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Abstract
In this paper, we will study semantics that have been used for
conditionals in the area of knowledge representation and rea-
soning: A purely qualitative semantics based on the popular
system-of-spheres semantics of Lewis, an ordinal semantics
making use of rankings, and a possibilistic semantics. As a
common framework for the corresponding logics, we will use
institutions which provide formal rigidity based on category
theory, but leaves enough abstract freedom to formalize and
compare quite different logics. We will show that the con-
ditional semantics mentioned above are logically similar, yet
each semantics allows semantical subtleties.

Introduction
As a part of the subjective belief state of an agent, condi-
tional statements if A then B, formally denoted by (B|A),
usually have interpretations that are quite different from that
of material implications A ⇒ B. Conditionals are more
commonly used to express intensional and meaningful rela-
tionships between antecedent, A, and consequent, B, mak-
ing extensional truth valuations via A ⇒ B ≡ ¬A ∨ B
useless. This is quite obvious in the case of counterfactual
conditionals (Lewis 1973) the antecedent of which is known
to be false, so their logical truth value (when interpreted as a
material implication) would be true. However, whereas the
counterfactual If Christmas were in July, we wouldn’t have
snow on Christmas would be considered an acceptable state-
ment in the temperate zones of the northern hemisphere, the
counterfactuals If Christmas were in July, the law of grav-
ity would no longer hold, or even worse, If Christmas were
in July, then Christmas were in November would be hardly
accepted by any reasonable person.

So, conditionals need a richer semantical environment
than classical bivalued logics to be interpreted adequately.
Besides counterfactuals, there are other types of condition-
als with peculiarities; a good logical overview can be found
in (Nute 1980). In the area of knowledge representation,
conditionals have a broad range of application: They can be
considered as formal representations of default rules (Gold-
szmidt & Pearl 1996), or, on a meta level, as encodings of
inference rules for nonmonotonic reasoning or of revision
strategies for belief revision (Kern-Isberner 2001).
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In this paper, we will study semantics that have been
broadly used for conditionals in all these areas: A purely
qualitative semantics based on the popular system-of-
spheres semantics of Lewis (Lewis 1973), an ordinal se-
mantics making use of rankings (Spohn 1988), and a pos-
sibilistic semantics (Benferhat, Dubois, & Prade 1999). In
particular, we will be interested in elaborating abstract log-
ical relationships between these semantics. To this aim,
we will use the institutions which Goguen and Burstall in-
troduced as a general formal framework for logical sys-
tems (Goguen & Burstall 1992). An institution for-
malizes the informal notion of a logical system, including
syntax, semantics, and the relation of satisfaction between
them. The latter poses the major requirement for an insti-
tution: that the satisfaction relation is consistent under the
change of notation. This paper continues work on compar-
ing logics for knowledge representation and reasoning with
very different syntax and semantics, including propositional
and probabilistic logics (cf. (Beierle & Kern-Isberner 2002;
2003)).

The organization of the paper is as follows: The next two
sections are dedicated to explaining the two basic concepts
that this paper deals with, namely institutions and semantics
for conditionals. As the main contributions of this paper,
we continue by formalizing purely qualitative, ordinal and
possibilistic logics for conditionals as institutions, and study
connections between them by morphisms. Finally, we re-
late these results to work done previously, and conclude the
paper by a summary.

Institutions
In this section, we will describe briefly the framework of
institutions we will be working with. As institutions are for-
malized by using category theory, we will also very briefly
recall some basic notions of category theory; for more infor-
mation about categories, see e.g. (Herrlich & Strecker 1973).
To give an example, we present the institution of proposi-
tional logic the components of which will be used through-
out the paper. Moreover, we explain how institutions can be
related to each other by institution morphisms.

Basic Definitions and Notations
If C is a category, |C | denotes the objects of C and /C/
its morphisms; for both objects c ∈ |C | and morphisms
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ϕ ∈ /C/, we also write just c ∈ C and ϕ ∈ C, respectively.
Cop is the opposite category of C, with the direction of all
morphisms reversed. The composition of two functors F :
C → C ′ and G : C ′ → C ′′ is denoted by G ◦ F (first
apply F , then G). For functors F, G : C → C ′, a natural
transformation η from F to G, denoted by η : F =⇒ G,
assigns to each object c ∈ |C | a morphism ηc : F (C) →
G(C) ∈ /C ′/ such that for every morphism ϕ : c → d ∈
/C/ we have ηd◦F (ϕ) = G(ϕ)◦ηc. SET and CAT denote
the categories of sets and of categories, respectively.

