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Abstract 
We have been using the concept map of the domain, 
enhanced with pedagogical concepts called learning 
objectives, as the overlay student model in our intelligent 
tutors for programming. The resulting student model is fine-
grained, and has several advantages: (1) it facilitates better 
adaptation during problem generation; (2) it makes it 
possible for the tutor to automatically vary the level of 
locality during problem generation to meet the needs of the 
learner; (3) it clarifies to the learner the relationship among 
domain concepts when opened to scrutiny; (4) the tutor can 
estimate the level of understanding of a student in any 
higher-level concept, not just the concepts for which it 
presents problems; and (5) two tutors in a domain can affect 
each other’s adaptation of problems. Prior evaluations have 
shown that tutors that  use enhanced concept maps help 
improve learning. 

Student Modeling   
Traditionally, student models in tutoring systems have 
consisted of cognitive, affective and inferential 
components. The cognitive student model has been 
popularly built as an overlay of the domain model. 
Researchers have used various organizations for the 
domain model and the resulting overlay cognitive student 
model. These representations include conceptual graphs 
[5], Bayesian networks [22], directed acyclic graphs [10], 
tables [3] and Prolog clauses [19]. 
 Conceptual graphs have been used because they are 
graphically inspectable, and facilitate interaction planning 
and student diagnosis [6]. Bayesian networks have been 
used to model cause and effect relationships among 
concepts (e.g., if you know 'for' and 'while' statements, you 
know loops). Tables and Prolog clauses provide a 
mechanism to aggregate concepts but do not explicitly 
represent any inherent relationships among them. 
 Other organizations used for domain model include 
networks and trees. In WADEIn [2] used to teach students 
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expression evaluation in C, the student model and domain 
model are a network of knowledge elements. In ELM-ART 
[21], overlay of a hierarchical network of concepts is used 
for declarative knowledge and distributed episodic model is 
used for procedural knowledge. In KERMIT [8] used to 
teach conceptual database design, constraints are grouped 
into a hierarchy where the leaf nodes are individual 
constraints and intermediate nodes are pedagogically 
important domain categories. In SAM [10] used to teach the 
use of a text editor, the student model is a directed acyclic 
graph, with the leaf nodes being the commands in the 
editor. The intermediate nodes are partial models 
introduced explicitly to build a hierarchical structure. They 
have no pre-defined semantics. 
 In this paper, we will discuss using the concept map of a 
domain as the domain model, and an overlay of it as the 
student model. We will discuss enhancing the concept map 
with pedagogic concepts called learning objectives in order 
to help build a finer-grained student model. There are 
several advantages in organizing the domain model and the 
overlay student model as a concept map - we will examine 
these in the context of programming tutors.   

Tutors for Program Analysis  
We have been developing tutors to help students learn 
C++/Java by solving problems. Our tutors provide 
problems on program analysis as opposed to program 
synthesis, which has been the traditional focus of 
intelligent tutors (e.g., LISP Tutor [20], ELM-ART [21]). The 
tutors generate problems, grade the student’s answer, 
provide feedback to the student and log the student’s 
grade. The tutors generate problems as instances of 
parameterized templates. Each tutor contains 200+ 
templates. Since each template can be instantiated to 
generate a large number of syntactically different, but 
semantically similar programs, each tutor is capable of 
generating problems ad-infinitum. The types of problems 
generated by the tutors include: predicting the output of a 
program, debugging a program, and evaluating an 
expression. The tutors adapt the problem sequence to the 
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learning needs of the user. The tutors provide a reified 
interface for the user to enter the answer – the user enters 
the output of a program one line at a time, identifies bugs in 
a program by line number and the program object to which 
the bug applies, and lists the steps in the evaluation of an 
expression one operator at a time [13]. For each problem, 
the tutors log whether the student attempted the problem, 
the number of steps that the student solved 
correctly/incorrectly, the bugs the student missed, etc. The 
tutors use a model-based domain model [11,14,15], i.e., a 
custom-built interpreter to solve the problems and generate 
feedback. As part of the feedback, the tutors provide 
explanation of the step-by-step execution of the program 
[11]. To date, we have developed and evaluated tutors on 
arithmetic and relational expressions, selection statements, 
pretest and counter-controlled loops, C++ pointers 
[11,12,16], scope and its implementation and parameter 
passing mechanisms . Intelligent tutors have been 
categorized as pedagogy-oriented, wherein, the focus is on 
sequencing and teaching canned content, and 
performance-oriented, wherein, the focus is on interaction 
and feedback [18]. Our tutors fall under the performance-
oriented category. 
   

