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Abstract 
Fuzzy ARTMAP (FAM) is one of the best neural 

network architectures in solving classification problems. 
One of the limitations of Fuzzy ARTMAP that has been 
extensively reported in the literature is the category 
proliferation problem. That is Fuzzy ARTMAP has the 
tendency of increasing its network size, as it is confronted 
with more and more data, especially if the data is of noisy 
and/or overlapping nature. To remedy this problem a 
number of researchers have designed modifications to the 
training phase of Fuzzy ARTMAP that had the beneficial 
effect of reducing this phenomenon. In this paper we 
propose a new approach to handle the category proliferation 
problem in Fuzzy ARTMAP by evolving trained FAM 
architectures. We refer to the resulting FAM architectures 
as GFAM. We demonstrate through extensive 
experimentation that an evolved FAM (GFAM) exhibits 
good generalization, small size, and produces an optimal or 
a good sub-optimal network with a reasonable 
computational effort. Furthermore, comparisons of the 
GFAM with other approaches, proposed in the literature, 
that address the FAM category proliferation problem, 
illustrate that the GFAM has a number of advantages (i.e. 
produces smaller or equal size architectures, of better or as 
good generalization, with reduced computational 
complexity). 

1. Introduction 
The Adaptive Resonance Theory (ART) was developed 

by Grossberg (1976). Fuzzy ARTMAP (Carpenter et al, 
1992) is an ART architecture that has been successfully 
used in the literature to solve a variety of classification 
problems. One of the limitations of Fuzzy ARTMAP 
(FAM) that has been repeatedly reported in the literature is 
the category proliferation problem. Category proliferation, 
is the problem where, during training, the algorithm tends 
to increase the size of the network (create more nodes), 
unnecessarily, as it is confronted with more data, 
especially noisy or overlapping data. Category 
proliferation has the effect of reducing classification 
accuracy on unseen data (generalization), while at the 
same time increasing the time that it takes for the network 
to produce the classification label of a previously unseen 
datum.  
 A number of authors have tried to address the category 
proliferation/overtraining problem in Fuzzy ARTMAP. 

Amongst them we refer to the work the work by Verzi, et 
al., 2001, Anagnostopoulos, et al., 2003  and Gomez-
Sanchez, et al., 2001,  where different ways are introduced, 
and evaluated, of allowing the Fuzzy ARTMAP categories 
to encode patterns that are not necessarily mapped to the 
same label.  

In this paper, we propose the use of genetic algorithms 
(GA) to solve the category proliferation problem in Fuzzy 
ARTMAP. Genetic algorithms are a class of population-
based stochastic search algorithms that are developed from 
ideas and principles of natural evolution. An important 
feature of these algorithms is their population based search 
strategy. Individuals in a population compete and exchange 
information with each other in order to perform certain 
tasks. In the Fuzzy ARTMAP setting we start with a 
population of trained FAMs. Then, a GA algorithm is 
utilized to manipulate these trained FAM architectures in a 
way that encourages better generalization and smaller size 
architectures. The evolution of trained FAM architectures 
allows these architectures to exchange and modify their 
categories in a way that emphasizes smaller and more 
accurate FAM architectures. Eventually, this process leads 
us to a FAM architecture (referred to as GFAM) that has 
good generalization performance and creates networks of 
small size; all of these benefits come at the expense of 
reasonable computational complexity.  

Genetic algorithms have been extensively used to evolve 
artificial neural networks. For a thorough exposition of the 
available research literature in evolving neural networks 
the interested reader is advised to consult Yao, 1999. To 
the best of our knowledge there is no work conducted in 
the literature so far that has attempted to evolve FAM 
neural network structures, and that is the main focus of our 
effort.  

The organization of this paper is as follows: In section 2 
we present GFAM. In Section 3, we describe the 
experiments and the datasets used to assess the 
performance of GFAM, and we also compare GFAM to 
four other ART networks that attempted to solve the 
category proliferation problem in Fuzzy ARTMAP. In 
Section 4, we summarize our work.  

