
Generating Realistic Large Bayesian Networks by Tiling

Ioannis Tsamardinos Alexander Statnikov Laura E. Brown Constantin F. Aliferis
Vanderbilt University, Department of Biomedical Informatics, 2209 Garland Avenue, Nashville, TN 37232-8340

ioannis.tsamardinos, alexander.statnikov, laura.e.brown, constantin.aliferis@vanderbilt.edu

Abstract

In this paper we present an algorithm and software for gen-
erating arbitrarily large Bayesian Networks by tiling smaller
real-world known networks. The algorithm preserves the
structural and probabilistic properties of the tiles so that the
distribution of the resulting tiled network resembles the real-
world distribution of the original tiles. By generating net-
works of various sizes one can study the behavior of Bayesian
Network learning algorithms as a function of the size of the
networks only while the underlying probability distributions
remain similar. We demonstrate through empirical evaluation
examples how the networks produced by the algorithm enable
researchers to conduct comparative evaluations of learning al-
gorithms on large real-world Bayesian networks.

Introduction
A Bayesian network (BN) is a mathematical construct
that compactly represents a joint probability distribution P
among a set variables V . BNs are frequently employed for
modeling domain knowledge in Decision Support Systems,
particularly in medicine (Beinlich et al. 1989).

Learning a BN from observational data is an important
problem that has been studied extensively during the last
decade. One reason for this is because it can be used to
automatically construct Decision Support Systems. In ad-
dition, while still controversial, learning BNs is being used
for inferring probable causal relations since, under certain
conditions (Spirtes, Glymour, & Scheines 2000) the edges
in the graph of a Bayesian network have causal semantics
(i.e., they represent direct causal influences). For exam-
ple, in bioinformatics learning Bayesian networks have been
used for the interpretation and discovery of gene regulatory
pathways (Friedman et al. 2000).

Several algorithms for learning the complete BN from
data have been proposed in the literature the last two decades
(Spirtes, Glymour, & Scheines 2000; Cheng et al. 2002;
Tsamardinos, Brown, & Aliferis 2006). In addition, algo-
rithms have been proposed for learning interesting regions
of BNs (local BN learning) such as the Markov Blanket of
a target variable (Tsamardinos, Aliferis, & Statnikov 2003a)
or the network structure around a target variable of inter-
est (Tsamardinos et al. 2003b). The Markov Blanket is of

Copyright c© 2006, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

particular interest for variable selection for classification as
under certain conditions, it is the minimal-size, maximally-
predictive variable set (Tsamardinos & Aliferis 2003).

The main technique for evaluating and comparing such al-
gorithms is by simulation of data from a network of known
structure. Then, it is easy to compare the reconstructed net-
work as learnt by an algorithm with the true data-generating
network to assess the quality of learning. For the results of
the evaluations to carry to real-world data distributions the
networks used for data simulations have to be representa-
tive of the real-world examples. Typically, the networks em-
ployed for the data simulation are extracted from real-world
BN-based decision support systems.

While the above is the most common technique for eval-
uating learning algorithms, the size of the existing known
BNs is relatively small in the order of at most a few hundred
variables (see for example, the BN repository Elidan, 2001).
Thus, typically learning algorithms were so far validated on
relatively small networks (e.g., with less than 100 variables),
such as the classical ALARM network (Beinlich et al. 1989)
or other ”toy-networks”. Algorithms have also been devel-
oped to generate large random BNs. The BNGenerator sys-
tem is one example for generating large random BNs from a
uniform distribution (Ide, Cozman, & Ramos 2004). How-
ever, the BNGenerator system and other algorithms of this
type do not provide any guarantees that these networks re-
semble the networks of the distributions likely to be en-
countered in practice (Aliferis & Cooper 1994). The emer-
gence of datasets of very high-dimensionality poses signif-
icant challenges to the development of new learning algo-
rithms. However, the means to experiment with realistic net-
works of the sizes that appear in several domains is currently
impossible.

