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Abstract

We introduce a novel learning algorithm for noise elim-
ination. Our algorithm is based on the re-measurement
idea for the correction of erroneous observations and is
able to discriminate between noisy and noiseless obser-
vations by using kernel methods. We apply our noise-
aware algorithms to the prediction of stellar population
parameters, a challenging astronomical problem. Ex-
perimental results adding noise and useful anomalies to
the data show that our algorithm provides a significant
reduction in error, without having to eliminate any ob-
servation from the original dataset.

Introduction
Real world data are never as good as we would like them to
be and often can suffer from corruption that may affect data
interpretation, data processing, classifiers and models gen-
erated from data as well as decisions based on them. On the
other hand, data can also contain useful anomalies, which
often result in interesting findings, motivating further inves-
tigation. Thus, unusual data can be due to several factors
including: ignorance and human mistakes, the inherent vari-
ability of the domain, rounding and transcription errors, in-
strument malfunction, biases and, most important, rare but
correct and useful behavior. For these reasons it is necessary
to develop techniques that allow us to deal with unusual data.

Data cleaning is a well studied task in many areas deal-
ing with databases, nevertheless, this task requires a large
time investment. Indeed, between30% to 80% of the data
analysis task is spent on cleaning and understanding the data
(Dasu & Johnson 2003). An expert can clean the data, but
this requires a large time investment, growing with the num-
ber of observations in the data set, which results in expen-
sive costs. From here arises the need to automate this task.
However, this is not easy, since useful anomalies and noise
may look quite similar to an algorithm. For this reason we
need to endow to such algorithm with more human-like rea-
soning. In this work the re-measurement idea is proposed;
this approach consist of detecting suspect data and, by an-
alyzing new observations of these objects, substitute errors
while retaining anomalies and correct data for a posterior
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analysis. This idea is based on the natural way in which a
human clarifies his/her doubts when he/she is not sure about
the correctness of a datum. When a person suspects of an
object’s observation, a new observation or many more can
be obtained to confirm or discard the observer’s hypothesis.

The proposed methods could be useful in areas such as
machine learning, data mining, pattern recognition, data
cleansing, data warehousing and information retrieval. In
this work we oriented our efforts to improve data quality and
prediction accuracy for machine learning problems, specif-
ically, for the estimation of stellar population parameters,
an interesting domain in which an algorithm based on re-
measuring is suitable to test.

The paper is organized as follows: in the next section we
present a brief survey of related works. In Section 3 we in-
troduce the astronomical domain used in this work; in Sec-
tion 4 the kernel methods that we used are described. In Sec-
tion 5 the proposed algorithms are introduced. In Section 6
experimental results evaluating the performance of our al-
gorithms are presented. Finally, we summarize our findings
and discuss future directions for this work in Section 7.

Related Work

Existing approaches data cleansing do not distinguish be-
tween useful anomalies and noise, they just eliminate the
detected suspect data (Brodley 1999; Ng & Han 1994;
Gamberger, Lavrǎc, & Grošelj 1999; Verbaeten & Van Ass-
che 2003; Tax & Duin 1999; Schölkopf et al. 1999;
John 1995). However, we should not eliminate a datun un-
less we can determine that it invalid. This often is not pos-
sible for several reasons, including: human-hour cost, time
investment, ignorance about the domain we are dealing with
and even inherent uncertainty. Nevertheless, if we could
guarantee that an algorithm will successfully distinguish er-
rors from correct observations, the difficult problem would
be solved. As a human does, an algorithm can confirm or
discard a hypothesis by analyzing several measurement of
the same object.

None of the previous approaches to data cleansing has, to
the best our knowledge, implemented the idea of obtaining
a new other observation of the same object in order to deter-
mine its validity. Thus there are no methods that are closely
related to our approach; nevertheless, we present here some
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representative approaches for data cleaning and anomaly de-
tection.

In (I. Guyon & Vapnik 1996) an interactive method for
data cleaning that uses the optimal margin classifier (OMC)
is presented. The OMC is used to identify suspect data, sus-
pect observations are shown to an expert in the domain, who
then decides their validity.

Prototype (Skalak 1994) and instance selection (Brighton
& Mellish 2003) implicitly can eliminate instances degrad-
ing the performance of instance-based learning algorithms.
Other algorithms saturate a dataset with the risk of elim-
inating all objects that could define a concept or class,
these methods include the use of instance pruning trees
(John 1995) and the saturation filtering algorithm (Gam-
berger, Lavrǎc, & Grošelj 1999). Ensembles of classi-
fiers had been successfully used to identify mislabeled in-
stances in classification problems (Brodley & Friedl 1996;
Verbaeten & Van Assche 2003; Clark 2004), however, once
again the identified instances are deleted from the data set.