2. Evolution of FAM Networks (GFAM) 
The Fuzzy ARTMAP architecture consists of three 

layers of nodes. The input layer where the input patterns of 
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the classification task are applied, the output layer where 
the outputs of the network are produced, and the category 
representation layer, where compressed representations of 
the input patterns, presented at the input layer, are formed. 
The compressed representations of the input pattern 
formed in the category representation layer encode the 
end-points of a hyper-rectangle. The lower endpoint of this 
hyper-rectangle is the minimum of the values of the input 
patterns presented to Fuzzy ARTMAP, that were encoded 
by this node, while the upper endpoint is the maximum  of 
the values of the input patterns presented to Fuzzy 
ARTMAP and encoded by this node. Hence, every node in 
the category representation layer of Fuzzy ARTMAP has a 
hyperrectangle representation, and this hyperrectangle 
includes within its boundaries all the input patterns that it 
encoded. The correct mapping of inputs to outputs is 
achieved by mapping groups of input patterns that the 
nodes of the representation layer have encoded to correct 
output patterns (labels).  

Fuzzy ARTMAP performance depends on a number of 
network parameters, such as the choice parameter, the 
baseline vigilance parameter and the order of training 
pattern presentation. To generate a population of initially 
trained FAMs we change their baseline vigilance 
parameter and the order of training pattern presentation. In 
all our GFAM experiments we kept the value of the choice 
parameter fixed at the level of 0.1.  

For every classification problem (dataset) that we 
experimented with we assume that we have a training set, a 
validation set and a test set.  

GFAM (Genetic Fuzzy ARTMAP) is an evolved FAM 
network that is produced by applying a genetic algorithm 
on an initial population of trained FAM networks. To 
evolve the initial population of the trained FAM networks 
GFAM utilizes tournament selection along with elitism, as 
well as genetic operators such as crossover and mutation, 
and it introduces two special operators, named  

and . To better understand how GFAM is designed 
we resort to a step-by-step description of this design. 
Before that, the reader should refer to an Appendix, where 
all the needed terminology is included. The design of 
GFAM can be articulated through the following steps:  

addCat

delCat

Step 1: The algorithm starts by training  FAM 
networks, each one of them trained with a different value 
of the baseline vigilance parameter

sizePop

aρ , and with a 
different order of pattern presentation. In particular, we 

first define
1

minmax

−
−

=
size

aainc
a Pop

ρρ
ρ , and then the vigilance 

parameter of every network is determined by the 
equation inc

aa i ρρ *min + , where }1,0{ −∈ sizePopi . 
Meanwhile, GFAM allows the user to change the order of 
pattern presentation automatically and randomly.  

Step 2: Once the  networks are trained they need 
to be converted to chromosomes, so that they can be 
manipulated by the GA algorithm. GFAM uses a real  
numbers representation to encode the networks. Each 
FAM chromosome consists of two levels, level 1 
containing all the categories of the FAM network, and 
level 2 containing the lower and upper endpoints of every 
category in level 1 (real numbers), as well as the label of 
that category (an integer)  (see Figure 1).  
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Figure 1: GFAM Chromosome Structure 

We denote the category of a trained FAM network with 
index p )1( sizePopp ≤≤  by , where 

and the label of this 

category by  for 

)( pa
jw

))((),(()( ca
j

a
j

a
j ppp vuw =

)( pl j )(1 pNj a≤≤ . In this step we 
also eliminate single-point categories in the trained FAM 
networks, referred to as cropping the chromosomes. Since 
our ultimate objective is to design a FAM network with a 
minimal size and maximum generalization, we are banning 
networks from having single-point categories.  
Step 3: Evolve the chromosomes of the current generation 
by repeating the following sub-steps times:  maxGen
Sub-step 3a: Calculate the fitness of each chromosome. 
(Fitness Evaluation). This is accomplished by feeding into 
each trained FAM the validation set and by calculating the 
percentage of correct classification exhibited by each one 
of these trained FAM networks. In particular, if 

designates the percentage of correct 
classification, exhibited by the p-th FAM, and this FAM 
network possesses nodes in its category 
representation layer, then its fitness function value is 
defined by:  

)( pPCC

)( pN a

ε+−

⋅−
=
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)(100
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2
max

pN
pPCC

Cat

pPCCpNCatpFit
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whereε  is a small positive number used to prevent 
division by zero. This function optimizes both the size and 
the accuracy of the network, its value gets higher as 

 gets higher, and, as gets smaller. We 
selected this function because it gave better results than 
many other functions that we have experimented with. 

