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Abstract 
This work is a confluence of three problems in constraint 
reasoning: qualitative temporal reasoning (QTR), 
incremental reasoning, and explanation generation. Our 
primary objective is to detect the cause of inconsistency in 
an incremental version of the QTR problem.  

 
1. Introduction 

 
Generating explanations for derived assertions is a 
motivating point behind the long journey in non-
monotonic reasoning in AI. In this work we propose a 
version of incremental reasoning problem where a new 
temporal object is to be inserted in a temporal database, 
along with the constraints between the new object and the 
old objects in the database already committed on the time-
line. The objective is to find a satisfiable solution for the 
new object on the time line in case of consistency, or to 
generate explanation for inconsistency. Gerevini (2003) 
addressed a similar problem but did not address the 
explanation-generation issue.  
 

2. Background on Temporal Reasoning 
 
Qualitative point-based temporal reasoning constitutes the 
simplest form of spatio-temporal reasoning (Vilain and 
Kautz, 1986). The scheme has three basic qualitative 
relations B: {<, >, =} between any pair of points. 
Qualitative reasoning with intervals involves thirteen 
basic Allen’s (1983) relations, B: {before(p), after(p-1), 
meets(m), met-by(m-1), overlaps(o), overlapped-by(o-1), 
starts(s), started-by(s-1), during(d), contains(d-1), 
finishes(f), finished-by(f-1), equal(eq)}, between any pair 
of intervals. Qualitative temporal reasoning problem 
(QTR(Θ)) is to answer, given a set of intervals and binary 
constraints between some of them, if a satisfiable 
assignment for each of the interval exists. Each constraint 
R ∈ Θ ⊆ P(B) is a disjunctive subset of the power set of B 
restricted to Θ that is closed under some operators like 
composition. The reasoning problem over unrestricted 
P(B) is known to be NP-hard (Vilain and Kautz, 1986), 
whereas reasoning with point algebra is a P-class 
problem. Reasoning over a proper subset Θ may be 
tractable, some of them being maximal (Maximal 
Tractable Subsets, or MTS’s) 

Ligozat (1996) developed a canonical way of 
representing time intervals that appears as a useful tool 
for understanding the MTS’s (Fig 1): the starting point of 
the intervals is X-axis, the ending point is Y-axis, and the 
valid space is Y>X. The topological relationships between 
the basic relations in this space constitute a lattice (Fig 1b, 
“p” as inferior (0,0) and “p-1” as superior (4,4)).  
 

  
 
Figure 1a and 1b: Canonical representation of interval-

basic relations 
 
We need the following definitions from Ligozat (1996). 
Definition 1 (Dimension dim(l)): For a basic relation b, 
dim(b) is the dimension of b in the Canonical 
representation in Fig 1a. For any relation l, dim(l) = 
max{dim(b) | b ∈ l}. 
Example 1: “p” is adjacent to “m” and the former is of 
dimension 2 while the later is of dimension 1. 
Definition 2 (Preconvex or Ord-Horn relation): A 
preconvex relation l is an interval on the lattice with some 
possibly missing relations r such that dim(r) < dim(l).  
Example 2: {o, s, d, d-1, o-1} is a preconvex relation, 
where the missing relations are ( f, eq, f-1,s-1) from the 
interval [(0,2), (2, 4)] on the lattice.  
Set of ORD-Horn relations form a MTS(OH) of P(B). 
 

3. OLQTR  Problem Definition 
 
Online qualitative temporal reasoning problem has a total 
order T={t1, t2, …, tn} as an input. In case of point-based 
reasoning, each ti (1 ≤i≤ n) is a time-point and in case of 
interval-based reasoning each ti is a boundary point of an 
interval from the set I={i1, i2, …, im}, |T|=n≤2m. The 
second input to the problem is a set of constraints C 
between a new object o (point or interval) and the objects 
in T: (o rk ik) ∈ C for some ik ∈ I in case of intervals 
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(OLQTR-I), and ik ∈ T in case of points (OLQTR-P), 
where non-null rk ∈ Θ. If C is satisfiable the output is a 
new total order T’ including o that satisfies all the 
constraints in C. OLQTR problem has three components. 
(1) It decides if the input C is consistent or not; (2) If C is 
consistent it asks for finding a model (T’) of C satisfying 
all constraints; and (3) In case C is inconsistent it asks for 
finding a minimal set of constraints M ⊂ C, such that C-M 
is consistent and ∄M’ ⊂ C such that |M’|≤ |M|, with C-M’ 
being consistent. OLQTR-P and OLQTR-I(Θ), for some 
subset Θ, including Θ=OH are tractable.  
 

