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Abstract 

We propose to improve the efficiency of genetic 
programming, a method to automatically evolve computer 
programs. We use graph-based data mining to identify 
common aspects of highly fit individuals and modularizing 
them by creating functions out of the subprograms 
identified. Empirical evaluation on the lawnmower problem 
shows that our approach is successful in reducing the 
number of generations needed to find target programs. Even 
though the graph-based data mining system requires 
additional processing time, the number of individuals 
required in a generation can also be greatly reduced, 
resulting in an overall speed-up. 
 

Introduction 
Genetic programming (GP) is a machine learning 
technique that evolves computer programs to solve specific 
problems. During a run of GP, a population of programs is 
randomly generated and transformed into a new generation 
using evolutionary operations. Genetic programming 
require substantial computational effort for solving any 
realistic problem, which is why most of the research in the 
field is concentrated on reducing the required 
computational effort. 

One natural direction of research is towards modular 
programs. This has been explored mostly in the context of 
automatically defined functions (ADF) (Koza, 1994). An 
ADF is a subroutine which is evolved during the 
evolutionary run. The number of ADFs can be either 
predetermined by the user, or evolved along with the 
program itself. The success of ADFs—whether they will 
actually help to evolve a solution faster—depends on the 
user-defined parameters, such as the number of ADFs, the 
number of arguments to ADFs, and the function set. As 
such, there exist optimal and suboptimal choices for 
parameters. This typically leads to approaching a problem 
using different parameter settings in a trial and error 
fashion. Reducing the number of user specifiable 
parameters while speeding up GP would be highly 
desirable. 

                                                  
Copyright © 2006, American Association for Artificial Intelligence 
(www.aaai.org). All rights reserved. 

We hypothesize that subroutines that are common in 
highly fit individuals would be good candidates for ADFs. 
We propose to dynamically identify ADFs using a 
graph-based data mining technique that finds substructures 
in graphs (or parse trees of computer programs in this case). 
We evaluate the success of this approach empirically. 

Related Work  
Many approaches are studied for improving the overall 
efficiency of genetic programming. Of these, we are most 
concerned with those approaches that seek improvement 
through increased modularity, since this is the subject of 
our study. An object oriented approach to combined 
learning of decision trees and ADFs in genetic 
programming was proposed by Niimi and Tazaki (1999). 
While GP with ADFs gives expected solutions, its learning 
speed is slow. Decision tree learners, on the other hand, 
construct trees rapidly, but may not categorize correctly 
when the input data has noise. Combining these two 
methods makes up for the disadvantages of each technique.  

Jassadapakorn and Chongstitvatana (1998) proposed an 
approach in which the number of ADFs is not pre-specified. 
The extension of ADF (ADFX) allows each individual to 
have any number of ADFs within a range, which gives 
flexibility in the number of ADFs while maintaining 
efficiency. The ADFX-approach finds the desirable number 
of ADFs automatically. 

Background 
In this section we give an overview of 
genetic-programming, and graph-based data mining, the 
two main components of the proposed system. 

Genetic Programming 
Genetic programming is an extension of genetic 

algorithms (GA) (Koza, 1994). GP is the technique of 
evolving computer programs using operations such as 
crossover, reproduction, and mutation. One popular way to 
represent programs in genetic programming is by rooted 
parse trees. For example, the program “(2+4)/3” can be 
represented as shown in figure 1.  

An invocation of GP requires five aspects of the problem 
to be specified: (1) terminal set, (2) function set, (3) fitness 
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measure, (4) parameters for controlling the run, and (5) the 
method for designating a result and the criterion for 
termination of a run.  

The terminal set may include constants and variables. 
The function set must be specified by the user, and may 
include mathematical functions (+, -, *, /, log, sin, …), 
logical functions (AND, OR, NOT), or other domain 
specific functions. If an individual is found that solves 
problems perfectly, the run is terminated.  

 

 
Figure 1 Parse tree for the program (2+4)/3 

 
A run of GP starts by creating an initial population of 

computer programs that is a random composition of 
available functions and terminals. Each individual is 
represented as a tree structure. GP evaluates all individuals 
in the population based on a fitness measure. A new 
generation of individuals is created using the evolutionary 
operators of crossover, mutation and reproduction with 
differing probabilities. Crossover swaps random subtrees 
of two programs; mutation randomly deletes a subtree, and 
randomly grows a new subtree at that location; 
reproduction copies the individual into the new generation 
without modification. 

