
Inexact Graph Matching: A Case of Study

Ivan Olmos, Jesus A. Gonzalez
Instituto Nacional de Astrofı́sica, Óptica y Electrónica,

Luis Enrique Erro No. 1, Sta. Marı́a Tonantzintla, Puebla, México
{iolmos,jagonzalez}@inaoep.mx

Mauricio Osorio
Universidad de las Américas Puebla
Sta. Catarina Mártir, Puebla, México

josorio@mail.udlap.mx

Abstract

Inexact graph matching has become an important re-
search area because it is used to find similarities among
objects in several real domains such as chemical and
biological compounds. Let G and G′ be input labeled
graphs, we present an algorithm capable to find a graph
S of G, where S is isomorphic to G′ and the corre-
sponding labels between the vertices and edges of S and
G′ are not the same (inexact matching). We use a list-
code based representation without candidate generation,
where a step by step expansion is implemented. The
proposed approach is suitable to work with directed and
undirected graphs. We conducted a set of experiments
in a genome database in order to show the effectiveness
of our algorithm. Our experiments show a promissing
method to be used with scalable graph matching tools
that can be applied to areas such as Machine Learning
(ML) and Data Mining (DM).

Introduction
Graphs are a powerful and flexible knowledge representa-
tion used to model simple and complex structured domains
(Cook & Holder 1994). The representation power and flex-
ibility is the main advantage of why the graph-based rep-
resentation model has been adopted by researchers in dif-
ferent areas such as ML and DM (Cook & Holder 1994;
Kuramochi & Karypis 2002). An important problem in ML
and DM is to find similarities between objects. If we use
a graph-based representation, the problem turns into find-
ing similarities between graphs, which includes tasks as ex-
act and inexact matching, where the graph / subgraph iso-
morphism detection is a critical operation (Cook & Holder
1994). The task is not easy, because the subgraph isomor-
phism problem is known to be in NP-complete (Michael &
David 2003) then, in the worst case, the time to solve the
decision problem is exponential, unless P=NP.

The exact matching (two graphs are similar if its topology
and labeling is identical) is a widespread studied problem,
where several works have been developed, each of them with
different objectives. For example, Subdue (Cook & Holder
1994) is an algorithm that implements a computationally-
constrained beam search, however the algorithm may not al-

Copyright c© 2006, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

ways find an isomorphism when it does exist (but it is ca-
pable to work the inexact problem). Some algorithms re-
duce the computational complexity by imposing topologi-
cal restrictions on the input graphs (Luks 1982). There are
other subgraph isomorphism projects such as Ullman (Ull-
man 1976), VF2 (Cordella et al. 2001) and Nauty (Bren-
dan 1981) that are not able to work with labeled graphs, be-
cause many of them are oriented only to solve mathemat-
ical problems, and do not consider other classes of prob-
lems where labels represent important information. There
are other works that explore ideas where the completeness is
not sacrificed. AGM (Inokuchi & Washio 2003), FSG (Ku-
ramochi & Karypis 2002), gSpan (Xifeng & Han 2002) and
SI-COBRA (Olmos, Gonzalez, & Osorio 2005) are some
algorithms that make use of strategies and representations
with the aims to reduce the number of operations to perform
and then being more efficient.

On the other hand, inexact graph matching is an impor-
tant graph-theoretical problem, because it is used to find
inexact similarities between objects. The inexact match-
ing task consists on finding a distortion or variation be-
tween two input graphs, where there may not exist an ex-
act match (Cook & Holder 1994; Hlaoui & Wang 2002;
Cordella et al. 1996). Throughout this work, we consider
an inexact match between two graphs in the sense that they
have an identical topology (there exists a bijection between
the vertices and edges of the graphs), nevertheless the labels
of the vertices and edges might not be the same.

