
Fast Generation of a Sequence of Trained and Validated Feed-Forward
Networks

Pramod L. Narasimha1, Walter Delashmit2, Michael Manry1, Jiang Li3 and Francisco Maldonado4

1Dept. of Electrical Engineering, University of Texas at Arlington, Arlington, TX 76010
2Lockheed Martin Missiles and Fire Control, Dallas, TX 75265

3Department of Radiology, Clinical Center, National Institutes of Health, Bethesda, MD, 20892
4Williams Pyro, 2721 White Settlement Rd., Fort Worth, TX 76107

L_pramod79@yahoo.com, Walter.Delashmit@lmco.com, Manry@uta.edu, lij3@cc.nih.gov, frankmald@hotmail.com

Abstract
In this paper, three approaches are presented for generating
and validating sequences of different size neural nets. First,
a growing method is given along with several weight
initialization methods, and their properties. Then a one
pass pruning method is presented which utilizes orthogonal
least squares. Based upon this pruning approach, a one-
pass validation method is discussed. Finally, a training
method that combines growing and pruning is described.
In several examples, it is shown that the combination
approach is superior to growing or pruning alone.

 Introduction

According to the structural risk minimization (SRM)
principle, a sequence of learning machines of increasing
size should be produced, and trained as well as possible.
The machine with the smallest validation error is the best
compromise between the training error and the
complexity of the network. If this principal is followed
with neural nets, the final training error as a function of
the number of hidden units, Ef(Nh), will be monotonically
nonincreasing. Sequences of networks are produced
though growing methods and pruning methods. In
growing methods (Delashmit 2003), one can design a set
of different size networks in an orderly fashion, each with
one or more hidden units than the previous network
(Fahlman et. al. 1990) (Chung & Lee 1995). A drawback
of growing methods is that the network can get trapped in
local minima and they are also sensitive to initial
conditions.
 In pruning methods, a large network is trained and then
less useful nodes or weights are removed (Hassibi et. al.
1993) (LeCun et.al. 1990) (Sakhnini, Manry, &
Chandrasekaran 1999). Some pruning algorithms remove
less useful hidden units using the Gram-Schmidt
procedure as reported by Kaminsky and Strumillo (1997)
for Radial Basis Functions and Maldonado et.al. (2003)

Compilation copyright © 2006, American Association for Artificial
Intelligence (www.aaai.org). All rights reserved.

for the multilayer perceptron (MLP). Unfortunately, if
one large network is trained and pruned, the resulting
error versus Nh curve is not minimal for smaller networks.
In other words, it is possible, though unlikely, for each of
the hidden units to be equally useful after training.
 In this paper, we investigate three approaches for
generating and validating sequences of different size
neural nets. First, a growing method is described, along
with analyses of weight initialization methods. Then a
pruning method is presented which requires only one pass
through the training data. A one-pass validation method is
presented, which is based upon pruning. Next, a method
that combines growing and pruning is presented. Results
show that this third approach overcomes the shortcomings
of growing or pruning alone.

Multilayer Perceptron
Figure 1 depicts feed-forward MLP, having one hidden
layer with Nh nonlinear units and an output layer with M
linear units. For the pth pattern, the jth hidden unit’s net
function and activation are

∑
=

=

⋅=
1

1

),(
N

i
pipj xijwnet (1)

for 1 ≤ p ≤ Nv, 1 ≤ j ≤ Nh and

pjnetpjpj e
netfO −+

==
1

1)((2)

Here the threshold of the jth node is handled by letting
xp,N+1 be one. Weight w(i, j) connects the ith input to the jth
hidden unit. The kth output for the pth pattern is,
 ∑∑

=

+

=

⋅+++⋅=
hN

i
pjo

N

i
piopk ONjkwxikwy

1

1

1
)1,(),((3)

where 1 ≤ k ≤ M. The first sum in (3) describes the effect
of bypass weights connecting inputs and outputs. There
are Nv training patterns denoted by vN

ppp 1)},{(=tx , where
each pattern consists in an input vector xp and a desired
output vector tp. For the pth pattern, the N input values are
xpi, (1 ≤ i ≤ N) and the M desired output values are tpk (1 ≤
k ≤ M). Example training algorithms are Levenberg

706

Marquart (Fun & Hagan 1996), backpropagation, Output
Weight Optimization – Hidden Weight Optimization (Yu
et.al., 2005), and Genetic Algorithms (Arena et al. 1992).