The central definition of an institution (Goguen & Burstall
1992) is the following:

Definition 1 An institution is a quadruple Inst =
〈Sig , Mod , Sen, |= 〉 with a category Sig of signatures as
objects, a functor Mod : Sig → CAT op yielding the cat-
egory of Σ-models for each signature Σ, a functor Sen :
Sig → SET yielding the sentences over a signature, and a
|Sig |-indexed relation |=Σ ⊆ |Mod (Σ) | × Sen(Σ) such
that for each signature morphism ϕ : Σ → Σ′ ∈ /Sig/,
for each m′ ∈ |Mod (Σ′) |, and for each f ∈ Sen(Σ) the
following satisfaction condition holds:

m′ |=Σ′ Sen(ϕ)(f) iff Mod (ϕ)(m′) |=Σ f

For sets F, G of Σ-sentences and a Σ-model m we write
m |=Σ F iff m |=Σ f for all f ∈ F . The satisfaction relation
is lifted to semantical entailment |=Σ between sentences by
defining F |=Σ G iff for all Σ-models m with m |=Σ F we
have m |=Σ G. F • = {f ∈ Sen(Σ) | F |=Σ f} is called
the closure of F , and F is closed if F = F •. The clo-
sure operator fulfils the closure lemma ϕ(F •) ⊆ ϕ(F )•

and various other nice properties like ϕ(F •)• = ϕ(F )• or
(F • ∪ G)• = (F ∪ G)•. A consequence of the closure
lemma is that entailment is preserved under change of no-
tation carried out by a signature morphism, i.e. F |=Σ G
implies ϕ(F ) |=ϕ(Σ) ϕ(G) (but not vice versa).

The Institution of Propositional Logic
The components of the institution InstB =
〈SigB, ModB, SenB, |=B 〉 of classical propositional
logic will be defined in the following.

Signatures: SigB is the category of propositional signa-
tures. A propositional signature Σ ∈ |SigB | is a (finite)
set of propositional variables, Σ = {a1, a2, . . .}. A proposi-
tional signature morphism ϕ : Σ → Σ′ ∈ /SigB/ is a func-
tion mapping propositional variables to propositional vari-
ables.

Models: For each signature Σ ∈ SigB, ModB(Σ) contains
the set of all propositional interpretations for Σ, i.e.

|ModB(Σ) | = {I | I : Σ → Bool}

where Bool = {true, false}. Due to its simple structure, the
only morphisms in ModB(Σ) are the identity morphisms.
For each signature morphism ϕ : Σ → Σ′ ∈ SigB, we
define the functor ModB(ϕ) : ModB(Σ′) → ModB(Σ) by
(ModB(ϕ)(I ′))(ai) := I ′(ϕ(ai)) where I ′ ∈ ModB(Σ′)
and ai ∈ Σ.

Sentences: For each signature Σ ∈ SigB, the set SenB(Σ)
contains the usual propositional formulas constructed from
the propositional variables in Σ and the logical connectives
∧ (and), ∨ (or), and ¬ (not).

For each signature morphism ϕ : Σ → Σ′ ∈ SigB, the
function SenB(ϕ) : SenB(Σ) → SenB(Σ′) is defined by
straightforward inductive extension on the structure of the
formulas; e.g., SenB(ϕ)(ai) = ϕ(ai) and SenB(ϕ)(A ∧
B) = SenB(ϕ)(A) ∧ SenB(ϕ)(B). In the following, we
will abbreviate SenB(ϕ)(A) by just writing ϕ(A).

In order to simplify notations, we will often replace con-
junction by juxtaposition and indicate negation of a formula
by barring it, i.e. AB = A∧B and A = ¬A. An atomic for-
mula is a formula consisting of just a propositional variable,
a literal is a positive or a negated atomic formula, an ele-
mentary conjunction is a conjunction of literals, and a com-
plete conjunction is an elementary conjunction containing
each atomic formula either in positive or in negated form.
ΩΣ denotes the set of all complete conjunctions over a sig-
nature Σ; if Σ is clear from the context, we may drop the
index Σ. Note that there is an obvious bijection between
|ModB(Σ) | and ΩΣ, associating with I ∈ |ModB(Σ) | the
complete conjunction ωI ∈ ΩΣ in which an atomic formula
ai ∈ Σ occurs in positive form iff I(ai) = true.

Satisfaction relation: For any Σ ∈ |SigB |, the satisfaction
relation

|=B,Σ ⊆ |ModB(Σ) | × SenB(Σ)

is defined as expected for propositional logic, e.g. I |=B,Σ ai

iff I(ai) = true and I |=B,Σ A ∧ B iff I |=B,Σ A and
I |=B,Σ B for ai ∈ Σ and A, B ∈ SenB(Σ).