In this paper we present an algorithm and software for
generating arbitrarily large Bayesian Networks by tiling
smaller real-world known networks. The algorithm pre-
serves the structural and probabilistic properties of the tiles
so that the distribution of the resulting tiled network resem-
bles the real-world distribution of the original tiles. The
algorithm has already been proven valuable in conducting
large scale evaluation and comparative studies in our previ-
ous work. We prove the theoretical properties of the BN gen-
eration process. In addition, we present illustrative computa-
tional experiments that demonstrate the utility of the method

592

for studying BN learning algorithms in how the learning
quality and time complexity vary as a function of the number
of variables in the network, while the underlying probability
distributions remain similar.

Generation of Realistic BNs by Tiling
We denote a variable with an upper-case letter (e.g., A, Vi)
and a state or value of that variable by the same lower-case
letter (e.g., a, vi). We denote a set of variables by upper-
case bold-face (e.g., Z, Pai) and we use the correspond-
ing lower-case bold-face symbol to denote an assignment of
state or value to each variable in the given set (e.g., z, pai).
Important sets or mathematical concepts are denoted in cal-
ligraphic notation (e.g., V , E).

Definition 1. Let P be a discrete joint probability distri-
bution of the random variables1 in some set V and G =
〈V, E〉 be a Directed Acyclic Graph (DAG). We call N =
〈G, P 〉 = 〈V, E , P 〉 a (discrete) Bayesian network if 〈G, P 〉
satisfies the Markov Condition: every variable is indepen-
dent of any subset of its non-descendant variables condi-
tioned on its parents (Pearl 1988; Glymour & Cooper 1999;
Spirtes, Glymour, & Scheines 2000).

We denote the set of the parents of variable Vi in the graph
G as PaGi . By utilizing the Markov Condition, it is easy to
prove that for a Bayesian network 〈G, P 〉 the distribution P
of the variables V can be factored as follows:

P (V) = P (V1, . . . , Vn) =
∏

Vi∈V
P (Vi|PaGi) (1)

To represent a Bayesian network the structure (i.e., the
BN graph) and the joint probability distribution have to be
encoded; for the latter, and according to the above equation,
one is required to only specify the conditional probabilities
P (Vi = vi|PaGi = paj) for each variable Vi, each possible
value vi of Vi, and each possible joint instantiation paj of
its parents PaGi .

The general problem we address in this paper is the gen-
eration of a BN N = 〈G, P 〉 of arbitrary size such that its
distribution P is “realistic” and representative of the type of
distributions that are likely to be encountered in a specific
domain (e.g., medicine). Moreover, we would like to gen-
erate sequences of BNs N 1, . . . ,Nn of different sizes but
with similar distributional properties. Such a sequence can
then be used to study the behavior of a learning algorithm as
a function of the size of the network.

The approach we take to solve the above problem is
the following. We start with an available network N ′ =
〈V ′, E ′, P ′〉 (that is G′ = 〈V ′, E ′〉) whose distribution is as-
sumed to be a representative example of the distributions in
the given domain and likely to be encountered in practice
in data analysis problems. Such networks exist for several
domains such as medicine, agriculture, weather forecasting,
financial modeling, animal breeding, and biology to name a
few (see BN site repository Elidan, 2001). We then create

1Variables are interchangeably called nodes or vertices in the
context of a Bayesian network.

copies of these networks Ni = 〈Vi, Ei, Pi〉 each with vari-
able set Vi and edges Ei copies of V ′ and E ′. Finally, we
interconnect the copies by a few additional edges and tile
them together to create a new network N = 〈V, E , P 〉 with
variables V = ∪iVi and edges E = I ∪i Ei, where I is the
set of interconnecting edges. We will callN ′ the generating
network, the subnetwork Ni the ith tile, and N the output
network or simply the network.