When GP is invoked with ADFs, each individual has one 
result-producing tree (“main()”) and one or more ADF 
trees. ADFs trees are not shared with other individuals. An 
example individual is shown in figure 2.  

 
 
 
 
 
 

 
 
 
 
 

 
Figure 2 Individual with 2 ADFs 

 
ADFs enable GP to automatically find useful 

subroutines during a run. Keeping good aspects of the 
program as subroutines could lead to faster convergence to 

the desirable solution through modularity. It is also known 
that an ADF becomes more effective when a problem is 
relatively complex and the ADF is used frequently (Koza, 
1994). 

Graph-Based Data Mining 
Mining data represented in graph format is useful for many 
structurally complex domains. One of the most successful 
general-purpose systems is Subdue (Cook and Holder, 
2000). Subdue discovers commonly occurring 
substructures in the input graph. The minimum description 
length principle (MDL) drives the search, according to 
which the best substructure is the one that compresses the 
input graph the best. Compression is defined as extracting 
all occurrences of a substructure from the input graph and 
replacing them by a single vertex. The description length 
of the resulting encoding is the description length of the 
compressed graph plus the description length of the 
definition of the substructure. The MDL heuristic drives 
the search towards large, frequently occurring 
substructures. 

The input to Subdue must be represented as a graph, 
which is usually accomplished by representing objects in 
the data as vertices, and relationships between objects as 
edges. For a detailed description of the system the reader is 
referred to (Cook and Holder, 2000). 

Here we give an example of Subdue’s operation on a 
domain that translates to a tree structure, as shown in 
figure 3. 

 
Figure 3 Input graph 

 
The largest, most commonly occurring substructure in 

this example is the substructure [A-B], circled in the figure. 
This substructure is identified by Subdue, and is used to 
compress the input graph, as shown in figure 4. 
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Figure 4 Compressed graph 

Genetic Programming Using Graph-Based 
Data Mining 

Our hypothesis is that if the same code segment occurs in 
the result-producing branch of a number of 
well-performing individuals in a population of programs, 
this code may be responsible for the good performance. 
Such code segments could be abstracted out and turned 
into an ADF for reuse in multiple locations in the program. 
To test our hypothesis, we modified an existing GP system, 
ECJ (Luke et al, 2004) , to include a data mining step that 
identifies potentially useful subprograms. We describe the 
resulting system in the following subsections. 

Extraction of Useful Functions 
After each individual is evaluated, a certain number of 
highly fit individuals are sent to Subdue for identification 
of commonly occurring substructures, which are returned 
to ECJ. We use the best substructure discovered to create 
an ADF, which we will call “Subdue-ADF”, or SADF for 
short. Those individuals that have this piece of code in 
their main result-producing branch will have that part of 
the code removed, and a call to the new SADF is inserted. 

Parameters of the new system 
The proposed system requires additional parameters which 
must be tuned for optimal performance. While adding 
parameters is not desirable it will be compensated by the 
fact that some existing parameters will be rendered 
obsolete. It is also hoped that values for the new 
parameters can be fixed across domains. The new 
parameters will be the number of individuals to send to 
Subdue for analysis, the number of individuals in the 
population that should receive the new ADF, how often the 
analysis by Subdue should be performed, and what the 
acceptable size and frequency of functions returned by 
Subdue are. In this section we examine general 
considerations for these parameters. We arrive to 
recommended values through empirical investigation in the 
next section. 

The number of individuals to send to Subdue for 
analysis must be carefully examined. First of all, only 
highly fit individuals should be considered as those are the 
ones containing successful program segments. Also, 

sending too many individuals to Subdue will have an 
adverse impact on the running time. On the other hand, too 
few individuals may not contain enough repeating patterns.  

We must also consider the number of individuals that 
should receive the new SADF. One possible choice is to 
insert the new ADF only to the individuals that were sent 
to Subdue for analysis, since those are the ones in which 
the functions are found. Alternatively, we may add the new 
function to all the individuals in the population, or only to 
a certain percentage of individuals in the population. If we 
decide not to add the new function to all individuals, the 
question arises of what to do with the rest of the 
individuals. We can simply not add a function, or add a 
randomly generated function. 