Proposition 2 InstB = 〈SigB, ModB, SenB, |=B 〉 is an
institution.

A proof of this proposition is straightforward since the satis-
faction condition I ′ |=B,Σ′ ϕ(A) iff ModB(ϕ)(I ′) |=B,Σ A
holds by easy induction on the structure of A.

Example 3 Let Σ = {s, t, u} and Σ′ = {a, b, c} be two
propositional signatures with the atomic propositions s – be-
ing a scholar, t – being not married, u – being single and a –
being a student, b – being young, c – being unmarried. Let
I ′ be the Σ′-model with I ′(a) = true, I ′(b) = true, I ′(c) =
false. Let ϕ : Σ → Σ′ ∈ SigB be the signature morphism
with ϕ(s) = a, ϕ(t) = c, ϕ(u) = c. The functor ModB(ϕ)
takes I ′ to the Σ-model I := ModB(ϕ)(I ′), yielding I(s) =
I ′(a) = true, I(t) = I ′(c) = false, I(u) = I ′(c) = false.

Note that in the example, ϕ is neither surjective nor in-
jective. ϕ not being surjective makes the functor ModB(ϕ)
a forgetful functor – any information about b (being young)
in I ′ is forgotten in I . ϕ not being injective implies that
any two propositional variables from Σ mapped to the same
element in Σ′ are both being identified with the same propo-
sition; thus, under the forgetful functor ModB(ϕ), the inter-
pretation of t (being not married) and u (being single) will
always be equivalent since ϕ(t) = ϕ(u).
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Institution Morphisms
An institution morphism Φ expresses a relation between two
institutions Inst und Inst ′ such that the satisfaction con-
dition of Inst may be computed by the satisfaction condi-
tion of Inst ′ if we translate it according to Φ. The transla-
tion is done by relating every Inst-signature Σ to an Inst ′-
signature Σ′, each Σ′-sentence to a Σ-sentence, and each
Σ-model to a Σ′-model.

Definition 4 Let Inst , Inst ′ be two institutions,
Inst = 〈Sig , Mod , Sen, |= 〉 and Inst ′ =
〈Sig ′, Mod ′, Sen ′, |= ′ 〉. An institution morphism
Φ from Inst to Inst ′ is a triple 〈φ, α, β 〉 with a
functor φ : Sig → Sig ′, a natural transformation
α : Sen ′ ◦ φ =⇒ Sen, and a natural transformation
β : Mod =⇒ Mod ′ ◦ φ such that for each Σ ∈ |Sig |, for
each m ∈ |Mod (Σ) |, and for each f ′ ∈ Sen ′(φ(Σ)) the
following satisfaction condition (for institution morphisms)
holds:

m |=Σ αΣ(f ′) iff βΣ(m) |= ′
φ(Σ) f ′ (1)

Semantics for conditionals
Various types of models have been proposed to interpret
conditionals (B|A) (with propositional formulas A, B) ade-
quately within a logical system (cf. e.g. (Nute 1980)). Many
of them are based on considering possible worlds which
can be thought of as being represented by classical log-
ical interpretations |ModB(Σ) |, or complete conjunctions
ω ∈ Ω, respectively. One of the most prominent approaches
is the system-of-spheres model of Lewis (Lewis 1973) which
makes use of a notion of similarity between possible worlds.
This idea of comparing worlds and evaluating conditionals
with respect to the “nearest” or “best” worlds (which are
somehow selected) is common to very many approaches in
conditional logics.

From a purely qualitative point of view, proper models
of conditionals are provided by total preorders over classi-
cal propositional interpretations, or possible worlds, respec-
tively. Possible worlds are ordered according to their plausi-
bility. By convention, the least worlds are the most plausible
worlds. We will also use the infix notation ω1 �R ω2 instead
of (ω1, ω2) ∈ R. As usual, we introduce the ≺R-relation by
saying that ω1 ≺R ω2 iff ω1 �R ω2 and not ω2 �R ω1.
Furthermore, ω1 ≈R ω2 means that both ω1 �R ω2 and
ω2 �R ω1 hold.

Each total preorder R induces a partitioning Ω0, Ω1, . . .
of Ω, such that all worlds in the same partitioning subset are
considered equally plausible (ω1 ≈R ω2 for ω1, ω2 ∈ Ωj),
and whenever ω1 ∈ Ωi and ω2 ∈ Ωk with i < k, then
ω1 ≺R ω2. Let Min(R) denote the set of R-minimal worlds
in Ω, i.e.