The requirement of the above tiling process is that the (a)
structural and probabilistic properties of N are similar to
the generating networkN ′ while (b) the tiles are probabilis-
tically dependent of each other. The latter requirement is
necessary or else each tile would not be connected to any
other and could be learnt independently of any other tile. In
that case, learning the output network would be similar to
learning n times the generating network.

By the term structural properties we mean such quantities
as the average or median number of parents or children (fan-
in and fan-out degree), the average number of direct paths
connecting two nodes, etc. It is unknown which of these
quantities are important to a learning algorithm and should
be maintained in the output network. However, by tiling sev-
eral copies of a generating network N ′ to create the output
network N and keeping the structure in each tile the same
as in N ′ we expect that most of these quantities will remain
the same. Of course, structural properties that depend on the
number of variables in the network (e.g., the diameter of the
graph) will not stay constant.

To maintain the probabilistic properties in the tiled net-
work we impose the constraint that P (Vi) = P ′(V ′), i.e.,
we require that the marginal distribution of the variables Vi

in tile i is the same as the distribution of the corresponding
variables in the generating network. This way, the marginal
distribution of each tile is guaranteed to have a realistic dis-
tribution. It is not trivial to satisfy this property since the
addition of interconnecting edges may change the marginal
distribution of the variables in a tile.

The TileBN Algorithm
We now describe the TileBN algorithm for generating large
networks with the desired properties as described in the pre-
vious section. The algorithm accepts as input the originating
network N ′, the number n of tiles to create, and the param-
eter maxPa (standing for maximum parents) that determines
the connectivity between the tiles. It then creates copies of
N ′ corresponding to tiles Ni as described in the previous
section and interconnects them.

By Vi,j we denote the variable in the ith tile Vi whose cor-
responding variable in the originating network is V ′

j . Also,
we extend our notation to denote by PaGi,j the parents of
variable Vi,j . We will drop the superscript G when it is ob-
vious by the presence of one or two subscripts whether we
refer to the graph of the generating network G′ or of the out-
put network G. Finally, whenever the distribution of vari-
able Vj ∈ V ′ is equated with the distribution of Vi,j ∈ V we
mean that the probabilities of their corresponding values are
the same: P (Vj)=P (Vi,j) implies P (Vj = vj)=P (Vi,j =
vj), for all values vj of their common domains.

593

V1,1 V1,2

V1,3 V1,4 V1,5

V1,6

V1,7 V1,8

V2,1 V2,2

V2,3 V2,4 V2,5

V2,6

V2,7 V2,8

V3,1 V3,2

V3,3 V3,4 V3,5

V3,6

V3,7 V3,8

V4,1 V4,2

V4,3 V4,4 V4,5

V4,6

V4,7 V4,8

V1
' V2

'

V3
' V4

' V5
'

V6
'

V7
' V8

'

Generating Network

Figure 1: An example output of the TileBN algorithm. The
generating network is Asia (Lauritzen & Spiegelhalter 1988)
shown in the top right. The output network consists of four
tiles of Asia with the addition of several interconnecting
edges shown with the dashed edges.

Interconnecting the tiles properly is important for satis-
fying the property requirements of the algorithm. The tiles
are topologically sorted according to their index, i.e., tile
Ni is lower in the order than tile Ni+1. TileBN then adds a
number of randomly selected interconnecting edges. TileBN
may add the edge Vp,k → Vq,j if the following three require-
ments are satisfied:

1. p < q, i.e., the edge goes from a variable to a variable
belonging in a tile downstream.

2. Paj = ∅, i.e., the node V ′
j of the generating network that

corresponds to the endpoint of the edge Vq,j is a minimal
node in the generating network (it has no parents).