Growing Approach
In growing methods, which we denote as Design
Methodology 1 (DM-1), we successively train larger
networks. A pioneering example is the cascade correlation
approach of Fahlman and Lebierre, 1990. In DM-1
algorithms, the final training MSE versus Nh curve,
Ef(Nh), along with the validation error versus Nh curve
Eval(Nh), should help us find the required network.

Figure 1: Two layer MLP

MLP training is strongly dependent on the initial weights,
so proper initialization is critical. To define the problem
being considered, assume that a set of MLPs of different
sizes (i.e., different number of hidden units, Nh) is to be
designed for a given training data set.
Axiom 1: If Ef(Nh) > Ef(Nh - 1), then training has failed
for the network having Nh hidden units, since the larger,
more complex network has a larger training error.
Monotonic Ef(Nh) curves make smoothly varying Eval(Nh)
curves more likely, which makes structural risk
minimization easier to perform. Three distinct types of
network initialization are considered.

Randomly Initialized Networks
When a set of MLPs are Randomly Initialized (RI), they
have no initial weights or thresholds in common. These
networks are useful when the goal is to quickly design
one or more networks of the same or different sizes whose
weights are statistically independent of each other.
Growing of RI networks can be designated as DM-1a.
Theorem 1: If two initial RI networks (1) are the same
size, (2) have the same training data set and (3) the
training data set has more than one unique input vector,

then the hidden unit basis functions are different for the
two networks.
 A problem with RI networks is that Ef(Nh) is
nonmonotonic. That is, for well-trained MLPs, Ef(Nh)
does not always decrease as Nh increases since the initial
hidden unit basis functions are different. Let Ei(Nh)
denote the final training error for an RI network having
Nh hidden units, which has been initialized using the ith
random number seed based on Ns total seeds. Let Eav(Nh)
denote the average Ei(Nh), that is

∑
=

=
sN

i
hi

s
hav NE

N
NE

1
)(1)((4)

Using the Chebyshev inequality, a bound has been
developed on the probability that the average error for Nh
hidden units, Eav(Nh) is increasing (Delashmit 2003) and
that the network with Nh + 1 hidden units is useless.

2))1()((2
)(var())1(var(

))()1((

+−⋅⋅
++

≤>+

havhavs

hihi

havhav

NmNmN
NENE

NENEP
 (5)

Here var() represents the variance and mav(Nh) represent
the average MSE for Nh hidden units.

Common Starting Point Initialized Networks
When a set of MLPs are Common Starting Point
Initialized with Structured Weight Initialization (CSPI-
SWI), the initialization of the weights and thresholds is
ordered such that every hidden unit of the smaller
network has the same weights as the corresponding
hidden unit of the larger network. Input to output weights
are also identical. These networks are more likely than RI
networks to have monotonic Ef(Nh) curves. Growing with
CSPI-SWI networks can be designated as DM-1b.
Theorem 2: If two initial CSPI-SWI networks (1) are the
same size and (2) use the same algorithm for processing
random numbers into weights, then they are identical.
Theorem 3: If two CSPI-SWI networks are designed, the
common subsets of the initial hidden unit basis functions
are identical.
 The above theorems have been proved by Delashmit
(2003). Unfortunately, DM-1b, although better than DM-
1a, does not guarantee a monotonic Ef(Nh) curve.

Dependently Initialized Networks
Growing with dependently initialized (DI) networks is
designated as DM-1c. In DM-1c, a linear network is first
trained. Then we successively add Na hidden units and
retrain the network using the method of Yu et. al. (2005),
which is a greedy algorithm. This is continued till the
number of hidden units equals a user-chosen number.
Properties of DI networks: Let Eint(Nh) denote the initial
value of error during the training of an MLP with Nh
hidden units and let Nhp denote the number of hidden
units in the previous network, so Na = Nh - Nhp. Then:
1. Eint(Nh) < Eint(Nhp)

707

2. Ef(Nh) ≤ Ef(Nhp)
3. Eint(Nh) = Ef(Nhp)
As seen in property 2, DM-1c, produces a monotonically
decreasing Ef(Nh) versus Nh curve.