In the outlier/anomaly detection area there are many
published works, however, these approaches are intended
only for the detection of rare data. The anomaly detec-
tion problem has been approached using statistical (Bar-
nett & Lewis 1978) and probabilistic knowledge (Kubica &
Moore 2002), distance and similarity-dissimilarity functions
(Arning, Agrawal, & Raghavan 1996; Knorr & Ng 1998;
Ramaswamy, Rastogi, & Shim 2000), metrics and kernels
(Shawe-Taylor & Cristianini 2004), accuracy when dealing
with labeled data, association rules, properties of patterns
and other specific domain features.

Variants and modifications to the support vector machine
algorithm have been proposed, trying to isolate the outlier
class: in (Scḧolkopft et al. 2000) an algorithm to find the
support of a dataset, which can be used to find outliers, is
presented; in (Tax & Duin 1999) the sphere with minimal
radius enclosing most of the data is found and in (Schölkopf
et al. 1999) the correct class is separated from the origin and
from the outlier class for a given data set.

There are many more methods for anomaly detection than
the presented here, however, we have only presented some
of the representative ones. What is important to notice is
that at the moment there are automated approaches for data
cleaning that are concerned with the elimination of useful
data.

Estimation of Stellar Populations Parameters
In most of the scientific disciplines we are facing a mas-
sive data overload, and astronomy is not the exception. With
the development of new automated telescopes for sky sur-
veys, terabytes of information are being generated. Such
amounts of information need to be analyzed in order to pro-
vide knowledge and insight that can improve our under-
standing about the evolution of the universe. Such analysis
becomes impossible using traditional techniques, thus auto-
mated tools should be developed. Recently, machine learn-
ing researchers and astronomers have been collaborating to-
wards the goal of automating astronomical data analysis
tasks. Such collaborations have resulted in the automation
of several astronomical tasks. These works include galaxy

classification (de la Calleja & Fuentes 2004), prediction of
stellar atmospheric parameters (Fuentes & Gulati 2001) and
estimation of stellar population parameters (Fuenteset al.
2004).

In this work we applied our algorithms for the prediction
of stellar population parameters: ages, relative contribution,
metal content, reddening and redshift. In the remaining of
this section the data used are briefly described.

Analysis of Galactic Spectra
Almost all the relevant information about a star can be ob-
tained from its spectrum, which is a plot of flux against
wavelength. An analysis of a galactic spectrum can re-
veal valuable information about stellar formation, as well as
other physical parameters such as metal content, mass and
shape. The accurate knowledge of these parameters is very
important for cosmological studies and for the understand-
ing of galaxy formation and evolution. Template fitting has
been used to carry out estimates of the distribution of age
and metallicity from spectral data. Although this technique
achieves good results, it is very expensive in terms of com-
puting time and therefore can be applied only to small sam-
ples.

Modeling Galactic Spectra Theoretical studies have
shown that a galactic spectrum can be modeled with good
accuracy as a linear combination of three spectra, corre-
sponding to young, medium and old stellar populations, see
Figure 1, with their respective metallicity, together with a
model of the effects of interstellar dust in these individual
spectra. Interstellar dust absorbs energy preferentially at
short wavelengths, near the blue end of the visible spec-
trum, while its effects on longer wavelengths, near the red
end of the spectrum, are small. This effect is called redden-
ing in the astronomical literature. Letf(λ) be the energy
flux emitted by a star or group of stars at wavelengthλ. The
flux detected by a measuring device can be approximated
asd(λ) = f(λ)(1 − e−rλ), wherer is a constant that de-
fines the amount of reddening in the observed spectrum and
depends on the size and density of the dust particles in the
interstellar medium.

We also need to consider the redshift, which tells us how
the light emitted by distant galaxies is shifted to longer
wavelengths, when compared to the spectrum of closer
galaxies. This is taken as evidence that the universe is ex-
panding and that it started in a Big Bang. More distant ob-
jects generally exhibit larger redshifts; these more distant
objects are also seen as they were further back in time, be-
cause the light has taken longer to reach us.

