Supporting Systematic Usage of Context in Web Applications

Joachim Wolfgang Kaltz and Jiirgen Ziegler
IIIS, University of Duisburg-Essen (Campus Duisburg)
Lotharstrasse 65, D-47057 Duisburg, Germany
{joachim kaltz,juergen.ziegler } @uni-due.de

Abstract

Context can be seen as a paradigm aiming to improve
user interaction with software. For Web applications
in particular, the issues of content explosion and tech-
nological constraints need to be addressed better. This
paper discusses an approach for engineering context-
aware, adaptive Web applications. This approach inte-
grates context knowledge with domain ontologies, and
allows adaptation to be specified for each aspect of ap-
plication generation. We further describe CATWALK,
our implemented framework, which makes use of the
context models to enable adaptivity in applications.

Introduction

The amount of information provided to users of Web-based
systems is increasing rapidly, often resulting in confusion as
to which information is relevant. In addition, though Web-
based systems have traditionally focused on information de-
livery, they are increasingly used as a platform for providing
further types of services, often of an interactive nature. This
raises the question of which services to provide in which sit-
uation, and how to integrate them as seamlessly as possible.
The amount of effort a user expends to find information and
to use services must be reduced: software should “require
human attention for only critical aspects of task execution
that require their input” (Thayer & Steenkiste 2003).

The concept of context is now used in a variety of fields,
see, e.g., (Brézillon er al. 2004), (Beigl et al. 2003) or
(Hernadvolgyi et al. 2004), often to improve user interac-
tion with a system. Web applications (and thus Web Engi-
neering), in our view, require a specific focus. Web-based
systems have several particular characteristics, of which the
“multiplicity of user profiles and the varied operational envi-
ronments” (Deshpande & Murugesan 2001) are particularly
relevant regarding context usage. The fashion in which the
system will be used is less predictable than in classic soft-
ware scenarios: though Web applications are often targeted
at certain groups of users, the actual type of user and the
usage scenarios can not be known precisely.

Using context systematically in Web Engineering is a
challenging but worthwhile effort, as the goal is to positively

Copyright (© 2006, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

637

affect quality of Web-based systems, specifically usability
and efficiency aspects as outlined in ISO 9126. The goal of
adapting and optimizing the application to context is to make
the application more operable for the user. This is of partic-
ular interest in scenarios where the user has less time for
an interaction and/or less powerful devices. The application
hopefully becomes easier to understand and to learn. Opti-
mizing the application in this regard would also positively
influence Web performance. The tailored offering decreases
Web traffic, as less irrelevant information is exchanged. The
user achieves her goals more quickly, so less interaction with
the system is required.

In previous work (Kaltz, Ziegler, & Lohmann 2005), we
describe a conceptual model where context knowledge is
integrated with domain knowledge, and represented in on-
tologies. Additional challenges, which we now address in
this paper, are to describe how context is then used within
a Web application and how such a usage can be systemati-
cally supported in a run-time environment. We discuss our
CATWALK! system, which is based on an extensible archi-
tecture utilizing model artefacts. The system can be used
as a framework to implement adaptive prototypes for Web
software. A corresponding prototype, notably demonstrat-
ing service incorporation, is shown as illustration.

Scenario

Consider a technician responsible for maintaining industrial
installations. The technician uses her company’s Web-based
system in different situations. When in the office, she ac-
cesses an Intranet portal via her desktop browser to gather
information regarding the company’s products, to update the
accountancy of her work, etc. When away from the office,
she can use her PDA to check and update her appointment
list. When visiting an installation, she may scan the installed
product with an integrated RFID-reader in her PDA which
reads the product identification. The device then retrieves
all relevant details about this product from the company’s
database, via a Web Service, assuming the technician has
network access at this site, e.g., via WLAN. If furthermore
the system knows (or assumes) the user’s current task is to
perform a maintenance inspection, it can provide in addition

!Context-aware Adaptation through Transformations for Web
Applications Leveraging Knowledge

a dynamically generated graphical user interface for regulat-
ing the inspected product via a network interface. Once the
technician has returned to the office, if the PDA is used, the
system might propose a synchronization service of any work
steps performed while offline.

To adapt its offering according to the situation, the sys-
tem needs to know the context, such as the role of the user
(technician) or the hardware device used (desktop, mobile
device). The location is also important, although coarse-
grained in this scenario: in the office, or away from the
office. The current task (make a maintenance inspection,
check for appointments, etc.) can likewise be used as in-
put to adapt the system, and may thus also be considered
context. Time information can be used to further fine-tune
the offering: if the current time is within usual maintenance
hours, it is more likely the user is making an inspection
call, so this option might be proposed first. If not, another
option, e.g., “update appointment schedule”, might be pre-
sented first.

