

Improving Modularity in Genetic Programming
Using Graph-Based Data Mining

Istvan Jonyer and Akiko Himes

Oklahoma State University

700 N Greenwood Ave
Tulsa, OK 74106

jonyer@cs.okstate.edu

Abstract

We propose to improve the efficiency of genetic
programming, a method to automatically evolve computer
programs. We use graph-based data mining to identify
common aspects of highly fit individuals and modularizing
them by creating functions out of the subprograms
identified. Empirical evaluation on the lawnmower problem
shows that our approach is successful in reducing the
number of generations needed to find target programs. Even
though the graph-based data mining system requires
additional processing time, the number of individuals
required in a generation can also be greatly reduced,
resulting in an overall speed-up.

Introduction
Genetic programming (GP) is a machine learning
technique that evolves computer programs to solve specific
problems. During a run of GP, a population of programs is
randomly generated and transformed into a new generation
using evolutionary operations. Genetic programming
require substantial computational effort for solving any
realistic problem, which is why most of the research in the
field is concentrated on reducing the required
computational effort.

One natural direction of research is towards modular
programs. This has been explored mostly in the context of
automatically defined functions (ADF) (Koza, 1994). An
ADF is a subroutine which is evolved during the
evolutionary run. The number of ADFs can be either
predetermined by the user, or evolved along with the
program itself. The success of ADFs—whether they will
actually help to evolve a solution faster—depends on the
user-defined parameters, such as the number of ADFs, the
number of arguments to ADFs, and the function set. As
such, there exist optimal and suboptimal choices for
parameters. This typically leads to approaching a problem
using different parameter settings in a trial and error
fashion. Reducing the number of user specifiable
parameters while speeding up GP would be highly
desirable.

Copyright © 2006, American Association for Artificial Intelligence
(www.aaai.org). All rights reserved.

We hypothesize that subroutines that are common in
highly fit individuals would be good candidates for ADFs.
We propose to dynamically identify ADFs using a
graph-based data mining technique that finds substructures
in graphs (or parse trees of computer programs in this case).
We evaluate the success of this approach empirically.

Related Work
Many approaches are studied for improving the overall
efficiency of genetic programming. Of these, we are most
concerned with those approaches that seek improvement
through increased modularity, since this is the subject of
our study. An object oriented approach to combined
learning of decision trees and ADFs in genetic
programming was proposed by Niimi and Tazaki (1999).
While GP with ADFs gives expected solutions, its learning
speed is slow. Decision tree learners, on the other hand,
construct trees rapidly, but may not categorize correctly
when the input data has noise. Combining these two
methods makes up for the disadvantages of each technique.

Jassadapakorn and Chongstitvatana (1998) proposed an
approach in which the number of ADFs is not pre-specified.
The extension of ADF (ADFX) allows each individual to
have any number of ADFs within a range, which gives
flexibility in the number of ADFs while maintaining
efficiency. The ADFX-approach finds the desirable number
of ADFs automatically.

Background
In this section we give an overview of
genetic-programming, and graph-based data mining, the
two main components of the proposed system.

Genetic Programming
Genetic programming is an extension of genetic

algorithms (GA) (Koza, 1994). GP is the technique of
evolving computer programs using operations such as
crossover, reproduction, and mutation. One popular way to
represent programs in genetic programming is by rooted
parse trees. For example, the program “(2+4)/3” can be
represented as shown in figure 1.

An invocation of GP requires five aspects of the problem
to be specified: (1) terminal set, (2) function set, (3) fitness

556

measure, (4) parameters for controlling the run, and (5) the
method for designating a result and the criterion for
termination of a run.

The terminal set may include constants and variables.
The function set must be specified by the user, and may
include mathematical functions (+, -, *, /, log, sin, …),
logical functions (AND, OR, NOT), or other domain
specific functions. If an individual is found that solves
problems perfectly, the run is terminated.