We build a simulated galactic spectrum given con-
stantsc1, c2, and c3, with

∑3
i=1 ci = 1 and ci > 0,

that represent the relative contributions of young, medium
and old stellar populations, respectively; their redden-
ing parametersr1, r2, r3, and the ages of the popula-
tions a1 ∈ {106, 106.3, 106.6, 107, 107.3} years, a2 ∈
{107.6, 108, 108.3108.6} years, anda3 ∈ {109, 1010.2}
years,

g(λ) =
∑3

i,m=1 cis(mi, ai, λ)(1− eriλ)
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Figure 1: Stellar spectra of young, intermediate and old pop-
ulations.

with m ∈ {0.0004, 0.004, 0.008, 0.02, 0.05} in solar units
andm1 ≤ m2 ≤ m3, finally we add an artificial redshiftZ
by:

λ = λ0(Z + 1), 0 < Z ≤ 1
Therefore, the learning task is to estimate the param-
eters: reddening(r1, r2, r3), metallicities (m1,m2,m3),
ages(a1, a2, a3), relative contributions(c1, c2, c3), and red-
shift Z, from the spectra.

Kernel Methods
Kernel methods have been shown to be useful tools for pat-
tern recognition, dimensionality reduction, denoising, and
image processing. In this work we use kernel methods for
dimensionality reduction, novelty detection and anomaly-
noise differentiation.

Kernel PCA
Stellar populations data are formed with instances with di-
mensionalityd = 12134, therefore, in order to perform ex-
periments in feasible time we need a method for dimen-
sionality reduction. Kernel principal component analysis
(KPCA) (Scḧolkopf, Smola, & M̈uller 1998) is a relative
recent technique, which takes the classical PCA technique
to the feature space, taking advantage of ”kernel functions”.
This feature space is obtained by a mapping from the lin-
ear input space to a commonly nonlinear feature spaceF by
Φ : RN → F, x 7→ X.

In order to perform PCA inF , we assume that we are
dealing with centered data, using the covariance matrix in
F, C = 1

l

∑l
j=1 Φ(xj)Φ(xj)T , we need to findλ ≥ 0 and

v ∈ F \ {0} satisfyingλV = CV. After some mathematical
manipulation and defining aM ×M matrixK by

Ki,j := (Φ(xi),Φ(xj)) (1)

the problem reduces toλα = Kα, knowing that there exist
coefficientsαi(i = 1, . . . , l) such thatλV =

∑l
i=1 λiΦ(xi).

Depending on the dimensionality of the dataset, matrix K
in (1) could be very expensive to compute, however, a much

more efficient way to compute dot products of the form
(Φ(x),Φ(y)) is by using kernel representationsk(x, y) =
(Φ(x) · Φ(y)), which allow us to compute the value of the
dot product inF without having to carry out the expensive
mappingΦ.

Not all dot product functions can be used, only those that
satisfy Mercer’s theorem (Herbrich 2002). In this work we
used a polynomial kernel (Eq. 2).

k(x, y) = ((x · y) + 1)d (2)

Kernel based novelty detection
In order to develop an accurate nose-aware algorithm we
need first a precise method for novelty detection. We de-
cided to use a novelty detection algorithm that has out-
performed others in an experimental comparison (Escalante
2006). This algorithm presented in (Shawe-Taylor & Cris-
tianini 2004) computes the center of mass for a dataset in
feature space by using a kernel matrixK, then a thresholdt
is fixed by considering an estimation error (Eq. 3) of the em-
pirical center of mass, as well as distances between objects
and such center of mass in a dataset.

t =

√
2 ∗ φ

n
∗

(
√

2 +

√
ln

1

δ

)
(3)

whereφ = max(diag(K)), andK is the kernel matrix of
the dataset with sizen × n; δ is a confidence parameter for
the detection process. This is an efficient and very precise
method; for this work we used a polynomial kernel function
(Eq. 2) of degree 1.

Noise-Aware Algorithms
Before introducing the noise-aware algorithms, there-
measuringprocess must be clarified. Given a set of instances
of the form X = {x1, x2, . . . , xn}, with xi ∈ Rn (gen-
erated from a known and controlled process by means of
measurement instruments or human recording), we have a
subsetS ⊂ X of instancesxs

i with S = {xs
1, x

s
2, . . . , x

s
m}

andm << n that, according to a method for anomaly de-
tection are suspect to be incorrect observations. Then, the
re-measuring process consists of generating another obser-
vationxs′

i for each of them objects, in the same conditions
and using the same configuration that when the original ob-
servations were made.

In Figure 2 the base noise-aware algorithm is shown. The
data preprocessing module includes dimensionality reduc-
tion, scaling data, feature selection or similar necessary pro-
cesses. In the next step, suspect data are identified by using
an anomaly detection method. Then, a confidence levelcl
is calculated; thiscl indicates how rare an object is, and it
can be used to determine the number of new measurements
to obtain for each of the suspicious instances.cl is obtained
from the distance of the suspect instances to the center of
mass of the full data set, and it is defined in Eq. (4).

cli =
{

1 if log(di ∗ C) ≤ 0
round(log(di ∗ C)) otherwise (4)

Wheredi is the distance in feature space of the suspect in-
stancexs

1 to the center of mass of the full data set, andC is
a scaling constant.
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Figure 2: Block diagram of the base noise-aware algorithm.