Concept Map and Learning Objectives  
We use an epistemological map of the programming domain 
as the concept map. It is a hierarchical tree, with 
programming concepts as nodes , and is-a and part-of links 
as arcs. Part-of links may be either and-links or or-links. The 
concept map differs from a generic conceptual graph (e.g., 
as used in [6]) or directed acyclic graphs in that it also 
encodes relationships in the domain (concept map = 
conceptual graph + domain relationships).  
 Traditionally, the nodes in a domain model have been 
correct concepts in the domain and/or errors. So, an overlay 
student model is tightly coupled with the domain ontology. 
Each problem might correspond to a correct concept or 
error, and solving it correctly earns the learner credit for 
that concept or error. This is the scheme used in ELM-ART 
[21] for declarative knowledge. 
 We have enhanced the concept map for our tutors by 
introducing additional nodes corresponding to learning 
objectives for each correct concept in the domain. These 
are pedagogic concepts that must be learned in order to 
understand a domain concept. For instance, the learning 
objectives for the + operator are an understanding of 
correct evaluation, precedence, associativity and coercion. 
The learning objectives for a variable are an understanding 
of declaration, assignment and referencing. In addition, we 
treat each potential error associated with a concept as a 
separate learning objective, e.g., dangling pointers and 
memory leak are learning objectives for pointers. Learning 
objectives of a problem are also the expected outcomes of 
learning to correctly solve the problem. Learning objectives 
differ from domain concepts in the following ways: 

• Learning objectives are at a level of granularity such 
that whether a learner has met those objectives can be 
directly measured. However, the same cannot always 
be said about the domain concepts themselves - 
traditionally, errors have been directly measurable, 
whereas correct concepts have not been. For instance, 
a tutor can clearly measure whether a learner 
understands overflow error by analyzing the learner's 
answer to a problem on overflow error. But, after 
analyzing the learner's answer to a programming 
problem, the tutor may at best only estimate how well 
the student has learned the concept of variables, 
especially if the learner's answer is only partially 
correct, or incorrect. In contrast, by probing the learner 
at the right points in the execution of the program, the 
tutor can directly measure whether the learner has 
understood some or all of the stages in the lifetime of a 
variable - declaration, assignment and referencing. 
Since these can be directly measured, they are 
considered learning objectives, and a student's 
understanding of these objectives can be aggregated 
to estimate the student's understanding of variables, a 
domain concept. Typically, mu ltiple learning objectives 
contribute to each domain concept. 

• Problems in a tutor are designed to test domain 
concepts, not learning objectives. Often, it is infeasible 
to devise problems for individual learning objectives. 
E.g., we cannot design a problem to evaluate the 
precedence of an operator without also evaluating the 
correct evaluation of the operator.  
  Since each domain concept is usually associated 
with multiple learning objectives, each problem will 
affect multiple learning objectives. For instance, 
evaluation of the expression 3 + 4 * 5 will affect all the 
following learning objectives: correct evaluation of +, 
correct evaluation of *, precedence of + and 
precedence of *.  
  A single problem may affect the same learning 
objective multiple times, and in contradictory ways. For 
instance, consider a problem involving divide-by-zero 
error on line 13 of a program. If the learner does not 
identify this error, but instead, identifies a non-existent 
divide-by-zero error on line 25, the learner is credited as 
having both missed and incorrectly identified a divide-
by-zero error. 

• Whereas the concepts in a domain are all unique, the 
learning objectives need not be. The same learning 
objective could be associated with more than one 
domain concept. For instance, precedence, 
associativity, and correct evaluation are learning 
objectives that apply to every one of the operators in a 
language. Similarly, condition is a learning objective 
that applies to if-statements as well as all the loops in a 
language. 
  We distinguish between two learning objectives by 
"fully qualifying" them, i.e., appending them to the 
sequence of concepts that serve as their ancestors in 
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the concept map. For instance, 
Operator.Arithmetic.+.Precedence, and 
Operator.Relational.==.Precedence are two fully 
qualified learning objectives for expressions. 

• Finally, the set of concepts in a domain is determined 
by the epistemology of the domain. Learning 
objectives on the other hand are determined by the 
pedagogic needs for the domain. There is no canonical 
set of learning objectives for a domain.   