In this work, we present an algorithm capable of finding
a graph S of G, where S is isomorphic to G′ and the cor-
responding labels between the vertices and edges of S and
G′ are not the same (inexact matching). We use a list-code
based representation without candidate generation, where a
step by step expansion with an exploration in depth is im-
plemented. The proposed approach is suitable to work with
directed and undirected graphs. We conducted a set of ex-
periments in genome databases in collaboration with biol-
ogy experts in order to study the effectiveness of our method
(our method has already been applied to other theoretical
and practical domains). Our experimental results show a
promissing method to be used with scalable graph matching
tools that can be applied to research areas such as Machine
Learning (ML) and Data Mining (DM).

586

The Subgraph Isomorphism Problem
As mentioned before, graphs have been used in several re-
search areas. Different authors define a graph with some
variations, according to their requirements. In this work, we
assume that a graph is a 6-tuple G = (V,E,LV , LE , α, β),
where:

• V = {vi|i = 1, . . . , n}, is the finite set of vertices, V �= ∅
• E ⊆ V xV , is the finite set of edges, E = {e =
{vi, vj}|vi, vj ∈ V }

• LV , is a set of vertex labels

• LE , is a set of edge labels

• α : V → LV , is a function assigning labels to the vertices

• β : E → LE , is a function assigning labels to the edges

Let G be a graph, where G = (V,E,LV , LE , α, β).
A subgraph S of G, denoted by S ⊆ G, S =
{V S , ES , LS

V , LS
E , αS , βS} is a graph such that V S ⊆ V ,

ES ⊆ E, αS ⊆ α and βS ⊆ β.
Given two graphs G′ = (V ′, E′, L′

V , L′
E , α′, β′) and

G = (V,E,LV , LE , α, β), G′ is isomorphic to G, denoted
as G′ ∼= G, if there exist f : V ′ → V and g : E′ → E as
bijections, where:

• ∀v′ ∈ V ′, α′(v′) = α(f(v′))
• ∀{v′

i, v
′
j} ∈ E′, β′({v′

i, v
′
j}) = β(g({v′

i, v
′
j}))

This definition only applies for exact matching. For in-
exact graph matching, bijection functions of G′ are defined
in a different way. Let G′ = (V ′, E′, L′

V , L′
E , α′, β′) be a

graph, where V ′, E′, L′
V and L′

E are defined as we previ-
ously described. On the other hand:

• α′ : V ′ → 2L′
V , power set of L′

V , where ∀v′
i, v′

j ∈ V ′ :
α′(vi) ∩ α′(vj) = ∅ if α′(vi) �= α′(vj)

• β′ : E′ → 2L′
E , power set of L′

E , where ∀e′i, e′j ∈ E′ :
α′(ei) ∩ α′(ej) = ∅ if α′(ei) �= α′(ej)
Considering the above mentioned, G′ is inexact isomor-

phic to G, denoted as G′ ∼=I G, if there exist fI : V ′ → V
and gI : E′ → E as bijections, where:

• ∀v′ ∈ V ′, fI(v′) = v : α(v) ∈ α′(v′)
• ∀e′ ∈ E′, gI(e′) = e : β(e) ∈ β′(e′)

Based on these concepts, we say that G′ is a subgraph
isomorphic of G if there exists S ⊆ G such that G′ ∼= S for
exact matching, or G′ ∼=I S for inexact matching.

In other words, an isomorphism between G′ and G exists
if the topology of both graphs is exactly the same and the
labeling is identical for exact match. Note that if |L′

V | =
|L′

E | = 1, then we have the traditional SI problem. It is
clear that we are working an NP - complete problem, where
some instances can fall in the worst case, but not all of them.

The IGM-COBRA Algorithm
In a previous work (Olmos, Gonzalez, & Osorio 2005),
we developed an algorithm to detect the exact instances of
a graph G′ in a graph G (called Subgraph Isomorphism
- COde Based Representation Algorithm, or SI-COBRA),

G’ G

S

DFC’
DFC

DFC (of S’)

DFC

{
=

Figure 1: Finding a Subgraph Isomorphism Based on Lists
of Codes

where a linear sequence of codes is used to represent the
graphs. A code, denoted by ci, represents the information
of an edge label e and its adjacent vertices (a code based
representation has also been successfully applied in gSpan
(Xifeng & Han 2002)). Each code ci is sorted in a linear
sequence called LV EV = {ci : i = 1, . . . , s}, where s is
the number of different combinations of labels. A new lex-
icographic order is implemented using criteria such as ver-
tices degrees, statistical summaries of the codes and an order
based on the labels.