Min(R) = Ω0 = {ω0 ∈ Ω | ω0 �R ω for all ω ∈ Ω}

Moreover, a total preorder on propositional formulas A, B ∈
SenB(Σ) is defined by

A �R B iff for all ω2 ∈ Ω with ω2 |=B,Σ B
there exists ω1 ∈ Ω with ω1 |=B,Σ A
such that ω1 �R ω2

So, A is considered to be at least as plausible as B (with
respect to R) iff the most plausible worlds satisfying A are
at least as plausible as any world satisfying B. Finally, a
total preorder R represents or accepts a conditional (B|A)
iff AB ≺R AB, i.e. iff the verification of the conditional
(AB) is found more plausible than its falsification (AB).

There are other, more fine-grained semantics for condi-
tionals which aim at making the vague notion of plausibility
preorders more precise by using numbers to compare differ-
ent degrees of “plausibility” between the verification and the
falsification of a conditional. Here, two of the most popular
approaches make use of ordinal rankings and of possibility
theory, respectively. We will sketch these semantics in the
following.

The basic idea of ordinal conditional functions (OCFs)
is to specify the partitioning sets defined by total preorders
by level numbers. OCFs are simply functions κ : Ω → N

with κ−1(0) 6= ∅. The smaller κ(ω), the more plausible
is the world ω. So ordinal rankings actually express a de-
gree of disbelief or surprise to observe the corresponding
world. For propositional formulas A, B ∈ SenB(Σ), we
have κ(A) = min{κ(ω) | ω |= A}, so that κ(A ∨ B) =
min{κ(A), κ(B)}. Here, conditionals are given semantics
by defining that an OCF κ accepts (B|A) iff κ(AB) <
κ(AB), i.e. if it is a greater surprise to observe AB than
AB.

A possibility distribution is a function π : Ω → [0, 1]
(Dubois & Prade 1994)). Each possibility distribution in-
duces a possibility measure on propositional formulas which
will also be denoted by π: For each A ∈ SenB(Σ),
π(A) = maxω|=A π(ω). Then it holds that π(A ∨ B) =
max{π(A), π(B)}, and π(A∧B) 6 min{π(A), π(B)} for
any two propositional formulas A, B ∈ SenB(Σ). Here, a
conditional (B|A) is accepted by π iff π(AB) > π(AB),
i.e. if its verification is more possible than its falsification.

Institutions of conditional logics
In this section, we will formalize institutions for the condi-
tional logics sketched above. More precisely, we will de-
fine the institution InstK of purely qualitative conditionals,
the institution InstO of ordinal conditionals, and the insti-
tution InstΠ of possibilistic conditionals. The signatures of
all these institutions will be the same, namely the signature
SigB of propositional logic. So, all these logics will use a
common vocabulary, and, as we will see, also a common
syntax. This allows us to focus on semantical peculiarities.

The institution InstK of purely qualitative
conditionals
In the following, we will describe the components of the in-
stitution InstK = 〈SigK, ModK, SenK, |=K 〉 of purely
qualitative conditionals. This section recalls results from
(Beierle & Kern-Isberner 2002).

Signatures: SigK is identical to the category of proposi-
tional signatures, i.e. SigK = SigB.

Models: In correspondence with Lewis’ system-of-spheres
semantics, we will consider the models R ∈ ModK(Σ) to be
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total preorders on Ω, ordering the possible worlds according
to their plausibility, or similarity with the actual world:

|ModK(Σ) | = {R | R is a total preorder on |ModB(Σ) |}

We only consider the identity morphisms in ModK(Σ) for
this paper.

For each signature morphism ϕ : Σ → Σ′, we define a
functor ModK(ϕ) : ModK(Σ′) → ModK(Σ) by mapping
a (total) preorder R′ over ModB(Σ′) to a (total) preorder
ModK(ϕ)(R′) over ModB(Σ) in the following way:

ω1 �ModK(ϕ)(R′) ω2 iff ϕ(ω1) �R′ ϕ(ω2) (2)

Note that on the left hand side of (2) the complete conjunc-
tions ω1 and ω2 are viewed as models in ModB(Σ), whereas
on the right hand side they are sentences in SenB(Σ).