We had a number of considerations for each of these 
choices. First of all, only individuals that were sent to 
Subdue will have an immediate use for the newly defined 
functions. However, these individuals will not immediately 
benefit from the new functions, since no new functionality 
will be added: a piece of code is simply removed from the 
main branch and is now called as a function. For an 
immediate benefit of the newly discovered function, it 
would make sense to add this function to the rest of the 
individuals in the population. The problem here, however, 
is that if the same function is defined for each individual, 
the crossover operator will introduce very little diversity 
among these ADFs. To promote diversity, some randomly 
generated ADFs could be added to some individuals in the 
population instead of the ADF returned by Subdue. 

Another consideration is when and how often Subdue 
should be invoked. If it is invoked in every generation each 
individual in the population will grow in size by one ADF. 
This may add an unnecessary number of ADFs while also 
increasing the time needed to evaluate individuals. It may 
be advantageous not to invoke Subdue in every generation. 

The substructures returned by Subdue may be very small 
or have very few occurrences. Reusable code that is too 
small in size or is used infrequently may not turn out to be 
useful as a function. By requiring newly discovered ADFs 
to be of certain size and/or frequency, we might be able to 
further increase the effectiveness of our approach. 

Empirical Evaluation 
As most initial advances in evolutionary algorithms, our 
analysis is also experimental. In this section we evaluate 
our proposed system and possible values of the proposed 
parameters. While he performed experiments on multiple 
domains, here we use the Lawnmower problem (Koza, 
1992), which is representative of our results. We kept most 
of default system parameters constant so we can observe 
the effects of the improvements to the system. We used a 
crossover rate of 90%, reproduction rate of 10%, and 
mutation rate of 0% for all our experiments.  

C D 

C 

Subg 

Subg 

558



 

The Lawnmower problem 
The lawnmower problem is about finding an algorithm for 
the movement of a lawnmower that mows all the grass in 
the yard. The yard is modeled as a discrete 8-by-8 square. 
The lawnmower is capable of moving forward one square 
in which it is currently facing and mow the grass if any 
(mow), rotate left (left), and to jump to the new location 
that is specified as an argument with facing the same 
direction and mow the grass if any (frog). The operations 
mow and left do not take any arguments, therefore mow and 
left are terminals. The operation frog requires one argument 
that indicates the new location. 

Two more operations are provided. One is named v8a 
and has two arguments that are summed, modulo 8. For 
example, (v8a, (3,4),(2,6)) returns (5,2). The operation, 
progn2, is the sequencing operation that returns the second 
argument’s value. The complete function set for this 
problem is F = {frog, progn2, v8a} and the terminal set T = 
{(i,j), left, mow}. 

A human programmer developing a program to solve 
this problem may decompose the entire problem into 
several subproblems, which are used repeatedly used to 
solve the entire problem. For example, a subprogram could 
be developed for mowing a row of grass, which could be 
invoked for each row. 

Empirical evaluation  
In this section we describe the empirical evaluation of the 
proposed system, including experiments used to arrive at a 
recommended set of parameters. Again, the new 
parameters of the system are 

 The number of individuals in a generation to send to 
Subdue for evaluation 

 The number of individuals that should receive the 
new ADF 

 The frequency with which Subdue should be 
invoked 

 The number of individuals in a generation 
Because of the randomness involved in GP, we used the 

average number of generations it took the system to find a 
solution over 30 runs in the following comparisons.  

Our first concern is the number of top ranking 
individuals to be sent to Subdue for an analysis. We 
experimented with sending 2%, 3%, 5%, 10%, 25%, and 
50% of the individuals. Surprisingly enough, 2% and 3% 
worked best across a number of domains. In addition, 
when sending substantially more individuals to Subdue, 
not only did the performance gain diminish but Subdue’s 
processing time dramatically increased.` 

The number of individuals in the generation to receive 
the new ADF returned by Subdue was our next concern. 
By default, only the top individuals that were sent to 
Subdue always received the new SADF. In addition, we 
also experimented with adding the new SADF to an 
additional 30%, 50% and to all of the individuals, in the 
hopes that these individuals can also make use of the 

SADF. This might only occur, however, in subsequent 
generations as the evolutionary operators insert references 
to the new SADF. It might be beneficial if we forced low 
performing individuals to take advantage of the new SADF 
by randomly inserting a reference to it in the main branch. 