3. If there exist another edge Vp′,k′ → Vq,j′ to the same tile
q then j = j′, i.e., for each tile q only one minimal node
can receive tile interconnecting edges.
The first requirement guarantees that the interconnecting

edges will not create any cycles and that the final resulting
graph will be acyclic. The second and third requirements
will be used to determine the probabilistic properties of the
output network respectively. An example is shown in Figure
1. The generating network V is the Asia network (Lauritzen
& Spiegelhalter 1988) shown in the top right. The output
network has four tiles which are copies of the generating
one, each tile shown within a box. The dashed edges are the

tile interconnecting edges while the rest are copies of edges
in the generating network.

TileBN is shown in Algorithm 1. To interconnect the tiles
(Lines 4-8) a special node Vi,s is selected from each tile Vi,
such that V ′

s is minimal, to receive interconnecting edges.
Then, the number of parents pi of Vi,s is found by sampling
from a uniform discrete distribution U(0,maxPa). Subse-
quently, pi edges are added with end-points Vi,s and start-
points nodes randomly and uniformly selected from all tiles
Vq with q < i. After the interconnecting edges are in place
the structure of the output network is determined.

We now describe the determination of the conditional
probabilities of the output network (and thus, of its distribu-
tion, lines 9-15). Let us now consider a node Vi,j different
from the special node Vi,s. Vi,j then has parents Pai,j that
are copies of Paj since no interconnecting edges has been
added to it. We can then index the joint instantiations of both
Pai,j and Paj the same way and specify that

P (Vi,j |Pai,j) = P ′(V ′
j |Paj) (2)

That is, the conditional probability tables for each variable
Vi,j such that V ′

j is not minimal in the output network are
copies of the conditional probability tables of the variable
V ′

j in the generating network.
For any node Vi,s such that V ′

s is minimal and had its
parent set changed by the addition of interconnecting edges
we set the conditional probabilities P (Vi,s|Pai,s) so that the
following condition holds:∑

Pai,s

P (Vi,s|Pai,s)P (Pai,s) = P (V ′
s) (3)

where the summation is over all joint instantiations of
Pai,s. We next show that the above process guarantees that
P (Vi)=P ′(V ′) for each tile and present a procedure to se-
lect the conditional probabilities P (Vi,s|Pai,s) so they sat-
isfy Equation 3.

Maintaining the Probabilistic Properties
While Tiling

We will use the notation
∑

v to denote the sum over all val-
ues of v if it is a single variable, or over all joint instanti-
ations of v if it is a set of variables. The notation

∏
Vj∈V

denotes a product of factors, one for each member of V . Let
Vi,s denote the single node that may receive interconnecting
edges in tile Vi. Then,

P (Vi) =
∑
Pai,s

P (Vi|Pai,s)P (Pai,s)

and by factoring the probability P (Vi|Pai,j) in a topological
order

=
∑
Pai,s

∏
Vi,j∈Vi

P (Vi,j |Pai,j)P (Pai,s)

=
∏

Vi,j∈Vi

j 6=s

P (Vi,j |Pai,j)
∑
Pai,s

P (Vi,s|Pai,s)P (Pai,s)

594

Algorithm 1 TileBN Algorithm
1: procedure TileBN(N ′ = 〈V ′, E ′, P ′〉, n, maxPa)
2: Vi ← copy of V ′, Ei ← copy of E ′, i = 1, . . . , n.

% Initializing the output network 〈V, E , P 〉
3: V = ∪iVi, E = ∪iEi

% Add Interconnecting Edges
4: for every tile Vi, i ≥ 2 do
5: Select Vi,s from Vi s.t. V ′

s is minimal
6: pi ← UniformDiscrete(0,maxPa)
7: Add pi number of edges to E with end node

Vi,s and the start node selected randomly and
uniformly from within any Vq with q < i

8: end for
% Determine Conditional Probability Tables

9: for all Vi,j ∈ V do
10: if j 6= s then
11: P (Vi,j |Pai,j) = P ′(V ′

j |Paj)
12: else (s = j)
13: P (Vi,s|Pai,s) = SOLVEEQ (Vi,s, Pai,s)
14: end if
15: end for
16: return N = 〈V, E ,