Learning objectives are not pre-requisites included in 
other student models. Whereas pre-requisites suggest the 
order in which domain concepts should be covered in a 
topic, learning objectives describe what should be covered 
about each topic. They are leaf nodes in the concept map.  
 Our programming tutors automatically build the cognitive 
student model as an overlay of the domain's enhanced 
concept map. Each tutor enumerates all the learning 
objectives in the student model that have not yet been met, 
and picks the next problem such that the problem addresses 
one or more of these learning objectives. The problems in 
the tutors are indexed by fully qualified learning objectives 
rather than domain concepts, which helps in the retrieval of 
problems appropriate for the learner. After the student 
solves each problem, the tutor updates credit for all the 
affected learning objectives in the student model, and re-
calculates the set of learning objectives that remain to be 
met. Therefore, the tutor continually adapts to the needs of 
the learner. This adaptation is dynamically determined and 
not scripted, unlike the sequencing that is implemented 
using pre-requisites. Therefore, it is more flexible and has a 
non-deterministic behavior.    
 This overlay student model has enabled us to integrate 
the student modeling, credit assignment and learner 
adaptation of all our programming tutors, including the 
tutors on operators, selection statements, loops and 
pointers, even though they are very different in the types 
of problems they generate, the feedback they provide and 
the activities they support. For instance, the learner is 
expected to evaluate expressions in our tutors on arithmetic 
and relational operators; predict the output of the program 
in the tutor on while loop; and debug the program in the 
tutor on pointers. Each topic has its own set of learning 
objectives, and their presence ensures that the student 
sees a well-rounded set of problems on the topic. However, 
the student models that serve these tutors  are sub-trees of 
the domain model for programming. Therefore, the tutors 
update different parts of the same overlay student model. A 
typical programming problem may involve learning 
objectives from different sub-trees in this model, e.g., a 
problem involving a selection statement inside a loop will 
affect learning objectives on selection statements, loops, 
variables and relational operators. When two tutors share 
learning objectives, e.g., tutors on loops and selection 
statements both share learning objectives on relational 
operators, they will influence each other's adaptation of 
problems.   

Recording Student Progress  
In the cognitive student model, the progress of a student 
has been recorded using mechanisms such as slots and 
values, fuzzy distributions (e.g., [9]) and Bayesian networks 
(e.g., [22]). Slot and value representations have recorded 
the percentage of a concept the student knows (e.g., ELM-
ART [21]), percentage of a concept the student has 
covered (e.g., SQL Tutor [14]), and percentage of a concept 
the student has misconceptions about (e.g., C-POLMILE 
[4]). Both Bayes networks and fuzzy distributions are good 
at representing uncertainty, but fuzzy distributions have to 
be validated empirically and therefore, have not been used 
as extensively. 
 In our cognitive student model, we record information 
about each learning objective as a five-tuple: (G, A, C, I, M), 
G being the number of problems generated, A attempted, C 
correctly solved, I incorrectly solved and M missed for that 
objective. Correct, incorrect and missed are the cognitive 
counterparts of correct, erroneous and incomplete beliefs in 
STyLE-OLM [6]. Whenever the learner attempts a problem, 
we update the five-tuples of all the learning objectives 
affected by the problem.  
 Maintaining student progress in this raw form enables us 
to be flexible about how we interpret it. A few models of 
interpretation of the data include: 
• A >= M1 - ensures that the student has attempted a 

minimum number of problems for the learning 
objective. 

• (C / A) >= M2 - ensures that the student has solved a 
minimum number of problems correctly for the learning 
objective. 

• (C – I) / A >= M3 - provides for negative grading. 
• (C – M) / A >= M4 - takes consistency of student 

performance into account. 
The constants M1 … M4 can be selected appropriately for 
each topic. Currently, we use a combination of the first two 
models in our programming tutors, with M1 = 2 and M2 = 
60%. 