Figure 5 shows the results, where the SADF is extracted 
from the top 3% of 1024 individuals, and inserted back 
into the percentage of individuals indicated on the 
horizontal axis (dashed line). In addition, we experimented 
with adding references to the new SADFs randomly in the 
main branch (solid line). As I can see, forcing low 
performing individuals to reference the SADF resulted in a 
performance increase of about two generations. 
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Figure 5 Average generation with various Subdue ADF 
rates (top 3%) 

 
Next, we tested our hypothesis that very small ADFs, or 

ADFs with extremely few occurrences, may not help 
improve performance. We restricted the number of 
instances (number of times the subprogram is found in the 
top 2% of the population) to be >=0 (no restriction), >=5, 
>=10, >=20, and >=30. We restricted the number of 
vertices in Subdue-ADF >=0 (no restriction), >=4, and >=8. 
Figure 6 shows the average generation in which the ideal 
solution is found for each case discussed above. 
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Figure 6 Average generation with restriction on  
size and frequency 

 
As we can see, the best result occurs with no restriction 

on the number of vertices or the number of instances. 
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When the number of vertices was restricted, the results 
were very similar, and the two lines are impossible to 
distinguish on the plot. When no restrictions were imposed 
on the number of vertices, the performance increase was 
between six and nine generations. Apparently, even small 
and infrequent subprograms can have a big impact. 

 
Next, we investigated the impact of not adding an SADF 

in each generation. We compared to the performance of the 
system when adding SADFs in every generation, every 
other generation and every third generation. Keeping the 
other parameters constant (2% passed to Subdue, 1024 
individuals), we observed the following. As expected, the 
performance of the system decreased with skipping 
generations. The system converged in 7.5, 7.8 and 8.15 
generations on average when adding SADFs in every 
generation, every other generation and every third 
generation, respectively. However, the amount of decrease 
was very small, especially when compared to the savings 
in processing time, which runs from about nine seconds to 
about four seconds. There was no difference in processing 
time when skipping one or two generations to 

 
To test the effect the population size has on finding a 

solution, we tested our system with 32, 64, 128, 256, 512, 
and 1024 individuals. Our initial experiment, sending 2% 
of the top individuals to Subdue, did not work well for the 
lowest population sizes. Since 2% of 32 is less than 1, we 
had to adjust our approach about the number of individuals 
to be sent for analysis to Subdue. We have decided to fix 
the number of individuals at 20, which is 2% of 1024. As 
we can see in figure 7, this setting worked well for all 
population sizes. The figure also shows the average 
number of generations needed to find an optimal solution 
when no ADFs are used (original problem specifications by 
Koza, 1992).  
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Figure 7 Performance with various population sizes 
 
Interestingly enough our system's performance changes 

little with the number of individuals in the population. This 
is very encouraging because our system was able to 
converge to an optimal solution in 10 generations on 
average, even with only 32 individuals in the generation. 

This means that our system evaluated a significantly lower 
number of individuals compared to the original system 
(320 vs. 2880).  

Conclusions and discussion 
In this research we have demonstrated the validity of our 
hypothesis that extract useful code segments from 
successful individuals can improve genetic-programming. 
We performed a large number of experiments to 
empirically investigate recommended settings for the 
system, and have shown here a representative sample. The 
experiments are encouraging, and confirm our hypothesis.  

It was interesting to see that although a decreased 
population size usually deteriorates the efficiency of GP, 
GP with Subdue-ADFs performs well even for a low 
number of individuals. We plan to investigate this finding 
further, and describe exactly the phenomena at work that 
makes this possible. 

While the success of this approach will definitely vary 
across domains, the power of the approach comes from its 
ability to converge fast even with a small population size. 
Even though the execution of Subdue requires computation 
time, the additional processing time is made up many times 
over by having to evaluate fewer individuals in fewer 
generations. Therefore our approach has highly desirable 
characteristics, especially for complex problems that 
require a lot of time for the evaluation of individuals.  

Even though we introduce additional parameters to the 
system, we eliminate the need for specifying the number of 
ADFs, and the overall program architecture, which in turn 
actually makes the system easier to use. Problem setup is 
the same setup as with no ADFs.  

The experiments performed so far are definitely 
encouraging. Our plan is to pursue a theoretical evaluation 
to describe the conditions under which performance 
improvements will occur and explore the boundary 
conditions where gains will diminish. We also plan to 
investigate the use of tree mining algorithms instead of a 
graph mining algorithm. 
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