Ordered Pruning
Pruning of a large network, which we denote as Design
Methodology 2 (DM-2), is a second common approach to
producing a monotonic Ef(Nh) curve. The output of the
network in equation 3, can be rewritten as

∑
=

⋅=
uN

k
koi xkiwy

1
),((6)

where xk = Op,(k-N-1) for N + 2 ≤ k ≤ Nu, where Nu is the
total number of units equal to N + Nh + 1. In equation (6),
the signals xk are the raw basis functions for producing yi.
The purpose of pruning is to eliminate less useful hidden
units, that have no information relevant for estimating
outputs or that are linearly dependent on inputs or hidden
units that have already been orthonormalized.
 Here, we use the Schmidt procedure (Dettman, 1962) to
order and remove less useful basis functions, following
the approach of Maldonado et.al.(2003). Let j(m) be an
integer valued function that specifies the order in which
raw basis functions xk are processed into orthonormal
basis functions x’k. Then x’m is to be calculated from xj(m),
xj(m-1) and so on. This function also defines the structure
of the new hidden layer where 1 ≤ m ≤ Nu and 1 ≤ j(m) ≤
Nu. If j(m) = k then the mth unit of the new structure
comes from the kth unit of the original structure. Given the
function j(m), and generalizing the Schmidt procedure,
the mth orthonormal basis function is described as
 ∑

=

⋅=
m

k
kjmkm xax

1
)(' (7)

Initially, x’1 is found as a11 . xj(1) where

2/1
)1(

11))1(),1((
11
jjrx

a
j

== (8)

Here r(i,j) is the auto-correlation between the ith and jth
basis functions. For 2 ≤ m ≤ Nu, we first perform

,))(),((
1
∑
=

⋅=
i

q
iqi mjqjrac for 1 ≤ i ≤ m - 1 (9)

Second, we set bm = 1 and get

∑
−

=

⋅−=
1m

ki
ikik acb , for 1 ≤ k ≤ m-1 (10)

Lastly, we get coefficients amk as

2/11

1

2))(),((⎥
⎦

⎤
⎢
⎣

⎡
−

=

∑
−

=

m

i
i

k
mk

cmjmjr

ba , for 1 ≤ k ≤ m (11)

Then weights in the orthonormal system are found as

∑
=

⋅=
m

k
mko kjicamiw

1
))(,(),(' , for 1 ≤ i ≤ M (12)

where c(i,j) is the cross-correlation between the jth basis
function and the ith desired output. Now, our goal is to
find the function j(m), which defines the structure of the
hidden layer. Here it is assumed that the original basis
functions are linearly independent i.e., the denominator of
equation (11) is not zero.
 Since we want the effects of inputs and the constant “1”
to be removed from orthonormal basis functions, the first
N+1 basis functions are picked as,

mmj =)(, for 1 ≤ m ≤ N+1 (13)
The selection process will be applied to the hidden units
of the network. We now define notation that helps us
specify the set of candidate basis function to choose in a
given iteration. First, define S(m) as the set of indices of
chosen basis functions where m is the number of units in
the current network (i.e., the one that the algorithm is of
processing). Then S(m) is given by

⎩
⎨
⎧

≤<
=

=
uNmmjjj

m
mS

0for)},(),...,2(),1({
0for },{

)(
φ (14)

Starting with an initial linear network having 0 hidden
units, where m is equal to N + 1, the set of candidate basis
functions is Sc{m} = {1, 2, 3, …, Nu} – S(m), which is
{N + 2, N + 3, …, Nu}. For N + 2 ≤ m ≤ Nu, we obtain
Sc{m – 1}. For each trial value of j(m) ∈ Sc{m – 1}, we
perform operations in equations (9-12). Then P(m) is

∑
=

=
M

i
o miwmP

1

2)],('[)((15)

The trial value of j(m) that maximizes P(m) is found.
Assuming that P(m) is maximum when testing the ith
element, then j(m) = i. S(m) is updated as

)}({)1()(mjmSmS U−= (16)
Then for the general case the candidate basis functions
are, Sc(m - 1) = {1, 2, 3, …, Nu} – {j(1), j(2), …, j(m -
1)} with Nu - m + 1 candidate basis function. By using
equation (15), after testing all the candidate basis
function, j(m) takes its value and S(m) is updated
according to equation (16). After the j(m) function is
complete, both the original basis functions and the
orthonormal ones are ordered. For any given desired
number of hidden units Nhd , the orthonormal weights are
mapped to normal weights according to:
 ∑

=

⋅=
uN

kq
qkoo aqiwkiw),('),((17)

Theorem 4: After performing ordered pruning, the order
of the hidden units is stepwise optimal. For any given kth
hidden unit, the (k+1)th unit is the one, out of the
remaining units, which reduces the MSE the most.