∏
Vi,j∈V P (Vi,j |Pai,j)〉

17: end procedure

18: function SOLVEEQ(T , PaT)
% Find a random solution for the condition of Eq. 3

19: ap ← P (PaT = p),∀p
20: bt ← P (T = t),∀t
21: x′tp ← UniformContinuous(0, 1),∀t, p
22: Solve the system of equations for rt and cp ∀t, p∑

p apx
′
tprtcp = bt,∀t∑

t x′tprtcp = 1,∀p
Subject to the constraints
rt ≥ 0, cp ≥ 0,∀t, p

23: return {P (T = t|PaT = p) = x′tprtcp,∀t, p}
24: end function

The last equation is because for every Vi,j with j 6= s the
parents Pai,j are within the ith tile and so Pai,j∩Pai,s = ∅.
Also, Vi,j 6∈ Pai,s since the parents of Vi,s are not within tile
i. So, all factors P (Vi,j |Pai,j), j 6= s can be taken out of the
sum. Finally, by combining the above result with Equations
2 and 3 we get that

P (Vn) =
∏

Vj∈V′,j 6=s

P ′(V ′
j |Paj)P ′(V ′

s) = P ′(V ′)

Satisfying the Conditions for Tiling
We now present a method for satisfying the conditions suf-
ficient for out method to produce a network with the desired
properties. Whenever a node does not receive any intercon-
necting edges then its conditional probability tables are set
according to Equation 2 by directly copying the correspond-
ing table from the generating network.

However, for a node Vi,s that does receive interconnecting
edges it is not trivial to satisfy Equation 3. First notice that
P (Pai,s) can be calculated from the distribution of only the

tiles Vq with q < i, i.e., from the tiles lower in the topolog-
ical order, by utilizing the Markov Condition. For the first
tile there are no incoming interconnecting edges to it and
so P (V1,s) = P ′(V ′

s). For the second tile all members of
Pa2,s are in tile V1 and so P (Pa2,s) can be calculated from
the generating network by running an inference algorithm
(exact or approximate). Then, one can solve Equation 3 to
determine P (V2,s|Pa2,s) (as shown below). For the third
tile P (Pa3,s) can be calculated by inference on the subnet-
work of the first two tiles and so on. Given the above re-
cursive method, the P (Pai,s) can be considered fixed when
one is trying to solve Equation 3 for a tile Vi.

Let us now denote with xtp = P (Vi,s = vt|Pai,s =
pap

i,s), where vt is the tth value of Vi,s and pap
i,s the pth

joint instantiation of Pai,s. Similarly, let ap = P (Pai,s =
pap

i,s) and bt = P (V ′
s = vt). Then, Equation 3 can be

rewritten as the set of equations:∑
p

apxtp = bt,∀t

Also, for xtp to be conditional probabilities they have to be-
long in [0, 1] and the following holds for any p:∑

t

xtp = 1,∀p.

This gives us a set of |Vi,s|+|Pai,s| equations and
|Vi,s|×|Pai,s| unknowns xtp, where |S| denotes the cardi-
nality of the domain of the variable or set of variables S.

One could solve this underconstrained system of linear
equations for xtp. In particular, we would like to select ran-
domly a solution to the system of equation as to not favor a
specific type of networks and conditional probability distri-
bution tables. Most linear equation solvers will arbitrarily,
but not randomly, select a solution for the system (e.g. solve
for the first |Vi,s| + |Pai,s| values of the unknowns and set
the rest to zeros).