Advantages of Using the Concept Map  
There are several advantages to using an enhanced 
concept map as the domain and student model. We will 
briefly discuss some of these advantages in this section. 
 Most student models are based on independent skill 
assessments that do not influence each other, or 
probabilistic models that adequately capture inter-
dependencies among concepts, but are intractable for large 
domains. Concept maps embody the best of both these 
approaches – they permit individual assessments to 
influence each other, and are a scalable solution.   
 A tutor may want to focus on a particular topic in a 
session, the topic being a subset of the domain model. In 
order to do so, the tutor has to simply consider the node 
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corresponding to that topic as the root of the domain model 
and the overlay student model for that session. This is 
similar to making a point query on a term in a digraph 
representing an ontology map of the domain in order to 
extract the relevant student model [1] - by focusing on only 
the relevant concepts in the student model, the efficiency 
of accessing and communicating the student model can be 
significantly improved.  
 We may want to use different criteria of proficiency for 
different concepts in the domain. For instance, we may 
want the learner to solve at least 2 problems and correctly 
solve at least 75% of the attempted problems on arithmetic 
operators, which are relatively easy. For logical operators 
on the other hand, since they are harder, we may want the 
learner to solve at least 4 problems and correctly solve at 
least 60% of the attempted problems. In order to implement 
differential proficiency criteria, a tutor would have to 
maintain a look-up table of proficiency criteria for all the 
concepts in the domain. The advantage of using a concept 
map as the domain model is that inheritance can be used to 
parsimoniously specify proficiency criteria. E.g., in the 
domain model of our tutors, we have specified different 
proficiency criteria for the nodes - Program, Operators, and 
Boolean operators. The criteria associated with the Program 
node are inherited by all its children, such as loops and 
selection statements. The criteria associated with Operators 
are inherited by arithmetic, relational and bitwise operators, 
but not boolean operators since different proficiency 
criteria have been specified for boolean operators.   
 A tutor can estimate the proficiency of the learner in any 
concept that is part of the concept map, not just the 
learning objectives that are the leaf nodes of the concept 
map. In order to estimate a learner's proficiency in a 
concept, the tutor can combine the evidence of the learner's 
proficiency in all the learning objectives that are leaf nodes 
in the sub-tree of which the concept is the root. The basis 
for such combining is the epistemic relationship (is -a/part-
of) between the nodes in the concept map. Once again, 
many different models could be used by the tutor to 
combine the evidence from the learning objectives (or 
pedagogic concepts) to estimate a student's proficiency in 
a domain concept: 
• The tutor could calculate the 5-tuple for the 

concept/root node as the matrix summation of the 5-
tuples of all its leaf nodes, and use one of the models 
described earlier to interpret the resulting 5-tuple; 

• The tutor could use a weighted matrix sum instead, the 
weights representing the relative significances of the 
various learning objectives to the understanding of the 
domain concept; 

• The tutor could first interpret the data for the various 
learning objectives (using one of the models described 
earlier) and estimate the student's proficiency in the 
domain concept as either the minimum of these 
interpretations (pessimistic model), the maximum of 
these interpretations (optimistic model) or a weighted 
sum of the interpretations. 

•   The tutor could use fuzzy logic or Bayes theorem to 
combine evidences. In the latter case, the concept map 
would serve as the Bayesian network.   