4. OLQTR-P with Points 
 
Algorithm-1D (Mitra et al. 1999) proposed before, solves 
the first two components of the OLQTR-P. If Algorithm-
1D finds inconsistency the following algorithm (Fig 2) 
finds the minimum conflict set M. Let (degree of conflict) 
DC[ri] be the number of constraints that ri conflicts with. 
Initially (conflict set) CS collects the set of conflicting 
constraints (lines 2-6 below). The algorithm then finds the 
minimal number of those (MinSet), removal of which may 
restore consistency (lines 7-12). In line 4 the routine 
conflicts(ri, rj) returns True iff ri conflicts with rj. 
 
Algorithm FindMinset  (Input: T  and C) 
(1) CS = null; MinSet = null;   
(2) ∀ ri ∈ C, DC[ri] = 0;   
(3) ∀ ri, rj ∈ C such that i ≠ j do 
(4)       if (ri is “<”, or “≤”, or “=”)   

and (rj is “>”, or “≥”, or “=”)  
and conflicts(ri, rj) then 

(5)     CS = CS ∪ {(ri, rj)};   
(6)     DC[ri]++; DC[rj]++;      
(7)  while ΣCS [DC]≠ 0  do   
(8) let r = a constraint in CS with  

    the maximum DC; 
(9) MinSet = MinSet ∪ {r}; 
(10) for each element (ri, rj) ∈ CS do 
(11)     CS = CS  -  (ri, rj); DC[ri]--; DC[rj]--; 
(12)  return MinSet. 
 

Figure 2: Culprit detection algorithm for OLQTR-P 
 

5. OLQTR-I(OH) with ORD-Horn MTS 
 
Any OH relation can be expressed as a conjunctive 
normal formula (CNF) where any clause has at most one 
positive literal (“≤” or “=”) and any number of negative 
literals involving (“≠”) (Nebel et al. 1995).  A literal is the 
boundary-point relations between the related intervals. An 
interval relation is originally in a disjunctive normal form 
over the boundary point relations. It is not easy to convert 
them to CNF in the above form for OH relations. We have 

developed a Normalization algorithm that creates an 
interval over the lattice for the input OH relation and then 
adds the formula for the missing basic relations This 
creates a CNF. We further simplify the CNF using some 
rules we have developed that creates a CNF with only one 
positive literal iff the input is OH relation. (detail in  
https://www.cs.fit.edu/Projects/tech_reports/tr2006.html) 
Example 3 (Ligozat): OH constraint (i1 {o, d-1, eq} i2) 
may be expressed as  {( i1

- ≤ i2
-) ∧ (i2

- ≤ i1
+) ∧ (i1

+ ≠ i2
-)  

//the 3 unit clauses define the interval [o, s-1] on the 
lattice// ∧ ((i2

- ≤ i1
-) ∨ (i1

+ ≠ i2
+)) //take out f -1// ∧ ((i1

- ≠ i2
-

) ∨ (i1
+ ≤ i2

+)) //take out s-1// ∧ ((i1
- ≠ i2

-) ∨ (i2
+ ≤ i1

+)) 
//take out s//}. The comments inserted within the CNF 
above indicate the trick how to create such formula.  
 Finally, our Sorter algorithm parses the CNF for 
the OLQTR-I(OH) problem C (a conjunct over all 
constraints involving o) choosing only one point relation 
from each clause corresponding to the start or end point of 
o, favoring the least constraining negative literal. Since 
there is only one positive literal per clause, when that is 
chosen there is no other alternative for backtracking. 
Sorter creates two lists for start and end points of o. 
Subsequently Algorithm-1D provides a solution to a 
consistent problem, or FindMenset provides MinSets for 
the two boundary points of o. 

OH-subset is the most useful of all the MTS’s as 
it contains each of the basic relations. Our immediate 
following work will address the OLQTR-I problem for all 
other MTS’s available in the literature. 
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