Figure 1 Parse tree for the program (2+4)/3

A run of GP starts by creating an initial population of

computer programs that is a random composition of
available functions and terminals. Each individual is
represented as a tree structure. GP evaluates all individuals
in the population based on a fitness measure. A new
generation of individuals is created using the evolutionary
operators of crossover, mutation and reproduction with
differing probabilities. Crossover swaps random subtrees
of two programs; mutation randomly deletes a subtree, and
randomly grows a new subtree at that location;
reproduction copies the individual into the new generation
without modification.

When GP is invoked with ADFs, each individual has one
result-producing tree (“main()”) and one or more ADF
trees. ADFs trees are not shared with other individuals. An
example individual is shown in figure 2.

Figure 2 Individual with 2 ADFs

ADFs enable GP to automatically find useful

subroutines during a run. Keeping good aspects of the
program as subroutines could lead to faster convergence to

the desirable solution through modularity. It is also known
that an ADF becomes more effective when a problem is
relatively complex and the ADF is used frequently (Koza,
1994).

Graph-Based Data Mining
Mining data represented in graph format is useful for many
structurally complex domains. One of the most successful
general-purpose systems is Subdue (Cook and Holder,
2000). Subdue discovers commonly occurring
substructures in the input graph. The minimum description
length principle (MDL) drives the search, according to
which the best substructure is the one that compresses the
input graph the best. Compression is defined as extracting
all occurrences of a substructure from the input graph and
replacing them by a single vertex. The description length
of the resulting encoding is the description length of the
compressed graph plus the description length of the
definition of the substructure. The MDL heuristic drives
the search towards large, frequently occurring
substructures.

The input to Subdue must be represented as a graph,
which is usually accomplished by representing objects in
the data as vertices, and relationships between objects as
edges. For a detailed description of the system the reader is
referred to (Cook and Holder, 2000).

Here we give an example of Subdue’s operation on a
domain that translates to a tree structure, as shown in
figure 3.

Figure 3 Input graph

The largest, most commonly occurring substructure in

this example is the substructure [A-B], circled in the figure.
This substructure is identified by Subdue, and is used to
compress the input graph, as shown in figure 4.

Individual 1

ADF 1

-

ADF 2

Arg1 /

Arg2 Arg3

+

Arg1
*

Arg2 Arg3

*

6 5 3 2 2

ADF 1 ADF 2

3

Main

/

+

2 4

3

A B

A

C D B C

557

Figure 4 Compressed graph

Genetic Programming Using Graph-Based
Data Mining

Our hypothesis is that if the same code segment occurs in
the result-producing branch of a number of
well-performing individuals in a population of programs,
this code may be responsible for the good performance.
Such code segments could be abstracted out and turned
into an ADF for reuse in multiple locations in the program.
To test our hypothesis, we modified an existing GP system,
ECJ (Luke et al, 2004) , to include a data mining step that
identifies potentially useful subprograms. We describe the
resulting system in the following subsections.

Extraction of Useful Functions
After each individual is evaluated, a certain number of
highly fit individuals are sent to Subdue for identification
of commonly occurring substructures, which are returned
to ECJ. We use the best substructure discovered to create
an ADF, which we will call “Subdue-ADF”, or SADF for
short. Those individuals that have this piece of code in
their main result-producing branch will have that part of
the code removed, and a call to the new SADF is inserted.

Parameters of the new system
The proposed system requires additional parameters which
must be tuned for optimal performance. While adding
parameters is not desirable it will be compensated by the
fact that some existing parameters will be rendered
obsolete. It is also hoped that values for the new
parameters can be fixed across domains. The new
parameters will be the number of individuals to send to
Subdue for analysis, the number of individuals in the
population that should receive the new ADF, how often the
analysis by Subdue should be performed, and what the
acceptable size and frequency of functions returned by
Subdue are. In this section we examine general
considerations for these parameters. We arrive to
recommended values through empirical investigation in the
next section.

The number of individuals to send to Subdue for
analysis must be carefully examined. First of all, only
highly fit individuals should be considered as those are the
ones containing successful program segments. Also,

sending too many individuals to Subdue will have an
adverse impact on the running time. On the other hand, too
few individuals may not contain enough repeating patterns.