Generally speaking, the system can attempt to provide the
most likely features in a given situation; however it should
not disable other possible features, as the precise context of
usage can not be known for certain.

Context in Web Engineering

Context-awareness can be used for adaptation in different
aspects of a Web application; we summarize potential effects
in Table 1.

Aspect Adaptation

navigation (i) show or hide parts of the navigation
structure,
(ii) dynamically (re-)construct the navi-
gation structure,
(iii) offer additional links (e.g., recom-
mended links).

content (1) select relevant documents and ser-
vices, rank them,
(ii) adapt the resources themselves, by
selecting document parts and integrating
them into a final document,
(iii) adapt the parameters of integrated
services according to context.

presentation | (i) adapt the layout and other user inter-
face characteristics,
(ii) adapt to the (potentially changing)
constraints of the user’s physical device.

Table 1: Adaptation effects in a Web application

By service we understand a mechanism through which
the application provides the user with a dynamic offering:
e.g., areservation service through which the user can book a
flight. Typically, the Web application presents such a service
to the user, and to implement the service relies on an actual,
back-end service, which is either locally available or is a
third-party offering. In our approach, we implement such
offerings via Web Services (in the W3C sense).

638

Previous work (Kaltz, Ziegler, & Lohmann 2005) pro-
vides details on our approach to modeling context knowl-
edge. A possible representation of knowledge for the exam-
ple scenario is shown in Fig. 1. In the underlying model, the

Context Category Hardware device

Device Type

Context Category Process&Task

update
appointments

get technical
manual
get maintenance

Domain Ontology

Figure 1: Context knowledge for the example scenario

types of product (e.g., “elevator”) are domain knowledge,
as are instances of products (“Elevonic™). Services such as
“get technical manual” are associated. Context knowledge
is modeled as a structuring of context factors and relevance
relationships, e.g., for the task “inspection”, the concept
“Product” is deemed highly relevant; the opposite is like-
wise true. If the hardware device is “mobile”, the task “in-
spection” is somewhat relevant. Likewise, if time is within
working hours, the same task is relevant.

In the following, we discuss an approach to modeling
Web applications which integrates the specification of adap-
tation to context. Our work is situated within the larger
scope of the WISE research project?, which aims to provide
a methodology for the systematic development of complex
and dynamic Web-based applications. Our contribution to
this project is to account for context and enable its usage in
run-time Web applications, by augmenting the methodology
as shown in Fig. 2.

Conceptual Navigational View Presentation
Model model model model
Modeling of De[f.lmtl;m t?'inta Vi Definition of Deﬂé‘[‘)‘;’" of
domain ontology gational structure views .
and composition characteristics
1
Modeling of Adaptation Specifications
context ontologies
and relevanci Navigation View Presentation
relationships adaptation adaptation adaptation
| Model Repository |

Figure 2: Context modeling in the WISE methodology

2Web Information and Service Engineering, BMBF funded
project (Nr. 01ISC30F), see http://www.wise-projekt.de

Application Models and Context

The domain ontology contains the conceptual knowledge
and references to pieces of content: text elements, docu-
ments, images and service descriptions. The ontology is
represented in OWL. Context factors are categorized and
also represented in ontologies. Furthermore, relevance re-
lationships are modeled. Such a relationship is a weighted
association between ontology entries, and may involve two
or more entries, of arbitrary types.

The navigation model describes navigation and composi-
tion structures, and is built upon entries of the domain on-
tology. The model consists of relations describing targets
for navigation nodes. The targets may refer to known navi-
gation or content elements of the application. The target of
a relation may also refer to an adaptation specification (see
below), in which case the target is determined by adaptation.

The view model allows to specify which elements of the
navigation model are to be viewable in which context. The
presentation model in turn describes the look & feel of the
Web application. The model associates style information
with elements used in the navigation model. This associa-
tion may refer to an adaptation specification, in which case
the style information is determined by adaptation. This is
possible because style entries can be determined to be in a
contextual relationship in the same manner as content en-
tries. Style entries refer to CSS classes, allowing to delegate
the actual design to CSS files.