To find a random solution to the system of equations we
take the following approach. We randomly select values x′tp
uniformly from [0, 1]. The random values will most prob-
ably not be solutions to the equations. However, they can
become a solution if they are appropriately rescaled. We ex-
press the rescaling factors as the unknown quantities rt and
cp and rewrote the equations as:∑

p

apx
′
tprtcp = bt,∀t

∑
t

x′tprtcp = 1,∀p

i.e., we replaced each unknown quantity xtp with the quan-
tity x′tprtcp. We also need to introduce the constraints:

rtcp ≥ 0,∀t, p, or (rt ≥ 0, cp ≥ 0,∀p, t)

to ensure that xtp = x′tprtcp ≥ 0 (xtp is automatically ≤ 1
since

∑
t xtp = 1,∀p)

Now the underconstrained linear system has become a
quadratic system of |Vi,s| + |Pai,s| equations and |Vi,s| +
|Pai,s| unknowns (the quantities rt and cp), and |Vi,s| ×

595

20 30 40 50 60
0

50

100

150

200

Number of Variables

T
im

e
Time vs. Num. of Vars.

GS

TPDA

MMHC

(a)

10
1

10
2

10
3

10
0

10
2

10
4

10
6

Log Number of Variables

Lo
g

T
im

e

Time vs. Num. of Vars.

GS

TPDA

MMHC

(b)

Figure 2: Comparison of execution time of several algo-
rithms on different networks. (a) Time of the Greedy Search
(GS), Three Phase Dependency Analysis (TPDA), and Max-
Min Hill-Climbing (MMHC) algorithms over several non-
tiled networks: Child, Insurance, Mildew, Alarm, Barley,
and HailFinder. (b) Time of the GS, TPDA, and MMHC al-
gorithms over 4 versions of the Hailinder network: the orig-
inal and tiled versions consisting of 3, 5, and 10 tiles.

|Pai,s| nonlinear constraints which can be solved by any
standard method for solving constrained quadratic systems
of equations. The above procedure is shown in Algorithm 1,
procedure SolveEq.

Application and Analysis with TileBN
The TileBN algorithm is implemented in Mathworks Matlab
(The Mathworks Inc. 2003) and is publicly available and
maintained as part of the Causal Explorer system (Aliferis
et al. 2003, http://www.dsl-lab.org/causal explorer). The
generating BN is specified in HUGIN (Jensen et al. 2002)
format, and a simple parser was written to read HUGIN BNs
in a custom Matlab format. We used an iterative solver from
Matlab Optimization toolbox employing Gauss-Newton al-
gorithm with BFGS updating scheme.

We have found TileBN a useful algorithm for simulating
large BNs in several occasions in our prior work. We used
an earlier version of TileBN for comparing different Markov
Blanket learning algorithms in large (5000 variables) net-
works (Tsamardinos, Aliferis, & Statnikov 2003a), compar-
ing many BN learning algorithms (Brown, Tsamardinos, &
Aliferis 2005; Tsamardinos, Brown, & Aliferis 2006), and
examining the time efficiency and quality of a local BN
learning algorithm to reconstruct local regions in a large
(10000 variable) network (Tsamardinos et al. 2003b).

To illustrate the use and benefit of the TileBN we present
a series of experiments over several tiled networks. The ex-
periments are run using several algorithms: Max-Min Hill
Climbing (MMHC) (Tsamardinos, Brown, & Aliferis 2006),
Greedy Search (GS), and Three Phase Dependency Analysis
(TPDA) (Cheng et al. 2002). All algorithms’ performance
results on a given network were averaged over 5 datasets
sampled from the distribution of that network. The datasets
all have 1000 samples.

We first examine how the execution time of an algorithm
scales as the number of variables in the network to be learned
increases. The execution time is plotted over several net-
works (see Figure 2(a)). Specifically, the following networks

0 200 400 600
10

0

10
2

10
4

10
6

Number of Variables

Lo
g

T
im

e

Time vs. Num. of Vars, GS

A

I

H

(a)

0 200 400 600
0

500

1000

1500

Number of Variables

S
H

D

SHD vs. Num. of Vars., GS

A
I
H

(b)

Figure 3: The performance of the Greedy Search (GS) al-
gorithm over three different series of tiled networks, Alarm
(A), Insurance (I), and HailFinder (H), each series contain-
ing 1, 3, 5, and 10 tiled networks. (a) Time of the GS algo-
rithm. (b) SHD of the GS algorithm.

