model in our tutors. In order
to add new domain concepts or learning objectives to this
map, we simply insert them in the appropriate place in the
declarative representation - the tutors consult this
representation to build the domain and student models that
include the newly added concepts/learning objectives. In
order to add new problems to a tutor, we simply add them
to the template list consulted by the tutor. Since each
template must specify the learning objective(s) for which it
should be used, the tutor will automatically start using the
new templates in the correct context. The addition of
concepts and problems is an incremental operation that
does not affect any of the existing concepts, problem
templates or the adaptive operation of the tutor.
 Enhanced concept maps can be used in any domain
where the topics can be laid out in a hierarchy. Identifying
the learning objectives for a topic is a subjective task, and
is best performed by a pedagogic expert.
 Currently, we are building a centralized persistent
student model that will be used by all our tutors, so that
cross-topic adaptation can be facilitated. We are working
on making the overlay student model available to the
student for inspection and interaction. We also plan to
develop additional tutors on functions, boolean operators
and arrays that will use the overlay student model based on
the enhanced concept map.

Acknowledgments
Partial support for this work was provided by the National
Science Foundation's EI Program under grant CNS-0426021.

References
[1] Apted, T., Kay, J., Lum, A. and Uther, J. Visualization of

Learning Ontologies, In: U. Hoppe, F. Verdejo and J. Kay
(eds.), Artificial Intelligence in Education IOS Press, 2003,
359-361.

[2] Brusilovsky, P., and Su, H. Adaptive Visualization
Component of a Distributed Web-Based Adaptive Educational
System, S. Cerri, G. Gouarderes, F. Paraguacu (eds.),
Proceedings of ITS 2002, Springer (2002), 229-238.

[3] Bull, S. See Yourself Write: A Simple Student Model to make
Students Think. In: A. Jameson, C. Paris and C. Tasso (eds.),
Proceedings of UM 97, Springer (1997), 315-326.

531

[4] Bull, S. and McEvoy, A.T. An Intelligent Learning
Environment with an Open Learner Model for the Desktop PC
and Pocket PC. U. Hoppe, F. Verdejo and J. Kay (eds.),
Artificial Intelligence in Education, Vol 97, 2003, 389-391.

[5] Dimitrova, V., Self, J., Brna, P. Applying Interactive Open
Learner Models to Learning Technical Terminology. In: M.
Bauer, P.J. Gmytrasiewics, J. Vassileva (eds.) Proceedings of
UM 2001, Springer (2001) 148-157.

[6] Dimitrova, V., Brna, P. and Self, J. The Design and
Implementation of a Graphical Communication Medium for
Interactive Open Learner Modelling. S. Cerri, G. Gouarderes,
F. Paraguacu (eds.), Proceedings of ITS 2002, Springer (2002),
433-441.

[7] Elrad, T., Filman, R. and Bader, A. Theme: Section on Aspect
Oriented Programming, Communications of the ACM, Vol
44(10), 2001.

[8] Hartley, D. and Mitrovic, A. Supporting Learning by Opening
the Student Model. S. Cerri, G. Gouarderes, F. Paraguacu
(eds.), Proceedings of ITS 2002, Sp ringer (2002), 453-462.

[9] Katz, S., Lesgold, A., Eggan, G., and Gordin, M. Modelling
the student in Sherlock II. Journal of Artificial Intelligence in
Education, Vol. 3(4), 1993, 495-518.

[10] Kay, J. The UM Toolkit for Cooperative Student Modeling.
User Modeling and User Adapted Interaction, 4 (1995) 149-
196

[11] Kumar, A.N., Explanation of step-by-step execution as
feedback for problems on program analysis, and its generation
in model-based problem-solving tutors, Technology,
Instruction, Cognition and Learning (TICL) Journal, to appear.

[12] Kumar, A.N., Learning Programming by Solving Problems, in
Informatics Curricula and Teaching Methods, L. Cassel and
R.A. Reis ed., Kluwer Academic Publishers, Norwell, MA,
2003, 29-39.

[13] Kumar, A.N., A Reified Interface for a Tutor on Program
Debugging, Proceedings of Third IEEE International
Conference on Advanced Learning Technologies (ICALT
2003), Athens, Greece, 7/9-11/2003, 190-194.

[14] Kumar, A.N., Model-Based Reasoning for Domain Modeling
in a Web-Based Intelligent Tutoring System to Help Students

Learn to Debug C++ Programs, Intelligent Tutoring Systems
(ITS 2002), Biarritz, France, June 5-8, 2002, 792-801.

[15] Kumar, A.N. Generation of Demand Feedback in Intelligent
Tutors for Programming. Advances in Artificial Intelligence,
Ahmed Tawfik and Scott Goodwin (eds.), Proceedings of The
Seventeenth Canadian Conference on Artificial Intelligence (AI
04), London, Ontario, Canada, 5/17-19/2004, Lecture Notes in
Artificial Intelligence 3060, Springer, 444-448.

[16] Kumar, A.N., Results from the Evaluation of the
Effectiveness of an Online Tutor on Expression Evaluation.
Proceedings of The 36th SIGCSE Technical Symposium on
Computer Science Education, SIGCSE 2005, St. Louis, MO,
February 2005, 216-220.

[17] Mitrovic, A. and Martin, B. Evaluating the Effects of Open
Student Models On Learning. In P. DeBra, P. Brusilovsky and
R. Conejo (eds.), Proceedings of Adaptive Hypermedia and
Adaptive Web-Based Systems, Spring-Verlag, Berlin-
Heidelberg, 2002, 296-305.

[18] Murray, T. An Overview of Intelligent Tutoring System
Authoring Tools: Updated Analysis of the State of the Art.
Chapter 17 in Murray, T., Blessing, S. and Ainsworth, S.
(Eds.). Authoring Tools for Advanced Technology Learning
Environments. Kluwer Academic Publishers, Dordrecht, 2003.

[19] Paiva, A., Self, J. TAGUS - A User and Learner Modeling
Workbench. User Modeling and User-Adapted Interaction, 4
(1995), 197-226.

[20] Reiser, B., Anderson, J. and Farrell, R.: Dynamic student
modeling in an intelligent tutor for LISP programming, in
Proceedings of the Ninth International Joint Conference on
Artificial Intelligence, A. Joshi (Ed.), Los Altos CA (1985).

[21] Weber, G. and Brusilovsky, P. ELM -ART: An Adaptive
Versatile System for Web-Based Instruction. International
Journal of Artificial Intelligence in Education, Vol 12, 351-384,
2001.

[22] Zapata-Rivera, J.D., Greer, J.E. Inspecting and Visualizing
Distributed Bayesian Student Models. In: G. Gauthier, C.
Frasson, K. VanLehn (eds.), Proceedings of ITS 2000, Springer
(2000) 544-553.

532