)( pPCC )( pN a

Sub-step 3b: Initialize an empty generation (referred to as 
temporary generation).   
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Sub-step 3c: Find the best chromosomes from the 
current generation and copy them to the temporary 
generation. (Elitism) 

bestNC

Sub-step 3d: Fill in the remaining bestsize NCPop −  
chromosomes in the temporary generation by crossing over 
two parents from the current generation. The parents are 
chosen using a deterministic tournament selection method, 
as follows: Randomly select two groups of four 
chromosomes each from the current generation, and use as 
a parent from each group the chromosome with the best 
fitness value in the group. If it happens that from both 
groups the same chromosome is chosen then we choose 
from one of the groups the chromosome with the second 
best fitness value. If two parents with indices pp ′,  are 
crossed over two random numbers are generated 

from the index sets and 

, respectively. Then, all the categories 

with index greater than index in chromosome with 
index and all the categories with index less than index 

in the category with index are moved into an empty 
chromosome within the temporary generation. Notice that 
crossover is done on level 1 of the chromosome. This 
operation is pictorially illustrated in the following figure 2. 
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Figure 2: GFAM Crossover Implementation 

Sub-step 3e: The operator adds a new category to 
every chromosome created in step 3d with 
probability . The new category has lower and 
upper endpoints that are randomly generated as 
follows: For every dimension of the input feature space 
( dimensions total) we generate two random numbers 
uniformly distributed in the interval [0, 1]; the largest of 
these numbers is associated with the  coordinate along 
this dimension, while the smallest of the two random 
numbers is associated with the  coordinate along this 
dimension. The label of this newly created category is 
chosen randomly amongst the categories of the pattern 
classification task under consideration. A chromosome 
does not add a category if the addition of this category 
results in number of categories for this chromosome that 
exceeds the designated maximum number of 
categories .  

addCat

)( addCatP
vu,

aM

v

u

bN

maxCat
Sub-step 3f: The operator  deletes one of the 
categories of every chromosome created in step 3e with 

probability . A chromosome does not delete a 
category if the deletion of this category results in the 
number of categories for this chromosome to fall below the 
designated minimum number of categories . 

delCat

)( delCatP

minCat
Sub-Step 3g: In GFAM, every chromosome created by 
step 3f gets mutated as follows: with probability  
every category is mutated. If a category is chosen, its  u  
or endpoints is selected randomly (50% probability), and 
then every component of this selected vector gets mutated 
by adding to it a small number. This number is drawn from 
a Gaussian distribution with mean 0 and standard deviation 
0.01. If the component of the chosen vector becomes 
smaller than 0 or greater than 1 (after mutation), it is set 
back to 0 or 1, respectively. Notice that mutation is applied 
on level 2 of the chromosome structure, but the label of the 
chromosome is not mutated (the reason being that our 
initial GA population consists of trained FAMs, and 
consequently we have a lot of confidence in the labels of 
the categories that these trained FAMs have discovered 
through the FAM training process).  

)(mutP

v

Step 4: Calculate the performance of the best-fitness FAM 
network on the test set and report classification accuracy 
and number of categories that this best-fitness FAM 
network (GFAM) possesses. 

3. GFAM Experiments and Comparisons with 
other ART Networks 

To examine the performance of GFAM we performed a 
number of experiments on real and simulated datasets. The 
collections of simulated and real datasets are depicted in 
Table 1. The legend of Table 1 explains briefly the 
simulated datasets, while the real datasets were extracted 
from the UCI repository.  
 