Validation
Given the matrix A and the MLP network with ordered
hidden units, we wish to generate the validation error
versus Nh curve Eval(Nh) from the validation data set

708

vN
ppp 1)},{(=tx . For each pattern, we augment the input

vector as in the previous sections. So the augmented input
vector is xp ← [xT

p, 1, OT
p]T . Then the augmented vector

is converted into orthonormal basis functions by the
transformation

∑
=

⋅=
m

k
pmkp kxamx

1
)()(' , for 1 ≤ m ≤ Nu (18)

In order to get the validation error for all size networks in
a single pass through the data, we use the following
strategy. Let ypi(m) represent the ith output of the network
having m hidden units for the pth pattern, let Eval(m)
represent the mean square error of the network for
validation with m hidden units. First, the linear network
output is obtained and the corresponding error is
calculated as follows:

∑
+

=

⋅=
1

1
)('),(')0(

N

k
popi kxkiwy , for 1 ≤ i ≤ M

∑
=

−+←
M

i
pipivalval ytEE

1

2)]0([)0()0((19)

Then for 1 ≤ m ≤ Nh, the following two steps are
performed:
• For 1 ≤ i ≤ M

)1(')1,('

)1()(

mNxmNiw

mymy

po

pipi

++⋅++

+−= (20)

• ∑
=

−+←
M

i
pipivalval mytmEmE

1

2)]([)()((21)

Apply equations (18-21) for 1 ≤ p ≤ Nv and get the total
validation error over all the patterns for each size
network. Then these error values should be normalized as

v

val
val N

mEmE)()(← , for 0 ≤ m ≤ Nh (22)

Thus we generate the validation error versus the network
size curve in one pass through the validation data set.

Pruning a Grown Network
The SRM principle requires that Ef(Nh) be as small as
possible for each value of Nh. The DM-1c growing
approach generates monotonic Ef(Nh) curves. However,
hidden units added earlier in the process tend to reduce
the MSE more than those added later. Unfortunately,
there is no guarantee that an Ef(Nh) sample represents a
global minimum., there is no guarantee that the hidden
units are ordered properly, and useless hidden units can
occur even for small values of Nh. In Design
Methodology 3 (DM-3), we attempt to solve these
problems by
(1) Performing growing as in DM-1c, and
(2) Performing ordered pruning of the final network.
This forces the grown hidden units to be stepwise
optimally ordered. Our method is denoted the “pruning a
grown network” approach.

Numerical Results
 Three Design Methodologies are compared here for
generating sequences of different size networks. In DM-
1c, the maximum value of Nh is 20. In DM-2, a single
large network with 20 hidden units is trained and then
ordered pruning is applied. For DM-3, two methods are
used. These are pruning a grown network from the
previous section, and the MRAN RBF design approach
described in Huang et.al. 2005. Since MRAN does not
produce a final network or an Ef(Nh) curve, its results are
stated separately, and not plotted. All three methodologies
were evaluated using four different data sets.. The plots
shown are average MSE versus number of hidden units.
 The first data set is for the inversion of surface
permittivity. This data has 16 inputs and 3 outputs. The
inputs represent the simulated back scattering coefficient
measured at 10, 30, 50 and 70 degrees at both vertical and
horizontal polarization. The remaining 8 are various
combinations of ratios of the original eight values. In
figures 2 and 3, training and validation error plots are
shown respectively for pruning and growing approaches
for inversion of surface permittivity data set. From the
figures, it is clear that pruning a grown network is best.
The MRAN approach adaptively chose networks with
around seventeen hidden units, and gave a validation error
of 29.4486, which is much worse than the other methods’
results.

Figure 2: Training error for Surface Permittivity Inversion

 The second data set is for inversion of radar scattering
from bare soil surfaces. It has 20 inputs and 3 outputs.
The training set contains VV and HH polarization at L 30,
40 deg, C 10, 30, 40, 50, 60 deg, and X 30, 40, 50 degrees
along with the corresponding unknowns rms surface
height, surface correlation length, and volumetric soil
moisture content in g/cubic cm. From figures 4 and 5,
growing is better than pruning, and pruning a grown
network is also very effective. The MRAN approach
adaptively chose networks with around five hidden units,

709

and resulted in training and validation MSEs of 7.3346
and 9.8037 respectively, which is much worse.

Figure 3: Validation error for Surface Permittivity
Inversion

Figure 4: Training error for Inversion of Radar Scattering.