We must also consider the number of individuals that
should receive the new SADF. One possible choice is to
insert the new ADF only to the individuals that were sent
to Subdue for analysis, since those are the ones in which
the functions are found. Alternatively, we may add the new
function to all the individuals in the population, or only to
a certain percentage of individuals in the population. If we
decide not to add the new function to all individuals, the
question arises of what to do with the rest of the
individuals. We can simply not add a function, or add a
randomly generated function.

We had a number of considerations for each of these
choices. First of all, only individuals that were sent to
Subdue will have an immediate use for the newly defined
functions. However, these individuals will not immediately
benefit from the new functions, since no new functionality
will be added: a piece of code is simply removed from the
main branch and is now called as a function. For an
immediate benefit of the newly discovered function, it
would make sense to add this function to the rest of the
individuals in the population. The problem here, however,
is that if the same function is defined for each individual,
the crossover operator will introduce very little diversity
among these ADFs. To promote diversity, some randomly
generated ADFs could be added to some individuals in the
population instead of the ADF returned by Subdue.

Another consideration is when and how often Subdue
should be invoked. If it is invoked in every generation each
individual in the population will grow in size by one ADF.
This may add an unnecessary number of ADFs while also
increasing the time needed to evaluate individuals. It may
be advantageous not to invoke Subdue in every generation.

The substructures returned by Subdue may be very small
or have very few occurrences. Reusable code that is too
small in size or is used infrequently may not turn out to be
useful as a function. By requiring newly discovered ADFs
to be of certain size and/or frequency, we might be able to
further increase the effectiveness of our approach.

Empirical Evaluation
As most initial advances in evolutionary algorithms, our
analysis is also experimental. In this section we evaluate
our proposed system and possible values of the proposed
parameters. While he performed experiments on multiple
domains, here we use the Lawnmower problem (Koza,
1992), which is representative of our results. We kept most
of default system parameters constant so we can observe
the effects of the improvements to the system. We used a
crossover rate of 90%, reproduction rate of 10%, and
mutation rate of 0% for all our experiments.

C D

C

Subg

Subg

558

The Lawnmower problem
The lawnmower problem is about finding an algorithm for
the movement of a lawnmower that mows all the grass in
the yard. The yard is modeled as a discrete 8-by-8 square.
The lawnmower is capable of moving forward one square
in which it is currently facing and mow the grass if any
(mow), rotate left (left), and to jump to the new location
that is specified as an argument with facing the same
direction and mow the grass if any (frog). The operations
mow and left do not take any arguments, therefore mow and
left are terminals. The operation frog requires one argument
that indicates the new location.

Two more operations are provided. One is named v8a
and has two arguments that are summed, modulo 8. For
example, (v8a, (3,4),(2,6)) returns (5,2). The operation,
progn2, is the sequencing operation that returns the second
argument’s value. The complete function set for this
problem is F = {frog, progn2, v8a} and the terminal set T =
{(i,j), left, mow}.

A human programmer developing a program to solve
this problem may decompose the entire problem into
several subproblems, which are used repeatedly used to
solve the entire problem. For example, a subprogram could
be developed for mowing a row of grass, which could be
invoked for each row.

Empirical evaluation
In this section we describe the empirical evaluation of the
proposed system, including experiments used to arrive at a
recommended set of parameters. Again, the new
parameters of the system are

 The number of individuals in a generation to send to
Subdue for evaluation

 The number of individuals that should receive the
new ADF

 The frequency with which Subdue should be
invoked

 The number of individuals in a generation
Because of the randomness involved in GP, we used the

average number of generations it took the system to find a
solution over 30 runs in the following comparisons.