Adaptation Specifications

An adaptation specification determines, on the one hand,
which sort of information is to be retrieved or generated for
a particular usage in the application, and, on the other hand,
how the modeled relevance relationships are to be used in
combination with the ontological knowledge to determine
contextual relations in a particular situation. An adaptation
specification has the following properties (see also Fig. 3):

e the types of items to be computed;
e the maximum number of items;
e the context relevance threshold;

e a list of ontologies. If specified, all retrieved items must
belong to one of these ontologies;

e a list of context categories. If specified, only these cate-
gories will be considered for determining context-relevant
information;

e a list of “pre-adaptation” and /or “post-adaptation” items,
which are fixed domain items to be retrieved, but only
when context-relevant items are found;

e a list of domain exploration properties, defining ontology
exploration strategies for computing contextually relevant
items; i.e., to find, in addition to items involved in a (mod-
eled) relevance relationship, items in specific ontological
relations with these. Each property defines:

— a type of relation in the ontology that should be fol-
lowed. The type name may be arbitrary, in which case
the name can be used for (semantically free) lookup in
the ontology; or a name with predefined meaning (e.g.,

639

“superclass”) can be used, allowing a more intelligent
adaptation mechanism;

— the depth of exploration for this relation;

— the percentage the contextual relationship remains rel-
evant upon each level of relation following.

,

’

Figure 3: Adaptation specification definition

System Design & Implementation

We now describe CATWALK, our framework for context.
It supports the systematic usage of adaptation in Web ap-
plications, by providing run-time components which make
use of the artefacts resulting from application modeling as
described above.

Apache Cocoon as Foundation

We view Apache Cocoon as a particularly appropriate
foundation for generating context-aware Web applications.
Adaptation can be achieved by sequencing XML transfor-
mations through controller logic, as in (Fiala et al. 2004):
“According to the user/platform profile [document genera-
tion] is subdued to a series of XSLT transformations, each
considering a certain adaptation aspect”.

Our work generalizes this approach: each step of the
application generation process is an XML transformation,
whereas this transformation can be specified by XSLT in-
structions or by a custom (Cocoon-based) “transformer”
component. If the functionality a transformation step must
provide is well-determined, it can be specified as an XSLT
stylesheet, XSLT being a general purpose XML transforma-
tion language. If instead the functionality required in a pro-
cessing step is complex (e.g., to integrate arbitrary adapta-
tion results), a custom transformer component is used. The
generation process is specified as Cocoon pipelines.

Components for Context

CATWALK consists of components for context, XSLT
stylesheets, and pipeline fragments which define processing
steps integrating these components. The components in ef-
fect augment Cocoon; i.e., they are extensions of existing
Cocoon component types, and thus may be used within reg-
ular Cocoon processing. Fig. 4 describes the CATWALK
architecture and a typical processing flow in this architec-
ture. The client request is matched in a Cocoon pipeline and
processing flows through custom components, ultimately re-
sulting in a response to the client (e.g., a page of a Web site).

Model Repository]
Navigation D Content D Service D View D XSL
Transformer |V |Transformer |V (Transformer |V |Transformer|V' | Tra
g D N Website
Request S - 5 / Y =
E> Context TSl ¥ =
Extractor “u gl i l
Client. Context |__,| Context |,__| Adaptati A -
Request Reasoner State Engine
Manager XSL templates
‘ Template ’h
Cocoon-Pipeline

Figure 4: CATWALK architecture

Each component implements a specific concern, in the
sense of the separation of concerns architectural design prin-
ciple (Fielding & Taylor 2002), and is realized by one or
more Java classes and possibly additional artefacts (such as
XSLT stylesheets).

The ContextStateManager handles access to the context,
that is, it allows other components to obtain information
about context, and stores any (present and past) context
which has been recognized. The framework provides a de-
fault implementation which handles storage via the current
Web session of the user.

The RequestContextExtractor is responsible for determin-
ing the context of the user’s current request; that is, for trans-
lating any parameters of the request (present in the URL and
in the protocol) into the terminology and granularity used in
the application models. Cocoon configuration mechanisms
are used to specify which implementation accomplishes the
translation for which category of context.

The RequestContextExtractor transmits the current con-
text information to the ContextReasoner. This component
in turn is responsible for determining the degree of activity
of the domain and context ontology elements; for this deter-
mination, varying implementations may use different tech-
niques, such as spreading activation, and/or heuristics based
on analyzing past context activation degrees in addition to
currently recognized factors. The default implementation
uses present and past user navigation to compute the domain
context, and sets the other sorts of context according to cur-
rent request parameters. The ContextReasoner then updates
context state via the ContextStateManager.