were used in the analysis, listed in order of increasing num-
ber of variables (number of variables given in parenthesis):
Child (20), Insurance (27), Mildew (35), Alarm (37), Bar-
ley (48), and HailFinder (56). From this presentation of the
data it is difficult to identify trends as the number of vari-
ables increase. This is due in part to the fact that the diffi-
culty of learning a network is not only a function of its size,
but also of its distributional properties which varies among
arbitrary networks. However, when the execution time is
plotted across tiled networks of different sizes trends in the
performance become observable as the distributional prop-
erties remain similar. In Figure 2(b), the same algorithms
are compared for different networks that contain 1, 3, 5, and
10 tiles of the original HailFinder network.

Another example is shown in Figure 3. Specifically, Fig-
ure 3(a) plots the time of the Greedy Search (GS) algorithm
for three series each containing 1,3,5, and 10 tiles of the
following networks respectively: Alarm (A), Insurance (I),
and HailFinder (H). This plot shows the time complexity of
the GS algorithm to be increasing more than linearly with
the number of variables (notice the y-axis scale is logarith-
mic in this graph). Similarly, a graph plotting the Structural
Hamming Distance (SHD) versus the number of variables in
Figure 3(b). SHD is a measure of the structural quality of the
learned network that accounts for missing and extra edges as
well as errors of edge orientation; for more information on
this measure see (Tsamardinos, Brown, & Aliferis 2006).
The number of errors (i.e., the SHD) increases linearly with
the number of variables.

In addition, the relative performance of one algorithm ver-
sus another can be studied. The three series of tiled networks
from above (Alarm, Insurance, HailFinder) are also used in
this example. In Figure 4(a), the normalized time of the GS
algorithm is plotted for each of the series of networks. From
this figure you can conclude that the ratio of time complex-
ities of GS with MMHC increases exponentially with the
number of variables. A similar graph is plotted for the nor-
malized SHD as well in Figure 4(b). Here the relative quality
between the two algorithms is close to constant as the num-
ber of variables increase. Thus, while the relative learning
quality between the algorithm remains constant, MMHC is

596

0 200 400 600
10

-1

10
0

10
1

10
2

Number of Variables

Lo
g

N
or

m
al

iz
ed

 T
im

e
Norm. Time vs. Num. of Vars.

Greedy Search, Tiled Networks

A

I

H

(a)

0 200 400 600
0

1

2

3

Number of Variables

N
or

m
al

iz
ed

 S
H

D

Norm. SHD vs. Num. of Vars.
Greedy Search, Tiled Networks

 A

I

H

(b)

Figure 4: The comparative performance of the Greedy
Search (GS) versus MMHC algorithms over three different
series of tiled networks, Alarm (A), Insurance (I), and Hail-
Finder (H), each series containing 1, 3, 5, and 10 tiled net-
works. (a) Normalized Time of the GS algorithm. (b) Nor-
malized SHD of the GS algorithm.

more time efficient as the number of variables increases.
Two demonstrated uses of the TileBN networks are for

studying how the learning quality and time complexity scale
and algorithmic comparisons. Whether the repetition of the
network structure affects and/or biases these evaluations is
still an open question to be pursued in further research.

Conclusions
In this paper we presented an algorithm called TileBN, pub-
licly available in the Causal Explorer library, for generating
arbitrarily large Bayesian Networks by tiling smaller real-
world known networks. The algorithm preserves the struc-
tural and probabilistic properties of the tiles so that the dis-
tribution of the resulting tiled network resembles the real-
world distribution of the original tiles. This is an advance-
ment over other random BN generation methods that pro-
vide no guarantees about their output networks. We also pre-
sented illustrative examples how the algorithm can be used
to study the behavior of BN learning algorithms as a func-
tion of the size of the network learnt.