 
Database Name

# 
Numerical 
Attributes 

# Classes % Major 
Class  

Expected 
Accuracy 

1 G2c-05 2 2 1/2 0.95 
2 G2c-15 2 2 1/2 0.85 
3 G2c-25 2 2 1/2 0.75 
4 G2c-40 2 2 1/2 0.6 
5 G4c-05 2 4 1/4 0.95 
6 G4c-15 2 4 1/4 0.85 
7 G4c-25 2 4 1/4 0.75 
8 G4c-40 2 4 1/4 0.6 
9 G6c-05 2 6 1/6 0.95 

10 G6c-15 2 6 1/6 0.85 
11 G6c-25 2 6 1/6 0.75 
12 G6c-40 2 6 1/6 0.6 
13 4Ci/Sq 2 5 0.2 1 
14 4Sq/Sq 2 5 0.2 1 
15 7Sq 2 7 1/7 1 
16 1Ci/Sq 2 2 0.5 1 
17 1Ci/Sq/0.3:0.7 2 2 0.7 1 
18 5Ci/Sq 2 6 1/6 1 
19 2Ci/Sq/5:25:70 2 3 0.7 1 
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20 2Ci/Sq/20:30:5
0 2 3 0.5 1 

20 7SqWN 2 6 1/7 0.9 
21 5Ci/SqWN 2 6 1//6 0.9 
22 MOD-IRIS 2 2 1/2 0.95 
23 ABALONE 7 3 1/3 0.6 
24 PAGE 10 5 0.832 0.95 

Table 1: Databases used in the GFAM experiments, where 
G*c_** represent a Gaussian dataset with * classes and ** 
percent overlap, 13-21 represent a shape within a shape dataset 
where Ci is a circle and Sq is a square;  in databases 20 and 21, 
WN means with noise (10%).  

 In all the experiments conducted with the above 
databases we had at our disposal a training set (used to 
design the trained ART network), a validation set (used to 
optimize the trained ART network), and a test set used to 
assess the performance of the optimized trained ART 
network.  

3.1 Parameter Settings 
We have experimented extensively with GFAM to 

identify a default set of FAM parmeters and GA 
parameters. The details of those experiments are omitted 
due to lack of space. GFAM used the following evolution 
parameters in all experiments: min

aρ = 0.1, max
aρ = 0.95, 

aβ =0.1, = 20, = 500,  = 3, 
= 1, = 300,  

=0.1, =0.1, = 5/ . 

sizePop maxGen bestNC

minCat maxCat )( addCatP
)( delCatP )(mutP )( pNa

3.2 Experimental Results 
After running GFAM on the datasets of Table 1, we 

produce the accuracy and size of the GFAM network that 
attained the highest value of the fitness function at the last 
generation of the evolutionary process. Table 2 lists the 
accuracy and the size of this GFAM network as well as the 
accuracy and the size of other ART architectures for the 
same dataset. This information is also depicted in figures 3 
to figure 6. 
 

Database 
 Name 

 
GFAM 

 
Safe uAM ssFAM ssEAM ssGAM 

G2c-05 95.36 2 95.22 2 94.90 2 94.94 2 94.48 4 
G2c-15 85.30 2 85.00 2 84.80 3 85.20 2 85.04 2 
G2c-25 75.08 2 74.98 2 74.60 2 74.50 2 75.10 2 
G2c-40 61.38 2 61.40 3 61.34 3 60.98 2 61.30 3 
G4c-05 95.02 4 95.04 4 94.10 7 94.14 4 94.80 4 
G4c-15 84.46 4 83.28 4 81.40 11 83.20 4 84.24 9 
G4c-25 75.20 4 74.50 4 70.80 9 72.72 4 72.32 21
G4c-40 60.60 4 59.76 5 58.48 14 55.62 13 59.10 14
G6c-05 94.68 6 93.57 9 91.42 11 93.80 7 94.40 8 
G6c-15 84.71 6 80.92 6 81.11 7 81.80 6 84.35 13
G6c-25 73.90 6 70.74 13 69.62 15 71.10 7 72.86 20
G6c-40 59.19 6 58.03 11 56.35 17 54.21 17 55.65 13
4Ci/Sq 96.32 8 95.42 8 87.23 18 94.68 5 93.4 12
4Sq/Sq 97.12 9 99.12 9 97.24 13 88.89 5 91.78 16