Our method starts by building a graph model of G′,
represented by a linear sequence of codes, called DFC ′.
The DFC ′ model is a sorted sequence of codes <
dfc′1, . . . , dfc′n >, where each entry dfc′x = (i, j, ck, t) and
i, j are the indexes associated to the adjacent vertices of edge
ex ∈ E′, ck is a code that represents the label’s information
of the edge ex, ck = LV EV (ex) and t is a special mark to
classify the edges as F (forward) or B(backward) edges
(Olmos, Gonzalez, & Osorio 2005).

We use three basic criteria to sort the DFC ′ sequence: a)
the degree of the vertices; b) the label that has the largest
number of instances and c) the combination of the labels
(lexicographic order based on LV EV). With these restric-
tions and using a DFS strategy, the DFC ′ code is built as
follows:

1. Select a non visited vertex vi in G′ (vi satisfying restric-
tions a), b) and c)

2. Expand vertex vi to vertex vj , (vj has not been visited yet
and satisfies restrictions a), b) and c)

3. Add (i, j, LV EV ({vi, vj}), F) to DFC ′ (a forward edge)

4. Expand all possible backward edges: ∀{vj , vx} where vx

has already been visited, add (j, x, LV EV ({vj , vx}), B)
to DFC ′ according to the LV EV order

5. If vj has an adjacent vertex vx that has not been visited
yet, go to step 2 with vj as vi and vx as vj

6. If there are vertices that have not been visited yet, go to
step 1. In other case, finish

Based on DFC ′ (the model of G′), the matching pro-
cess tries to build a linear sequence DFC of G. The size
of DFC must be the same of DFC ′ and the corresponding
codes entries must also be identical. If DFC could be gen-
erated, then we found S ⊆ G, where S is represented by
DFC and G′ ∼= S. This idea is shown in Fig. 1.

In the matching proces, DFC is built with a step by
step expansion without candidate’s generation. First, we ap-

587

(2,1,L (1),F)VEV

(1,4,L (2),F)VEV

(4,2,L (3),B)VEV

(2,3,L (3),F)VEV

(2,5,L (1))VEV (2,8,L (1))VEV

(5,4,L (2))VEV (8,1,L (2))VEV (8,7,L (2))VEV

(1,2,L (3))VEV (7,2,L (3))VEV

(6,5,L (1))VEV

(5,4,L (2))VEV

(4,6,L (3))VEV

(6,3,L (3))VEV (6,1,L (3))VEV

DFC’ DFC

A B
a a

C

C

aa

1 2 3

4

G’

A B
a a

C

C

aa

5 6 3

4

B

a

2
a

C

1

C
a

7

A

a

8

a

aa

Gi

Figure 2: Example of a Width-Depth Search using LV EV

Codes

ply a pruning phase in G that aims to reduce the number
of operations to perform, where ∀v ∈ V : α(v) /∈ L′

V
and ∀e ∈ E : β(e) /∈ LE are removed. This task can
be performed with the use of LV EV , removing ∀e ∈ G :
LV EV (e) /∈ LV EV . Moreover, with a statistical analy-
sis based on LV EV , we can remove edges in G without
the minimum number of repetitions. We also use the ver-
tices degrees and their number of repetitions in the graph to
further prune G. Without loosing generality, consider that
degmin(α1), . . . , degmin(αn) are the minimum degrees as-
sociated to each label αx ∈ L′

V . Then, ∀v ∈ V can not be
common if deg(α(v)) < degmin(α′) and α(v) = α′ (FSG
uses a similar concept to order the vertices in an adjacency
matrix). Note that after this preprocessing phase, G might
have been partitioned in s connected graphs. Each of those
graphs will be compared with G′. Let GSet be the set of
graphs derived from this process.