Our first concern is the number of top ranking
individuals to be sent to Subdue for an analysis. We
experimented with sending 2%, 3%, 5%, 10%, 25%, and
50% of the individuals. Surprisingly enough, 2% and 3%
worked best across a number of domains. In addition,
when sending substantially more individuals to Subdue,
not only did the performance gain diminish but Subdue’s
processing time dramatically increased.`

The number of individuals in the generation to receive
the new ADF returned by Subdue was our next concern.
By default, only the top individuals that were sent to
Subdue always received the new SADF. In addition, we
also experimented with adding the new SADF to an
additional 30%, 50% and to all of the individuals, in the
hopes that these individuals can also make use of the

SADF. This might only occur, however, in subsequent
generations as the evolutionary operators insert references
to the new SADF. It might be beneficial if we forced low
performing individuals to take advantage of the new SADF
by randomly inserting a reference to it in the main branch.

Figure 5 shows the results, where the SADF is extracted
from the top 3% of 1024 individuals, and inserted back
into the percentage of individuals indicated on the
horizontal axis (dashed line). In addition, we experimented
with adding references to the new SADFs randomly in the
main branch (solid line). As I can see, forcing low
performing individuals to reference the SADF resulted in a
performance increase of about two generations.

0

2

4

6

8

10

12

14

3 33 53 100
Subdue ADF rate (%)

av
g.

 g
en

er
at

io
n

with adding an ADF node without adding an ADF node

Figure 5 Average generation with various Subdue ADF
rates (top 3%)

Next, we tested our hypothesis that very small ADFs, or

ADFs with extremely few occurrences, may not help
improve performance. We restricted the number of
instances (number of times the subprogram is found in the
top 2% of the population) to be >=0 (no restriction), >=5,
>=10, >=20, and >=30. We restricted the number of
vertices in Subdue-ADF >=0 (no restriction), >=4, and >=8.
Figure 6 shows the average generation in which the ideal
solution is found for each case discussed above.

0
2
4
6
8

10
12
14
16
18

>=0 >=5 >=10 >=20 >=30
restriction on # of instance

av
g.

 g
en

er
at

io
n

of vertices>=0 # of verticies>=4 # of vertices>=8

Figure 6 Average generation with restriction on
size and frequency

As we can see, the best result occurs with no restriction

on the number of vertices or the number of instances.

559

When the number of vertices was restricted, the results
were very similar, and the two lines are impossible to
distinguish on the plot. When no restrictions were imposed
on the number of vertices, the performance increase was
between six and nine generations. Apparently, even small
and infrequent subprograms can have a big impact.

Next, we investigated the impact of not adding an SADF

in each generation. We compared to the performance of the
system when adding SADFs in every generation, every
other generation and every third generation. Keeping the
other parameters constant (2% passed to Subdue, 1024
individuals), we observed the following. As expected, the
performance of the system decreased with skipping
generations. The system converged in 7.5, 7.8 and 8.15
generations on average when adding SADFs in every
generation, every other generation and every third
generation, respectively. However, the amount of decrease
was very small, especially when compared to the savings
in processing time, which runs from about nine seconds to
about four seconds. There was no difference in processing
time when skipping one or two generations to

To test the effect the population size has on finding a

solution, we tested our system with 32, 64, 128, 256, 512,
and 1024 individuals. Our initial experiment, sending 2%
of the top individuals to Subdue, did not work well for the
lowest population sizes. Since 2% of 32 is less than 1, we
had to adjust our approach about the number of individuals
to be sent for analysis to Subdue. We have decided to fix
the number of individuals at 20, which is 2% of 1024. As
we can see in figure 7, this setting worked well for all
population sizes. The figure also shows the average
number of generations needed to find an optimal solution
when no ADFs are used (original problem specifications by
Koza, 1992).

0
10
20
30
40
50
60
70
80
90

100

32 64 128 256 512 1024

Number of Individuals

Av
er

ag
e

G
en

er
at

io
ns

No ADF S-ADF

Figure 7 Performance with various population sizes

Interestingly enough our system's performance changes

little with the number of individuals in the population. This
is very encouraging because our system was able to
converge to an optimal solution in 10 generations on
average, even with only 32 individuals in the generation.

This means that our system evaluated a significantly lower
number of individuals compared to the original system
(320 vs. 2880).