The AdaptationEngine computes items which are appro-
priate to the current context. A further functionality is to
support context-sensitive service integration, by computing
default values for service parameters according to context.
CATWALK provides a default implementation which im-
plements the strategy defined by an adaptation specification
such as described above. The JENA toolkit (McBride 2001)
is used for reading the ontologies, to traverse them and to
search for specific statements.

The actual application generation is achieved by several
transformer components, each of which may call upon the
AdaptationEngine. The NavigationTransformer generates
navigational information for the current request, meaning
a structured representation of the nodes that the user can

640

reach from the current position; some of these nodes may
be generated according to context. The role of the Content-
Transformer is to generate content appropriate to the current
node. Some content items associated to the node may be
placeholders for adaptation, in which case the component
delegates to the AdaptationEngine. Any pieces of content
which refer to services are now processed by the Service-
Transformer, which has two roles:

o if the service requires user interaction, the transformer de-
termines the required parameters for this service, com-
putes default values according to context (by using the
AdaptationEngine) and generates an XML representation
such that an ulterior GUI generation step will have suffi-
cient information about the service;

e if the service is to be called, the transformer calls the
Web Service and converts its response into a form which,
again, may be used by a GUI generation step.

The ViewTransformer is the last custom transformation
component in the CATWALK processing sequence; it is re-
sponsible for determining view and presentation information
for the generated pieces of content. As discussed above, pre-
sentation determination can be guided by context to deter-
mine an appropriate style. The XML representation output
by this component is then usable by XSLT stylesheets for
GUI generation.

Prototype Web Application

As proof of concept of the framework for context, a pro-
totype Web application representing a fictitious e-commerce
site was modeled. Navigation adaptation is illustrated in Fig.
5. In this demonstration, the context is “summer”; i.e., in the

I Latwalk Prototype - Moalla Farelos

G- -8

BT y p——

QUICKfoot quickfoot.org: the pl
——

not_

Home It is really important to wear appropriate clothes.

Clothing tips

Qutdoor running shoes
Sports shoes

Shoes

Wear

Stores

Contact

Figure 5: Navigation adaptation demonstration

“time” context ontology the instance “summer” of “Season”
is active. The navigation model contains, for the naviga-
tion node labeled as “Clothing tips”, an adaptation specifi-
cation designed to retrieve domain elements which can be
offered as links. As a consequence, CATWALK adds within
this navigation node additional navigation possibilities in the
order of context-relevance. The node labeled as “Outdoor
running shoes” is considered most relevant, as it is in a di-
rect relevance relationship with “summer” in the model. The
adaptation specification in this scenario instructs the system

to explore super-class relations up to a depth of two, there-
fore two levels of super-classes of “Outdoor running shoes”
are also contextually relevant, however to a lesser degree, as
this specification states a loss of relevance for such an onto-
logical relationship.

Content and presentation adaptation are achieved simi-
larly, as is service selection. Regarding service integration,
additional adaptation is possible. A Web Service represent-
ing the functionality of finding auctions of clothing items
is used; it provides a “search” operation with 3 parameters:
category, season and size. In the application model, knowl-
edge of the service’s existence is specified, including con-
textual hints for the parameters: the parameter “Category” is
associated with a concept in the domain ontology (“wear”);
the “Season” with the time ontology (as a category of con-
text); “Size” refers to an arbitrary attribute with this name.

When the user navigates to “Stores”, the system generates
an interface to the auction service, as this service is associ-
ated to this node in the navigation model. The Adaptatio-
nEngine can provide default parameters as shown in Fig. 6.
The values are computed according to context; this com-

Gm eatate et Gfe et D e =T

& & T e e - [

?'ﬁ::f-“t quickfoot.org: the place for outstanding wear
—— Run, Steffen Lohmann, run

Visit one of our retail outlets. Or perhaps you would like to try our
auction service ?

Category lutdoorRunningShoe

Season jsummer

Size HO

_Submet |

;'.A\:icas Pump-Nerve :cutddorRunningShoefAU F-dock [430.40 EUR|
|Acicas Pump-Nerve++ outdoorRunningShoe 40 d-river|601.99 EUR|

Home
Clothing tips
Wear
Stores
Duisburg
Contact

Figure 6: Service adaptation demonstration

putation is guided by the contextual hints. In the scenario
shown here, the user has recently viewed product informa-
tion on “Outdoor running shoes”, either by menu navigation
or by following a recommended link such as generated by
navigation adaptation. Furthermore, the user has identified
herself to the system. The “Category” field thus contains
the most relevant domain context (resulting from user nav-
igation); in this case the “Outdoor running shoes”, being a
sub-category of wear. The “Season” is read from the cate-
gory “time” within the context state; the “Size” is found in
the user context, which includes the user’s known attributes.
In the screenshot, the user has furthermore called the ser-
vice; results are rendered according to a “table” user inter-
face template.