Figure 5: Validation error for Radar Scattering Inversion

 The third data set is prognostics data for onboard flight
load synthesis (FLS) in helicopters, where we estimate
mechanical loads on critical parts, using measurements
available in the cockpit. There are 17 inputs and 9
outputs. From figures 6 and 7, pruning is again worse than
growing, and pruning a grown network is best. MRAN
adaptively chose networks with twenty one hidden units,
and resulted in training and validation MSEs of 1.4233 x
107 and 2.2803 x 109 respectively, which is much worse.

 Figure 6: Training error for Prognostics data.

Figure 7: Validation error plots for Prognostics data.

 The fourth data set for estimating phoneme likelihood
functions in speech, has 39 inputs and 117 outputs. The
speech samples are first pre-emphasized and converted
into the frequency domain via the DFT. The data is
passed through Mel filter banks and the inverse DFT is
applied on the output to get Mel-Frequency Cepstrum
Coefficients (MFCC). Each of MFCC(n), MFCC(n)-
MFCC(n - 1) and MFCC(n)-MFCC(n - 2) would have 13
features, which results in a total of 39 features. The
desired outputs are likelihoods for the beginning, middle,
and ends of 39 phonemes. From figures 8 and 9, pruning
is again worse than growing, and pruning a grown

710

network is best. MRAN adaptively chose networks with
twenty hidden units, and resulted in training and
validation MSEs of 4.05 x 104 and 3.801 x 104
respectively, which is much worse.

 Figure 8: Training error for Speech data.

 Figure 9: Validation error for Speech data.

Conclusions
In this paper, we explore three approaches for producing
sequences of trained and validated feedforward networks.
In the growing approach, dependently initialized networks
result in monotonically decreasing Ef (Nh) curves. A
pruning method is shown that requires one pass through
the data. A method is also described for simultaneously
validating many different size networks simultaneously,
using a single data pass. In the third, combined approach,
ordered pruning is applied to grown networks. As seen in
the simulations, this approach usually produces smaller
training error values than either growing or pruning alone.

References

Arena, P.; Caponetto, R.; Fortuna, L.; and Xibilia, M. G.
1992. Genetic algorithms to select optimal neural network
topology. In Proceedings of the 35th Midwest Symposium
on Circuits and Systems, volume 2, 1381–1383.

Changhua Yu, C., Manry, M.T., and Li, J. 2005. "Effects
of nonsingular pre-processing on feed-forward network
training ". International Journal of Pattern Recognition
and Artificial Intelligence , Vol. 19, No. 2, pp. 217-247.

Chung, F. L., and Lee, T. 1995. Network-growth
approach to design of feedforward neural networks. IEE
Proceedings Control Theory 142(5):486–492.

Delashmit, W. H. 2003. Multilayer Perceptron Structured
Initialization and Separating Mean Processing.
Dissertation, University of Texas at Arlington.

Dettman, J. W. 1962. Mathematical Methods in Physics
and Engineering, 2nd edit., McGraw-Hill, New York.

Fahlman, Scott E. and Lebierre, C. 1990. “The Cascade
Correlation learning architecture,” In David S. Touretzky,
editor, Advances in Neural Information Processing
Systems, vol. 2, pp. 524-532.

Fun, M. H., and Hagan, M. T. 1996. Levenberg-
marquardt training for modular networks. In IEEE Int.
Conf. on Neural Networks, volume 1, 468–473.

Hassibi, B., Stork, D. G. and Wolff, G. J. 1993. “Optimal
brain surgeon and general network pruning,” Proc. Of
1993 IEEE In. Conf. on Neural Networks, pp. 293-299.

Kaminski, W, and Strumillo, P, 1997. “Kernell
orthonormalization in radial basis function neural
networks,” IEEE Trans. Neural Nes, 8(5), 1177–1183.

Huang, G-B, Saratchandran, P., and Sundararajan, N.
2005. "A generalized growing and pruning RBF Neural
Network for function approximation", IEEE Trans. on
Neural Networks, vol. 16, no. 1, pp. 57-67.

LeCun, Y., Denker, J. S., Solla, S., Howard, R. E., and
Jackel, L. D. 1990. "Optimal Brain Damage," in
Advances in Neural Information Processing Systems 2,
(David Touretzky, ed.), Denver, CO.

Maldonado, F., Manry, M.T., and Kim, T., 2003. "Finding
Optimal Neural Network Basis Function Subsets Using
the Schmidt Procedure," Proc. of IJCNN'03.

711