For the anomaly-noise discrimination we decided to use a
kernel, since kernels can be used to calculate similarity be-
tween objects (Herbrich 2002). Several kernels were tested,
but the kernel that best distinguished among dissimilar in-
stances was the extended radial basis function (Eq. 5) with
σ = 0.25.

k(x, y) = exp

(
−
√
‖x− y‖2

2σ2

)
(5)

We generated simple rules to discriminate among noise, out-
liers and common instances. If an object is correct, the al-
gorithm leaves that object intact, otherwise, the noisy obser-
vation is substituted by one in the new measurements. The
generated decision rules were:

O =

{
not− outlier if kavg ≥ 0.99 andcl = 1
outlier if kavg ≥ 0.8 andcl ≥ 2
noise otherwise

wherekavg = 1
cl

∑cl
j=1 k(x, yj), is the average of the ker-

nel evaluations given a suspect instancex and itscl new
measurementsy1, . . . , ycl as inputs. As we can see, out-
liers and common instances will be detected with only a new
observation, while noise will be re-measured a few times,
finally all of the noise is substituted by the average of the
re-measurements.

The algorithm from Figure 2 can be used for cleaning
datasets, eliminating all of the noise and retaining correct
observations. Now we have to describe how to take advan-
tage of it to improve the results of a machine learning task.

In Figure 3, the base noise-aware algorithm is adapted to
predict the stellar population parameters in the astronomical
data, using locally-weighted linear regression LWLR (Atke-
son, Moore, & Schaal 1997), a well known machine learning
algorithm.

We have divided the data cleaning process into two
phases: training and testing. Data cleaning in training is
just what we have descibed before in the base algorithm.
Data cleaning for testing data is somewhat different, in this

Figure 3: Block diagram of a noise-aware machine learning
algorithm.

setting we have a new data set ofp (unseen) new observa-
tions. Then, the algorithm uses the distance of each test ob-
servation to the center of mass of the improved training set
to determine the set of suspicious test data. Suspect obser-
vations are re-measured. Then, the erroneous observations
are differentiated from correct observations and wrong data
are substituted by the average of their measurements, while
for correct rare observations the original measurement was
used. In the case of correct observations we could also use
the average of the measurements, which, as we will see, re-
sults in better accuracy in experiments with noisy data.

Experimental Results
We performed several experiments in order to test the perfor-
mance of our algorithms. In each experiment we generated a
dataset of 200 observations for training and 3 datasets of 100
observations for testing. We used LWLR as learning algo-
rithm considering a neighborhood of 80 objects. All results
presented here are averages over the three test datasets.

In the first experiment we tested the base noise-aware al-
gorithm inserting noise and outliers to the datasets. For this
experiment all of the data were affected with low-level noise;
5% of the data were affected with extreme gaussian noise
with zero mean, and varying the value ofσ2, as shown in
Figure 4. Furthermore,5% of the data were affected by in-
serting useful anomalies.

Useful anomalies were simulated in a realistic way. Com-
monly, redshift values lie in the range(0 ≤ Z ≤ 0.4); red-
shifts higher than 1 are useful anomalies for astronomers.
In astronomy, locating galaxies with redshifts over 2 is very
useful for galaxy evolution research. We simulated in5% of
the data redshifts between 2 and 4(2 ≤ Z ≤ 4).

The experiment consists of applying the algorithm from
Figure 3, to the prediction of the stellar population param-
eters, using a training dataset previously improved with the
algorithm from Figure 2. Results of these experiments are
shown in Table 1; the mean absolute error (M.A.E.) reduc-
tion is presented. We report results using different configu-
rations for training and testing.
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Training/Test Noisy Noise-Aware
Noisy 0 0.01

Noise-Aware 4.19 3.46

Table 1:Percentage of M.A.E. reduction for the different configu-
rations on the training and test sets. Noisy is the original (affected)
data set, and noise-aware is the data that have been previously im-
proved with our algorithm. The first column indicates the training
data used, while the first row indicates the test data used.

Figure 4:Sample spectra with the different levels of noise added.
In all of the figures, the noise is Gaussian with zero mean and vary-
ing the standar deviation in each case.