Context in the Engineering Process

The people involved in the Web application development
process can extend conventional features with adaptation to
context by using the methods described in this work, and by
basing the run-time application on the CATWALK frame-
work. This process can involve several roles:

1. context-modelers define factors within context categories
and their relations with the domain model;

641

2. adaptation modelers specify where adaptation is to occur

in the application, what sort of adaptation is desired and
what strategies are to be used;

3. context-sensing implementors configure, complete or ex-

tend the components responsible for sensing;

4. adaptation implementors extend or replace the adaptation

component to modify ontology inference mechanisms;

5. application testers and quality experts use the generated

application as a prototype to verify the effects of context
on the application.

Roles 3 and 4 are optional: the framework contains a default
implementation and interpretation for sensing and adapta-
tion. This means that adaptive Web applications can be
achieved by means of context and navigation description
only, without requiring additional software programming.
This in turn allows for rapid prototyping of such applica-
tions; the prototyping is further supported by a context sim-
ulation feature. In particular, this provides Web engineers
with a platform in which to observe the effects of context
modeling and adaptation strategies on the actual adaptation
occurring in Web applications, thus allowing to evaluate and
refine these, or to study new strategies.

Related Work

General-purpose methodologies for Web applications such
as WSDM (De Troyer & Leune 1998) provide systematic
means for specifying an application. However, they have
limited support for integrating dynamic resources and for
steering the system according to context. eW3DT (Scharl
2000) or WebUML (Conallen 2002) do explicitly allow to
model dynamic resources; however these models are used
only for design, and not within a run-time system. For
achieving context-awareness in a system however, this is
problematic: a way of integrating context information with
dynamic resources must be available, and the run-time sys-
tem must have dynamic access to the modeled knowledge.

Research projects in adaptivity often explore a specific
scenario, and thus, according to (Kappel er al. 2003), ar-
chitectural considerations in research often apply only to the
described scenario. Work which aims at a general-purpose
architecture includes (Winograd 2001) and (Cannataro, Cuz-
zocrea, & Pugliese 2002). The former is an example of
a distributed architecture, well-suited to periodically gather
environment data, e.g., location sensing. The latter is an
example of an integrated architecture, in this case for adap-
tive hypermedia. A particular contribution of our work is
the systematic separation of concerns regarding context into
a component architecture, with the goal of simplifying the
task of replacing or extending mechanisms related to context
processing. In addition, our approach permits service incor-
poration; i.e., the integration of interactive offerings within
the application.

Regarding the integration of services in particular, (Keidl
& Kemper 2004) introduce a context processing architecture
for Web Services. Our work in turn focuses on integrating
services within a general Web Engineering process account-
ing for context.

Conclusions & Discussion

The main purpose of this work is to systemize and facilitate
usage of context within Web applications. Such applications
may then offer functionality in an adaptive manner, the goal
of which is to enhance the interaction of users with the sys-
tem’s offerings.

For this purpose, knowledge about context is structured
and, along with domain knowledge and its relation to con-
text, represented in ontologies. Application models are built
upon these ontologies and include adaptation specifications.
The model as a whole is uniform, permitting the usage of
common adaptation mechanisms for the various stages of
application generation. A system architecture is provided
to make use of the modeled knowledge, wherein each func-
tional concern is handled separately. The resulting system is
in effect a framework which generates a dynamic, adaptive
Web application.

The system is designed to be extensible. On the one hand,
the component-based approach to generation and adaptation
allows to replace or extend the way each concern is imple-
mented as a software component. On the other hand, appli-
cation knowledge is specified in ontologies; i.e., with formal
semantics. This is a prerequisite for reasoning support; that
is, for allowing for complex inferences to be mechanically
achieved. Existing reasoners such as RACER (Haarslev,
Moller, & Wessel 2004) can be plugged in via JENA. Fur-
thermore, the chosen XML content-based architecture ad-
dresses the information-centered nature of Web applications,
while at the same time enabling dynamic, interactive offer-
ing by way of service descriptions, which are considered in
a similar manner as pieces of content.