7Sq 97.2 7 97.22 16 97.26 16 88.5 19 95.83 93
1Ci/Sq 97.2 8 94.76 8 92.97 8 97.02 8 91.02 8 
1Ci/Sq/ 
0.3:0.7 97.8 8 96.82 8 93.21 8 97.13 8 92.33 8 

5Ci/Sq 92 5
0 83.83 52 81.95 52 78.68 87 90.02 111

2Ci/Sq/ 
20:30:50 97.87 3 97.22 6 90.24 12 97.01 3 95.6 9 

7SqWN 87.3 7 86.67 20 80.15 24 75.23 32 83.11 123

5Ci/SqWN 81.97 5
0 71.72 52 68.39 57 69.2 136 81.3 145

MOD-IRIS 95.31 2 94.92 2 93.41 8 94.54 2 94.54 2 
ABALONE 58.73 2 57.18 4 59.52 6 56.80 7 55.10 3 

PAGE 95.59 3 88.82 6 90.63 3 89.54 3 89.34 5 

 
Table 2: Best Performance of all ART Algorithms (uAM: Safe 
uARTMAP; ssFAM: ss Fuzzy ARTMAP; ssEAM: ss Ellipsoidal 
ARTMAP; ssGAM: ss Gaussian ARTMAP; ss : semi-supervised 
version 
 

In Table 2, we are comparing GFAM’s performance 
with the performance of the following networks: ssFAM,  
ssEAM, ssGAM (see Anagnostopoulos, et al., 2003, Verzi, 
et al., 2001), and safe micro-ARTMAP (see Gomez-
Sanchez, et al., 2002). We chose these networks because 
they addressed the category proliferation problem in ART. 
More details about the specifics of each one of these 
networks can be found in their associated references. For 
the purposes of this paper it suffices to know that ssEAM 
covers the space of the input patterns with ellipsoids, while 
ssGAM covers the space of the input patterns with bell-
shaped curves. Furthermore ssFAM, ssEAM, and ssGAM 
allow a category (hyper-rectangle or ellipsoid or hyper-
dimensional bell shaped curve) to encode patterns of 
different labels provided that the plurality label of a 
category exceeds a certain, user-specified, threshold. 
Finally, safe micro-ARTMAP allows the encoding of 
patterns of different labels by a single category, provided 
that the entropy of the category does not exceed a certain, 
user-defined threshold.   

In Table 2, the first column is the name of the database 
that we are experimenting with, while columns 2-6 of 
Table 2 contain the performance of the designated ART 
networks. The GFAM performance reported corresponds 
to the accuracy on the test set and the number of categories 
created by the FAM network that attained the highest value 
of the fitness function at the last generation of the 
evolutionary process. For the other ART networks the 
reported performance is the performance of the ART 
network that achieves the highest value of the fitness 
function amongst the trained ART networks trained with 
different network parameter settings (e.g., in ssFAM the 
best network was determined after training 22,000 ssFAM 
networks with different values of the choice parameter, 
vigilance parameter, order of pattern presentation, and 
amount of mixture of labels allowed within a category).  

According to the results in Table 2, in all instances 
(except minor exceptions) the accuracy of GFAM 
(generalization performance) is higher than the accuracy of 
the other ART network (where ART is ssFAM, ssEAM, 
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ssGAM or safe micro-ARTMAP). According to the results 
in Table 2, in all instances (with no exceptions) the size of 
GFAM is smaller than the size of the other ART network 
(where ART is ssFAM, ssEAM, ssGAM or safe micro-
ARTMAP), sometimes even by a factor of 15. For 
example, the generalization performance of GFAM on 
dataset 21 is 13% better than that of ssFAM, and its size on 
dataset 19 is 4 times smaller than that of ssFAM.  Also, the 
generalization performance of GFAM on dataset 18 is 13% 
better than that of ssEAM, and its size on dataset 20 is 4.5 
times smaller than that of ssEAM.  Furthermore, the 
generalization performance of GFAM on dataset 24 is 6% 
better than that of ssGAM, and its size on dataset 15 is 13 
times smaller than that of ssGAM. Finally, the 
generalization performance of GFAM on dataset 21 is 10% 
better than that of safe micro-ARTMAP, while its size on 
dataset 20 is 3 times smaller than the size of safe micro-
ARTMAP.  