We can see that the best results are those obtained when
the training set has been improved with our algorithm. The
best result was obtained when the original (affected) test
data were used, however, there is not a significant differ-
ence. What is important to notice is that an improvement in
the training set results in an improvement of the prediction
accuracy in the test sets. Something remarkable, that is not
shown in the tables, is that the noise-aware algorithm de-
tected 14 of the 15 total artificially-added anomalies on the
test datasets. Furthermore,100% of the noisy observations
were corrected, which would result in data quality improve-
ment without a loss of useful information.

In order to determine how much the heuristics imple-
mented in the noise-aware algorithms help to improve the
accuracy, we performed another experiment. In the follow-
ing experiments we compared the performance of our al-
gorithm with one that re-measures randomly, without rep-
etition; again, we divided the data into training and test
sets. For these experiments, all of the data sets were af-
fected with 4 different noise levels (gaussian, with mean

R = 200
% Time

Noisy 0 0
Random −6.35 273.86

Noise-Aware 15.54 298.56
R = 100

Noisy 0 0
Random −7.11 138.9

Noise-Aware 14.82 154.38
R = 66

Noisy 0 0
Random −1.39 90.79

Noise-Aware 9.65 147.40

Table 2:Percentage of M.A.E. reduction in the training phase for
different values ofR, for the random method and the noise-aware
algorithm.

Training/Test Noisy Random Noise-Aware
Noisy 0.00 2.88 2.12

Random −3.4 −5.86 −2.07
Noise-Aware 6.15 7.01 6.61

Table 3: Percentage of M.A.E. reduction, Noisy is the original
(affected) dataset; noise-aware is the dataset that has been im-
proved with our algorithm; random is the dataset improved with
the method that re-measures randomly.

zero and varying the standard deviations), see Figure 4.
The experiment consists of comparing the noise-aware al-
gorithm form Figure 3 with one that randomly chooses in-
stances to re-measure. In this scenario, we have the capa-
bility of performing R new measurements. Therefore, the
random method performs a new measurement ofR objects
chosen randomly, without repetition. On the other hand, the
noise-aware algorithm (Figure 3) iterates on the data set,
until R re-measurements are made. That is, in each itera-
tion the algorithm identifies, re-measures and corrects erro-
neous observations. We substituted the noisy observations
by the average of the new measurements, due to the nature
of the noise added. The results for the training phase, with
R = 200, 100, 66, are presented in Table 2.

We can see from Table 2 that there is a clear improvement
by using our algorithm instead of the one that re-measures
randomly. Indeed, when the random method is used there
is a slight decrease in accuracy. The improvement is large
when we iterate our algorithm until 200 new measurements
are made. Moreover, the difference in processing time is
small. The performance of the algorithms in the test sets
can be seen in Table 3. Again, we presented different con-
figurations for training and testing. From Table 3, we can
observe that the best result was obtained when we used the
improved training data. For testing, the best result was ob-
tained when the random algorithm was used. However, the
difference in accuracy is small. We performed the same ex-
periment but instead of using the original measurement for
low and medium noise affected observations, we used the
average of the new-measurements. Results of this experi-
ment are shown in Table 4.

We can see that there is a clear improvement in our al-
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Training/Test Noisy Random Noise-Aware
Noisy 0.00 0.21 2.81

Random −2.46 −2.7 −1.18
Noise-Aware 5.69 6.74 10.88

Table 4:Percentage of M.A.E. reduction for the different configu-
rations of training and test sets. In this experiment all of the suspect
observations were substituted by the average of the new measure-
ments in the noise-aware algorithm.

gorithm when all of the suspect data were substituted. With
this modification, the best result is obtained when both train-
ing and testing data were improved with our algorithm. The
improvement is around11% in accuracy. The behavior of
the random method was similar to that in Table 3.

Conclusions and Future Work
We have presented the re-measuring idea as a method for the
correction of erroneous observations in corrupted datasets
without eliminating potentially useful observations. Exper-
imental results showed that the use of a noise-aware algo-
rithm in training sets improves prediction accuracy using
LWLR as learning algorithm. The algorithms were able
to detect and correct100% of the erroneous observations
and around90% of the artificial outliers, which resulted in
a data quality improvement. Furthermore, we have shown
that the noise-aware algorithms outperformed a method that
re-measures randomly in the prediction of stellar population
parameters, a difficult astronomical data analysis problems.

Present and future work includes testing our algorithms
on benchmark datasets to determine their scope of appli-
cability. Also, we plan to apply noise-aware algorithms in
other astronomical domains as well as in other areas, includ-
ing bioinformatics, medical diagnosis, and image analysis.
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