Next, the processing phase consists on finding the map-
ping between vertices and edges of G′ and Gi, where Gi ∈
GSet (the process is applied to each graph in GSet, while
a DFC code has not been found). We implement a back-
tracking algorithm, because this technique is fairly stable
and performs well in most cases, since it does not require
more resources than those strictly necessary and a new par-
tial result is based on a previous result. Since DFC ′ is an
array, the backtracking strategy can be used.

The process starts by finding the vertices v ∈ Gi where
α(v) = α(vi), vi ∈ G′, deg(v) ≥ deg(vi), and dfc′1 =
(i, j, cx, F) where cx = LV EV ({vi, vj}) (each vertex forms
a root of expansion). Taking these vertices, the construction
process of DFC begins, where the algorithm finds all the
possible mappings that can be associated to entry dfc′i of
DFC ′, that is, each edge where the code cx is the same.
This process is performed with a step by step expansion
without candidate generation, where the LV EV values are
used to compare the mappings. Moreover, for each expan-
sion step where there does not exist the minimun number of
LV EV combinations we pruned that expansion path and we
avoid exploring these combinations.

Fig. 2 shows an example based on the LV EV codes and
a width-depth search strategy. In this example, we can see
how the partial result vectors are generated and pruned. It is
also possible to find all the instances of a graph G′ in a graph
G, just by leaving the algorithm run over all the possibilities.
In this example, there are two mappings.

However, the before mentioned concepts are oriented to
find exact associations between graphs, because for each
dfc′x ∈ DFC ′ and dfcx ∈ DFC, c′x = cx. With the aims
to identify graphs with an identical topology but where the
vertices and edges labels may vary (inexact matching), we
propose the IGM-COBRA (Inexact Graph Matching) algo-
rithm based on the following:
1. A new label lx is associated to each α′(vi) where

|α′(vi)| > 1 (if two or more vertices in G′ have the same
α′(vi), then they will have the same label lx). This susti-
tution process will also be applied to edge labels.

2. LV EV codes are built based on G′ labels (considering the
new lx labels).

3. The DFC ′ sequence is built following the rules described
in the SI-COBRA algorithm description.

4. The prunning phase of G is now modified. Vertices and
edges are removed only considering the degree of the ver-
tices. We are not using the LV EV codes for prunning be-
cause there might exist codes of G that are not in LV EV

but, may produce a valid association.

5. G is explored in a similar way as in the SI-COBRA al-
gorithm, with a step by step expansion in depth without
candidate generation. However, there exists a variaton:
we perform the degree test without considering the LV EV

codes.

6. Each dfc′x entry is processed in two phases: if dfc′x con-
tains a lx label, then it is necessary to consider each pos-
sible label that can produce a valid mapping. On the other
hand, the comparison process is based on LV EV codes.
Clearly, the IGM-COBRA algorithm can not prune a high

number of path expansions as SI-COBRA does. However,
this is a consecuence of the inexact maching process, where
a label in G′ can take different values. For example, let dfc′x
be a code, where dfc′x = (i, j, ck, t), ck = (a, ls, b) and
ls = {c, d}. Consider that there exist two edges in G, where
their codes are cm = (a, c, b) and cn = (a, d, b). Clearly,
cm and cn are not equal to ck. Nevertheless, cm and cn can
be associated to ck, because the last one produces two label
combinations that are identical to the cm and cn codes. For
this reason, if we are processing an entry with a label lx then
we need to test each possible combination to detect valid
mappings.