Conclusions and discussion
In this research we have demonstrated the validity of our
hypothesis that extract useful code segments from
successful individuals can improve genetic-programming.
We performed a large number of experiments to
empirically investigate recommended settings for the
system, and have shown here a representative sample. The
experiments are encouraging, and confirm our hypothesis.

It was interesting to see that although a decreased
population size usually deteriorates the efficiency of GP,
GP with Subdue-ADFs performs well even for a low
number of individuals. We plan to investigate this finding
further, and describe exactly the phenomena at work that
makes this possible.

While the success of this approach will definitely vary
across domains, the power of the approach comes from its
ability to converge fast even with a small population size.
Even though the execution of Subdue requires computation
time, the additional processing time is made up many times
over by having to evaluate fewer individuals in fewer
generations. Therefore our approach has highly desirable
characteristics, especially for complex problems that
require a lot of time for the evaluation of individuals.

Even though we introduce additional parameters to the
system, we eliminate the need for specifying the number of
ADFs, and the overall program architecture, which in turn
actually makes the system easier to use. Problem setup is
the same setup as with no ADFs.

The experiments performed so far are definitely
encouraging. Our plan is to pursue a theoretical evaluation
to describe the conditions under which performance
improvements will occur and explore the boundary
conditions where gains will diminish. We also plan to
investigate the use of tree mining algorithms instead of a
graph mining algorithm.

References

Chittimoori, R.N., L.B. Holder, and D.J. Cook, “Applying
the Subdue Substructure Discovery system to the Chemical
Toxicity Domain”, University of Texas at Arlington,
Arlington, TX, 1999.

Cook, D.J., and L.B. Holder, “Graph-Based Data Mining,”
IEEE Educational Activities Department, IEEE Intelligent
Systems March/ April 2000, pp.32-41.

Cook, D.J., L.B. Holder, S. Su, R. Maglothin, and I. Jonyer.
“Structual Minining of Molecular Biology Data,” IEEE
Engineering in Medicine and Biology, Special issue on
Advances in Genomics, Vol. 20, No. 4, pp. 67-74. 2001.

Jassadapakorn, C., and P. Chongstitvatana, “Reduction of

560

Computational Effort in Genetic Programming by
Subroutines”, Chulalongkorn University, Bangkok,
Thailand, 1998.

Jonyer, I., L.B. Holder, and D.J. Cook, “MDL-Based
Context-Free Graph Grammar Induction,” Proceedings of
the Sixteenth Annual Florida AI Research Society, 2003.

Koza, J.R., “Genetic Programming,” The MIT Press,
Cambridge, MA, 1992.

Koza, J.R., “Genetic Programming II: Automatic
Discovery of Reusable Programs,” The MIT Press,
Cambridge, MA, 1994.

Koza, J.R., “www.genetic-programming.org (a source of
information about the field of genetic programming and the
field of genetic and evolutionary computation),” 16 Sep.
2004. Retrieved 2 Feb. 2005
<http://genetic-programming.org>.

Luke, S., L. Panait, G. Balan, Z. Skolicki, J. Bassett, R.
Hubley, and A. Chircop, “ECJ 12: A Java-based
Evolutionary Computation and Genetic Programming
Research System,” Retrieved 14 Sep. 2004,
<http://cs.gmu.edu/~eclab/projects/ecj/>

Nanduri, D.T., “Comparison of the Effectiveness of
Decimation and Automatically Defined Functions,” RMIT
University, Melbourne, Australia, 2005.

Niimi, A., and E. Tazaki, “Object Oriented Approach to
Combined Learning of Decision Tree and ADF GP,” Toin
University of Yokohama, Yokohama, Japan, 1999.

Srinivasa, S., S. Acharya, H. Agrawal, and R. Khare,
“Vectorization of Structure to Index Graph Databases,”
Indian Institue of Information Technology, Bangalore,
India, 2004.

Vanneschi, L., “Theory and Practice for Efficient Genetic
Programming,” Doctoral Dissertation. University of
Lausannne, Italy. July 2004.

561