Aknowledgements
The first and last author were supported by NLM grant LM-
7948-01; NLM grant T15 LM07450-01 supports the third.

References
Aliferis, C. F., and Cooper, G. 1994. An evaluation of an al-
gorithm for inductive learning of bayesian belief networks
using simulated data sets. In Proceedings of Uncertainty in
Artificial Intelligence, 8–14.
Aliferis, C. F.; Tsamardinos, I.; Statnikov, A.; and Brown,
L. E. 2003. Causal explorer: A causal probabilistic net-
work learning toolkit for biomedical discovery. In Interna-
tional Conference on Mathematics and Engineering Tech-
niques in Medicine and Biological Sciences (METMBS
’03), 371–376.
Beinlich, I.; Suermondt, G.; Chavez, R.; and Cooper, G.
1989. The alarm monitoring system: A case study with
two probabilistic inference techniques for belief networks.

In 2nd European Conference in Artificial Intelligence in
Medicine, 247–256.
Brown, L.; Tsamardinos, I.; and Aliferis, C. 2005. A com-
parison of novel and state-of-the-art polynomial bayesian
network learning algorithms. In Proceedings of the Twen-
tieth National Conference on Artificial Intelligence (AAAI),
739–745. AAAI Press.
Cheng, J.; Greiner, R.; Kelly, J.; Bell, D.; and Liu, W. 2002.
Learning bayesian networks from data: An information-
theory based approach. Artificial Intelligence 137:43–90.
Elidan, G. 2001. Bayesian network repository.
http://www.cs.huji.ac.il/labs/compbio/Repository/.
Friedman, N.; Linial, M.; Nachman, I.; and Pe’er, D. 2000.
Using bayesian networks to analyze expression data. Jour-
nal of Computational Biology 7(3/4):601–620.
Glymour, C., and Cooper, G. 1999. Computation, Causa-
tion, and Discovery. Menlo Park, CA: AAAI Press / MIT
Press.
Ide, J.; Cozman, F.; and Ramos, F. 2004. Generating ran-
dom bayesian networks with constraints on induced width.
In Proceedings of the 16th European Conference on Artifi-
cial Intelligence (ECAI-04), 323–327. IOS Press.
Jensen, F.; Kjærulff, U.; Lang, M.; and Madsen, A. 2002.
Hugin - the tool for bayesian networks and influence di-
agrams. In First European Workshop on Probabilistic
Graphical Models, 212–221.
Lauritzen, S., and Spiegelhalter, D. 1988. Local compu-
tations with probabilities on graphical structures and their
application on expert systems. Journal of the Royal Statis-
tical Society B 50:157–224.
Pearl, J. 1988. Probabilistic Reasoning in Intelligent Sys-
tems. San Mateo, CA: Morgan Kaufmannn Publishers.
Spirtes, P.; Glymour, C.; and Scheines, R. 2000. Causa-
tion, Prediction, and Search. Cambridge, MA: MIT Press,
2nd edition.
The Mathworks Inc. 2003. Matlab.
http://www.mathworks.com.
Tsamardinos, I., and Aliferis, C. F. 2003. Towards prin-
cipled feature selection: Relevancy, filters and wrappers.
In Ninth International Workshop on Artificial Intelligence
and Statistics (AI and Stats 2003).
Tsamardinos, I.; Aliferis, C.; and Statnikov, A. 2003a.
Time and sample efficeint discovery of markov blankets
and direct causal relations. In Proceedings of Ninth ACM
SIGKDD International Conference on Knowledge Discov-
ery and Data Mining, 673–678.
Tsamardinos, I.; Aliferis, C.; Statnikov, A.; and Brown, L.
2003b. Scaling-up bayesian network learning to thousands
of variables using local learning techniques. Technical Re-
port TR-03-02, Vanderbilt University.
Tsamardinos, I.; Brown, L.; and Aliferis, C. 2006. The
max-min hill-climbing bayesian network structure learning
algorithm. To Appear: Machine Learning.

597