Experimental Results
We conducted an experimental investigation in order to find
low-complexity DNA sequences using the IGM-COBRA al-
gorithm. For our experiments, we worked with the As-
pergillus nidulans, Neurospora crassa and Ustilago maydis
DNA databases, where each database is a sequence that con-
sists of the four nitrogen-compound bases a (adenine), c (cy-
tosine), g (guanine) and t (thymine). These databases are

588

Organism Database
Dimension

(MBytes)
#Scaffolds

Aspergillus

nidulans

http://www.broad.itm.edu/cig-

bin/annotation/fungi/aspergillus/download_lic

ence.cgi/aspergillus_nidulans_1.fasta.gz

30.5 248

Neurospora

crassa

http://www.broad.mit.edu/cgi -

bin/annotation/fungi/neurospora/download_lic

ence.cgi/neurospora_3.fasta.gz

39.8 251

Ustillago

maydis

http://www.broad.mit.edu/cgi-

bin/annotation/fungi/ustilago_maydis/downlo

ad_license.cgi/ustilago_maydis_1.fasta.gz

19.9 341

Figure 3: DNA Description Databases

c a g c t g c a g
next next next next next next next next

Figure 4: Example of a DNA Sequence using a Graph-based
Representation

divided in sections, called scaffolds. These DNA databases
are free available through the Center for Genome Research
(see figure 3) .

We represent a DNA sequence as follows. Given the
DNA ordered sequence ρ =< σ1, . . . , σn >, σxε{a, c, g, t}
(adenine, cytosine, guanine, thymine), then the graph-based
representation for ρ is the graph G = (V,E,LV , LE , α, β)
where:

• V = {vx : x = 1, . . . , n} where ∃ a bijective function
Φ : ρ → V

• E = {ex : x = 1, . . . , n − 1, ex = (vi, vi+1)∀ex}
• LV = {a, g, c, t}
• LE = {next}
• α : V → LV

• β : E → LE

In our representation we map every base in the sequence
to a vertex in the graph with the name of the base as the
vertex label. In order to keep the sequence we add edges
that connect vertices with the ”next” label. For example, for
the DNA sequence ”cagctgcag” we create the graph shown
in figure 4.

The low-complexity sequences ρ′ =< σ′
1, . . . , σ

′
n′ > are

represented with a graph G′ = (V ′, E′, L′
V , L′

E , α′, β′) de-
fined as follows:

• V ′ = {v′
x : x = 1, . . . , n′} where ∃ a biyective function

Φ′ : ρ′ → V ′

• E′ = {e′x : x = 1, . . . , n′ − 1, ∀e′x : e′x = (v′
i, v

′
i+1)}

• L′
V ′ = {a, g, c, t, x}

• L′
E′ = {next}

• α′ : V ′ → LV ′

• β′ : E′ → LE′

0

500

1000

1500

2000

2500

3000

3500

4000

4500

0 200000 400000 600000 800000 1000000 1200000

#Vertices G

R
u

n
ti

m
e

(S
e
c
)

Total Time

Search Time

Preprocessing

Figure 5: Runtime for the Aspergillus nidulans DNA Exper-
iments

0

2000

4000

6000

8000

10000

12000

0 200000 400000 600000 800000 1000000 1200000 1400000 1600000 1800000 2000000

#Vertices G

T
im

e
(S

e
c
)

RunTime

Preprocessing

SearchTime

Figure 6: Runtime for the Neurospora crassa DNA Experi-
ments

Note that L′
V ′ includes a label x, where x = {a, t}. Then,

the problem to find a low-complexity sequence in a DNA
sequence using a graph-based representation is defined as
follows: if G′ represent the low-complexity sequence ρ′ and
G the DNA sequence, then the problem to find ρ′ in the DNA
sequence is reduced to find a subgraph S ⊆ G such that
G′ ∼=I S.

For our experiments we transformed each database into its
graph-based representation. After this, our domain experts
suggested to look the cxgm sequence, where x can be inter-
changed by any of the two bases (a or t) and 10 ≤ m ≤ 60
(that is, m represents the consecutive number of repetitions
of the sequence, for example, cxg3 = cxgcxgcxg). In or-
der to find the sequences in the genome, we ran the IGM-
COBRA algorithm for each scaffold in its graph-based rep-
resentation. Since we need to find each instance, we just
leave the algorithm run over all the possibilities.

Figs. 5, 6 and 7 show the runtime execution performance
of IGM-COBRA. These runtimes are divided in three sec-
tions: pre-processing time, which includes the reading input
file and prunning phases; searching time, where G is ex-
plored and total time, that includes the pre-processing time
and the searching time.