What is worth pointing out is that the better performance 
of GFAM is attained with reduced computations compared 
to the computations needed by the alternate methods 
(ssFAM, ssEAM, ssGAM, safe micro-ARTMAP). 
Specifically, the performance attained by GFAM requires 
training of 20 FAM networks, and evolving them for 500 
generations (quite often evolving them for 500 generations 
is not needed). On the contrary, the performance attained 
by ssFAM, ssEAM, ssGAM and the safe micro-ARTMAP 
required training these networks for a large number of 
network parameter settings (at least 20,000 experiments) 
and then choosing the network that achieved the higher 
value for the fitness function that we introduced earlier in 
the text. Of course, one can argue that such an extensive 
experimentation with these ART networks might not be 
needed, especially if one is familiar with the functionality 
of these networks and chooses to experiment only with a 
limited set of network parameter values. However, the 
practitioner in the field might lack the expertise to 
carefully choose the network parameters to experiment 
with, and consequently might need to experiment 
extensively to come up with a good network.  

4. Summary and Conclusions 
We introduced a new ART neural network architecture, 

named GFAM, produced by evolving a number of trained 
Fuzzy ARTMAP neural networks. The primary reason for 
introducing GFAM was to solve the category proliferation 
problem in Fuzzy ARTMAP.  

 
We examined the performance of GFAM on a number of 

simulated and real datasets. The results illustrated that 
GFAM achieves good generalization (sometimes optimal 
generalization) while retaining a small network size. 
Comparisons of GFAM with other ART networks that 
addressed the category proliferation problem in Fuzzy 
ARTMAP revealed that GFAM almost always achieves 
better generalization and always produces smaller or equal  
 

 
Figure 3: Accuracy and Size comparison of GFAM vs ssFAM 

 
Figure 4: Accuracy and size comparison of GFAM vs ssEAM 

 

 
Figure 5: Accuracy and size comparison of GFAM vs ssGAM 
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Figure 6: Performance and Size comparison of GFAM vs microARTMAP 

(quite often significantly smaller) network size. The 
method used to create GFAM from trained ART networks 
can be extended to the evolution of other ART network 
architectures. 

Appendix A  
• : The dimensionality of the input patterns  aM

• Training Set: The collection of input/output pairs used 
in the training of  the ART networks  

• Validation Set: The collection of input/output pairs 
used to validate the performance of the ART networks  

• Test Set: The collection of input/output pairs used to 
assess the performance of the chosen ART network,  

•  The lower limit of the vigilance parameter used 
in the training of the initial generation of FAMs 

:min
aρ

• :  The upper limit of the vigilance parameter used 
in the training of the initial generation of FAMs 

max
aρ

• : The choice parameter used in the training of the 
initial generation of FAMs; chosen equal to 0.1  

aβ

• : The number of chromosomes in a generation sizePop

•  : The number of categories in the FAM 
network 

)( pNa
thp

• : the weight vector 

corresponding to category j of the FAM network; 
corresponds to the lower endpoint of the hyperbox 

that the weight vector  defines and  corresponds 
to the upper endpoint of this hyperbox.  

)))((),(()( ca
j

a
j

a
j ppp vuw =

thp
a
ju

a
jw a

jv

• : The label of category j of the FAM network  )( pl j
thp

• : The percentage of correct classification of 
FAM network on the validation datasets 

)( pPCC
thp

• : The maximum number of generations  maxGen

• : Number of best chromosomes that the GFAM 
transfers from a generation to another one, (elitism) 

bestNC

• : The minimum and the maximum 
number of categories that a FAM chromosome is 
allowed to have during the evolutionary process  

maxmin , CatCat

• : Add and delete category operators  deladd CatCat ,

• , : The probabilities of 
adding a category, deleting a category and mutating a 
category of a chromosome 

)(),( deladd CatPCatP )(MutP
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