The concept map also helps efficiently integrate evidence 
from different tutors/topics into a single hierarchy and 
facilitates cross-referencing the evidence when necessary. 
However, in order to take advantage of this, the various 
tutors must refer to one persistent student model. 
 An open student model promotes reflection. It enables 
the learner to reason about his/her learning, and reconcile 
his/her idea of progress on a topic with that maintained by 
the tutor. Open student models are typically rendered 
graphically to facilitate inspection (e.g., STyLE-OLM [6]). 
When the open student model is an overlay of the concept 
map of the domain, and is presented graphically, it also 
helps the learner understand the relationships among the 
various concepts in the domain, and situate his/her 
learning. It could be seen as the next step in the evolution 
of the cognitive student model - from the student model 
that merely serves to record the student’s performance; to a 
student model that, when opened up, promotes reflection 
and meta-cognition; to a student model that, as an overlay 
of the concept map, also provides instruction and 
explicates the learning context. 
 We use our tutors for both tutoring and testing. When 
used for testing, our tutors do not provide feedback. 
Typically, before a learner uses our tutors in tutoring mode 
to obtain adaptive instruction, s/he first uses them in test 
mode to initialize the student model necessary for 
adaptation. During tutoring, it is desirable for the tutor to 
stay focused on one topic at a time, and wait till the learner 
understands it before mo ving on to the next topic. So, a 
high degree of locality among domain concepts is desirable 
when generating problems for tutoring. On the other hand, 
during testing, it is desirable for the tutor to shuffle among 
topics to prevent the student from guessing answers to 
problems based on the predictability of the sequence in 
which the problems are generated. So, a low degree of 
locality among domain concepts is desirable when 
generating problems for testing. Using a concept map as 
the domain model makes it easy to vary the degree of 
locality during problem generation. Consider that the tutor 
picks one of the many leaf nodes in a tree as the basis for 
the next problem. For high degree of locality, the tutor uses 
a sub-tree that is at a greater depth in the concept map, and 
for a low degree of locality, it uses a sub-tree that is at a 
shallow depth in the concept map. Therefore, changing the 
degree of locality can be automated since it translates to 
selecting a depth in the concept map. Finally, since we use 
a concept map, at each level of locality, all the leaf nodes 
considered together are conceptually related, which 
maintains the coherence of the concepts that are covered 
during tutoring. 
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Advantages of Using Learning Objectives  
Enhancing the concept map with learning objectives, i.e., 
pedagogic concepts , has several advantages. 
 Since the student model is maintained in terms of 
learning objectives rather than domain concepts or 
problems solved, it is more fine-grained. Since the student 
model is updated in terms of learning objectives, and 
multiple learning objectives may be updated by a single 
problem, it is loosely coupled with domain concepts and 
problems solved. The student model does not list the types 
of problems that have been solved correctly/incorrectly, 
but rather, the learning objectives that have been met 
correctly/incorrectly, which is in the spirit of modeling the 
student's knowledge rather than the student's progress on 
the presented problems. 
 Another advantage of using learning objectives is a more 
fine-tuned adaptation, since adaptation is done based on 
learning objectives rather than problem types. Since 
learning objectives may be shared among different domain 
concepts, correctly solving problems on one domain 
concept may affect how problems are generated on another 
concept. For instance, if the learner demonstrates 
proficiency in dangling pointers, our tutor on pointers will 
skip over the problems on correct dereferencing, because 
these two concepts share learning objectives.   
 As we had mentioned earlier, learning objectives need 
not be unique. A learning objective could be associated 
with more than one domain concept. This occurs when a 
learning objective is a cross-cutting issue. For instance, 
factoring out code is an issue that applies to if-statements, 
switch statements, and all the loops. Efficiency is another 
issue that applies to all the control structures in a 
programming language. Lately, the study of these cross-
cutting issues has emerged as the new discipline of aspect-
oriented programming [7]. In order to build tutors for 
aspect-oriented programming, we do not have to re-build 
our domain model. We can simply superimpose an 
alternative hierarchical tree on the shared learning 
objectives in our existing domain model. In order to tutor 
cross-cutting issues, our programming tutor would simply 
use the alternative tree instead of the domain model. The 
tutor could also go back and forth between regular 
programming topics and aspect-oriented programming 
issues in order to help the learner appreciate the cross-
cutting issues in context and build a better-connected 
ontological map of the domain. 

Discussion  
We have proposed building the student model as an 
overlay of the concept map of the domain. We have also 
proposed enhancing the concept map with learning 
objectives when using it for student modeling. We listed 
several advantages of using the enhanced concept map as 

the domain model, and building the student model as an 
overlay of it. We illustrated our claims with examples from 
the programming domain. We have used such a student 
model to integrate all of our tutors, including the tutors on 
arithmetic expressions, relational expressions, selection 
statements, while loops, for loops and pointers. Prior 
evaluations of these tutors have shown that they help 
improve learning [11,12,16].  
 We use a declarative representation for the enhanced 
concept map that serves as the domain model, and 
therefore, the overlay student model in our tutors. In order 
to add new domain concepts or learning objectives to this 
map, we simply insert them in the appropriate place in the 
declarative representation - the tutors consult this 
representation to build the domain and student models  that 
include the newly added concepts/learning objectives. In 
order to add new problems to a tutor, we simply add them 
to the template list consulted by the tutor. Since each 
template must specify the learning objective(s) for which it 
should be used, the tutor will automatically start using the 
new templates in the correct context. The addition of 
concepts and problems is an incremental operation that 
does not affect any of the existing concepts, problem 
templates or the adaptive operation of the tutor. 
 Enhanced concept maps can be used in any domain 
where the topics can be laid out in a hierarchy. Identifying 
the learning objectives for a topic is a subjective task, and 
is best performed by a pedagogic expert.  
 Currently, we are building a centralized persistent 
student model that will be used by all our tutors, so that 
cross-topic adaptation can be facilitated. We are working 
on making the overlay student model available to the 
student for inspection and interaction. We also plan to 
develop additional tutors on functions, boolean operators 
and arrays that will use the overlay student model based on 
the enhanced concept map.  
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