Note that the running time increases according to the di-
mension of the DNA inputs and the behavior was consis-
tent for all the databases (in other words, the running time
was not exponential as it could be thought). Moreover, the
pre-processing time is not expensive (considering that in this
phase all codes are built). These are positive characteristics

589

0

100

200

300

400

500

600

700

0 100000 200000 300000 400000 500000 600000

#Vertices G

T
im

e
(S

e
c
)

RunTime

SearchTime

PreProcessing

Figure 7: Runtime for the Ustilago maydis DNA Experi-
ments

G G after Pruned Pruned Proportion

#Vertices #Edges #Vertices #Edges
#Partitions RunTime

Vertices Edges

2259 2258 418 263 155 0.016 81.50% 88.35%

10851 10850 1996 1337 659 0.14 81.61% 87.68%

168814 168813 24466 15615 8851 90.563 85.51% 90.75%

127977 127976 18991 11965 7026 50.672 85.16% 90.65%

Aspergillus

155056 155055 22901 14368 8533 75.453 85.23% 90.73%

18603 18602 2402 1498 904 0.25 87.09% 91.95%

1842096 1842095 259549 163529 96020 10075.359 85.91% 91.12%

1776986 1776985 247684 154847 92837 9375.297 86.06% 91.29%

1337370 1337369 185798 116185 69613 5306.234 86.11% 91.31%

Neurospora

1198271 1198270 199494 131579 67915 5457.328 83.35% 89.02%

3049 3048 333 202 131 0.031 89.08% 93.37%

30180 30179 3819 2328 1491 0.906 87.35% 92.29%

510685 510684 58011 34757 23254 626.703 88.64% 93.19%

86435 86434 10124 6092 4032 16.234 88.29% 92.95%

Ustillago

82161 82160 9459 5696 3763 14.344 88.49% 93.07%

Figure 8: Results in three DNA Databases

of the IGM-COBRA algorithm showing a high performance.
Figure 8 shows five scaffold results (randomly selected)

of each DNA database, where we can see the original G
graphs dimension (G columns) and their dimension after the
pruning phase. We also illustrated the number of partitions
induced by the algorithm (#Partitions column), the runtime
(RunTime column) and the vertices and edges proportion
(percentage) pruned by the algorithm from G (Pruned Pro-
portion column). It is interesting to note the high number
of partitions induced by the algorithm. As a consequence,
some of those graphs can be pruned (eliminating the whole
graph) because they are smaller than the graph to search for.
Another important consequence is the fact that the algorithm
requires less computational resources to store and process
the data, because only one partition is processed at a time,
and this requires less memory than that used to process the
original database. We can also see in the last two columns
the effectiveness of the pruning phase because a high pro-
portion of vertices and edges were eliminated.

The number of discovered sequences was variable. For
example, we found 16464 sequences in the Ustillago may-
dis scaffold 1 29 − 2, (some of them are shown in Fig. 9).
The dimension of the found sequences is also variable, for
example, in Fig. 10 we show the dimension of some se-
quences according with its start possition (these sequences
belong to Linkage Group 1, which is a classification defined
in the domain).

According with our results, our algorithm was capable
to finding sequences of different dimension in polynomial

Dimension Start Position End Position Sequence

12 77142 77153 cagctgcagcag

12 82646 82657 cagcagctgctg

12 85520 85531 cagcagcagcag

12 85544 85555 cagcagcagcag

12 104554 104565 cagcagctgctg

12 155329 155340 cagcagcagctg

12 322568 322579 ctgctgctgctg

15 105088 105102 ctgctgctgctgctg

15 268708 268722 cagcagcagcagcag

18 112404 112421 cagcagcagcagcagcag

18 286708 286725 cagcagcagcagcagctg

21 77668 77688 ctgctgctgctgctgctgctg

21 121449 121469 ctgctgctgctgctgctgctg

24 143567 143590 ctgctgctgctgctgctgctgctg

39 139246 139284 ctgctgctgctgctgctgctgctgctgctgctgctgctg

57 160502 160558 ctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctg

Figure 9: Some Sequences Discovered in Ustillago maydis.