A limitation in the approach presented is the support for
arbitrary sensing mechanisms and data structures, in particu-
lar the matching of sensed parameters onto context factors as
known in the application model. Supporting arbitrary sens-
ing in a general-purpose, unifying approach is problematic.
In particular, there are no existing Web standards specify-
ing how environment information may be defined and how
a Web client would communicate these to the Web server.
Current approaches must thus define specific mechanisms
for transmitting client context information in an application-
relevant way, and require custom programming for context
sensing when the required information does not conform to
generally valid patterns. Such a task in turn can be facili-
tated by a context-sensing framework such as described in
(Dey, Abowd, & Salber 2001).

References

Beigl, M.; Krohn, A.; Zimmer, T.; Decker, C.; and Robin-
son, P. 2003. AwareCon: Situation Aware Context Com-
munication. In Proceedings of UbiComp 2003: Ubiquitous
Computing, 132—139. Berlin: Springer.

Brézillon, P.; Borges, M.; Pino, J.; and Pomerol, J.-C.
2004. Context-awareness in group work: three case stud-
ies. In IFIP International Conference on Decision Support
Systems (DSS-2004), 115-124. Monash University, Aus-
tralia.

642

Cannataro, M.; Cuzzocrea, A.; and Pugliese, A. 2002.
XAHM: an adaptive hypermedia model based on XML. In
Proceedings of the 14th international conference on Soft-
ware engineering and knowledge engineering, 627-634.
New York, NY, USA: ACM Press.

Conallen, J. 2002. Building Web applications with UML
(2nd Edition). Reading, Mass.: Addison-Wesley.

De Troyer, O. M. E, and Leune, C.J. 1998. WSDM: a
user centered design method for Web sites. Comput. Netw.
ISDN Syst. 30(1-7):85-94.

Deshpande, Y., and Murugesan, S. 2001. Summary of
the second ICSE workshop on web engineering. SIGSOFT
Softw. Eng. Notes 26(1):76-77.

Dey, A. K.; Abowd, G. D.; and Salber, D. 2001. A Con-
ceptual Framework and a Toolkit for Supporting the Rapid
Prototyping of Context-Aware Applications. Human Com-
puter Interaction 16(2-4).

Fiala, Z.; Hinz, M.; Houben, G.-J.; and Frasincar, F. 2004.
Design and implementation of component-based adaptive
Web presentations. In Proceedings of the 2004 ACM sym-
posium on Applied computing, 1698—1704. New York, NY,
USA: ACM Press.

Fielding, R. T., and Taylor, R. N. 2002. Principled design
of the modern Web architecture. ACM Trans. Inter. Tech.
2(2):115-150.

Haarslev, V.; Moller, R.; and Wessel, M. 2004. Querying
the Semantic Web with Racer + nRQL. In Proceedings
of the KI-2004 International Workshop on Applications of
Description Logics. CEUR.

Hernadvolgyi, 1.; Ucelli, G.; Symonova, O.; Delpero, L.;
and de Amicis, R. 2004. Shape Semantics from Shape
Context. In Proceedings of the KI-2004 International
Workshop on Modelling and Retrieval of Context, Vol-114.
CEUR.

Kaltz, J. W.; Ziegler, J.; and Lohmann, S. 2005. Context-
aware Web Engineering: Modeling and Applications. RIA
— Revue d’Intelligence Artificielle, Special Issue on Apply-
ing Context Management 19(3):439—-458.

Kappel, G.; Proll, B.; Retschitzegger, W.; and Schwinger,
W. 2003. Customisation for Ubiquitous Web Applications
- A Comparison of Approaches. Int. J. Web Eng. Technol.
1(1):79-111.

Keidl, M., and Kemper, A. 2004. Towards context-aware
adaptable web services. In Proceedings of the 13th interna-
tional World Wide Web conference - Alternate Track Papers
& Posters, 55-65. New York, NY, USA: ACM Press.

McBride, B. 2001. Jena: Implementing the RDF
Model and Syntax Specification. In Proceedings of the
WWW2001, Semantic Web Workshop.

Scharl, A. 2000. Evolutionary Web Development. Secau-
cus, NJ, USA: Springer-Verlag.

Thayer, S. M., and Steenkiste, P. 2003. An Architecture
for the Integration of Physical and Informational Spaces.
Personal Ubiquitous Comput. 7(2):82-90.

Winograd, T. 2001. Architectures for Context. Human-
Computer Interaction 16:401-419.