0

5

10

15

20

25

30

35

40

45

50

7
8
7
8

3
8
3
1
0
7

4
5
5
2
0
8

6
2
0
1
1
5

7
8
1
7
1
1

8
1
1
1
1
4

1
0
4
4
0
9
7

1
2
5
7
4
7
8

1
3
6
4
6
2
3

1
4
3
4
0
7
7

1
5
3
7
9
3
0

1
6
0
4
7
2
3

1
9
1
5
1
8
5

2
0
4
7
4
6
4

2
1
4
5
1
3
2

2
2
2
2
6
3
9

2
4
0
5
1
6
1

Figure 10: Example of Different Sequences Founded in
Linkage Group 1 of Ustillago maydis.

time. Moreover, the response time was bounded by a
quadratic polynomial with respect to the number of vertices.

Conclusions and Future Work
In this work we presented an approach to solve the inexact
subgraph isomorphism problem. We implement concepts
like a list code based representation, a step by step expansion
model without candidate generation and a prunning phase.
In our experiments we use a DNA domain, with three dif-
ferent databases, with the aims to get a good measure of the
proposed algorithm. Our experiments showed that our ap-
proach finds the mappings very quickly. Consequently, the
global performance is attractive. We also tested the scala-
bility of the algorithm, since the dimension of the databases
is considerable. Currently, we are working with our domain
experts to study how possible low-complexity sequences can
be found with IGM-COBRA.

We will continue our research testing our approach with
other algorithms focused to solve the inexact match problem
and also, we will do experiments using graphs with differ-
ent dimensions and topologies. Moreover, we are analysing
new problems where it is possible to use the IGM-COBRA
algorithm to find inexact instances.

Acknowledgments
We thank our domain experts Patricia Sanchez and Can-
delario Vazquez for their collaboration in the experiments
guidance and validation.

590

References
Brendan, D. M. 1981. Practial graph isomorphism. Con-
gressus Numerantium 30:45–87.
Cook, D. J., and Holder, L. B. 1994. Substructure dis-
covery using minimum description length and background
knowledge. Journal of Artificial Intelligence Research
(1):231–255.
Cordella, L. P.; Foggia, P.; Sansone, C.; and Vento, M.
1996. An efficient algorithm for the inexact matching of
arg graphs using a contextual transformational model. Pro-
ceedings of the International Conference on Pattern Recog-
nition 7276:180.
Cordella, L. P.; Foggia, P.; Sansone, C.; and Vento, M.
2001. An improved algorithm for matching large graphs.
Proceedings of the 3rd IAPR-TC15 Workshop on Graph-
Based Representations in Pattern Recognition.
Hlaoui, A., and Wang, S. 2002. A new algorithm for in-
exact graph matching. 16th International Conference on
Pattern Recognition.
Inokuchi, A., and Washio, T. M. 2003. Complete mining of
frequent pattern from graphs: Mining graph data. Machine
Learning, Kluwer Academic Publishers 321–354.
Kuramochi, M., and Karypis. 2002. An efficient algorithm
for discovering frequent subgraphs. Tech. Report. Dept. of
Computing Science, University of Minnesota.
Luks, E. 1982. Isomoprhism of bounded valence can be
tested in polynomial time. Journal of Computer and System
Sciences 25:42–65.
Michael, G. R., and David, J. S. 2003. Computers and
Intractability, A Guide to the Theory of NP-Completeness.
W. H. Freeman and Company.
Olmos, I.; Gonzalez, J. A.; and Osorio, M. 2005. Subgraph
isomorphism detection using a code based representation.
Proceedings of the 18th International FLAIRS Conference.
Ullman, R. J. 1976. An algorithm for subgraph isomor-
phism. Journal of the ACM 23(1):31–42.
Xifeng, Y., and Han, J. 2002. gspan: Graph - based sub-
structure pattern mining. Technical Report, University of
Illinois.

591

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