It is straightforward to check that ModK(ϕ)(R′) is a total
preorder (the corresponding properties are all directly inher-
ited by R′), so indeed ModK(ϕ)(R′) ∈ ModK(Σ). The
connection between R′ and ModK(ϕ)(R′) defined by (2)
can also be shown to hold for propositional sentences in-
stead of worlds:

Lemma 5 Let A, B ∈ SenB(Σ). Then A �ModK(ϕ)(R′)

B iff ϕ(A) �R′ ϕ(B).

Sentences: For each signature Σ, the set SenK(Σ) con-
tains (propositional) conditionals of the form (B|A) where
A, B ∈ SenB(Σ) are propositional formulas from InstB.
For ϕ : Σ → Σ′, the extension SenK(ϕ) is defined as usual
by SenK(ϕ)((B|A)) = (ϕ(B)|ϕ(A)).

Satisfaction relation: The satisfaction relation |=K,Σ ⊆

|ModK(Σ) | × SenK(Σ) is defined, for any Σ ∈ |SigK |, by

R |=K,Σ (B|A) iff AB ≺R AB

Therefore, a conditional (B|A) is satisfied (or accepted) by
the plausibility preorder R iff its confirmation AB is more
plausible than its refutation AB.

Using Lemma 5, it is easy to prove the following propo-
sition.

Proposition 6 InstK = 〈SigK, ModK, SenK, |=K 〉 is
an institution.

Example 7 We continue our student-example in this quali-
tative conditional environment, so let Σ, Σ′, ϕ be as defined
in Example 3. Let R′ be the following total preorder on Ω′:

R′ : abc ≺R′ abc ≈R′ abc ≺R′ abc,

abc ≈R′ abc ≈R′ abc ≈R′ abc ≈R′ abc

Now, for instance R′ |=K,Σ′ (a|>) since >a ≡ a, >a ≡

a, and a ≺R′ a. Thus, under R′, it is more plausible to be not
a student than to be a student. Furthermore, R′ |=K,Σ′ (c|a)

– students are supposed to be unmarried since under R′, ac
is more plausible than ac.

Under ModK(ϕ), R′ is mapped onto R = ModK(ϕ)(R′)
where R is the following total preorder on Ω:

R : stu ≺R stu ≈R stu ≺R stu ≺R stu,

stu ≈R stu ≈R stu ≈R stu

As expected, the conditionals (t|s) and (u|s), both corre-
sponding to (c|a) in SenK(Σ′) under ϕ, are satisfied by R
– here, scholars are supposed to be both not married and
single.

The institution InstO of ordinal conditionals

Signatures and Sentences: As in the previous section, we
choose propositional signatures: SigO = SigB. For the sen-
tences functor, we make use of the constructions for purely
qualitative conditionals which provide a formal language for
conditionals; hence SenO = SenK.

Models: The models of this institution are Spohn’s ordinal
conditional functions (OCFs) (Spohn 1988) κ : ΩΣ → N.
Hence

|ModO(Σ) | = {κ : ΩΣ → N | κ is an OCF}

For each signature morphism ϕ : Σ → Σ′, we define a
functor ModO(ϕ) : ModO(Σ′) → ModO(Σ) by mapping
an OCF κ′ over ModO(Σ′) to an OCF ModO(ϕ)(κ′) over
ModO(Σ) in the following way:

ModO(ϕ)(κ′)(ω) = κ′(ϕ(ω)) = min
ω′|=ϕ(ω)

κ′(ω′) (3)

It is straightforward to generalize this to proropositional for-
mulas A ∈ SenB(Σ):

ModO(ϕ)(κ′)(A) = κ′(ϕ(A)) (4)

Satisfaction relation: The satisfaction relation |=O,Σ ⊆

|ModO(Σ) | ×SenO(Σ) is defined, for any Σ ∈ |SigO |, by

κ |=O,Σ (B|A) iff κ(AB) < κ(AB)

Therefore, a conditional (B|A) is satisfied (or accepted) by
the ordinal conditional function κ iff its confirmation AB is
less surprizing than its refutation AB. Using (4), we are now
able to prove that these components make up an institution.

Proposition 8 InstO = 〈SigO, ModO, SenO, |=O 〉 is
an institution.

The institution InstΠ of possibilistic conditionals
We start with specifying the language of this institution.

Signatures and Sentences: As for ordinal conditionals, we
have SigΠ = SigB and SenΠ = SenK.

Models: The models of this institution are possibility distri-
butions π : ΩΣ → [0, 1], i.e.

|ModΠ(Σ) | = {π : ΩΣ → [0, 1]}

For each signature morphism ϕ : Σ → Σ′, we define a
functor ModΠ(ϕ) : ModΠ(Σ′) → ModΠ(Σ) by mapping
a possibility distribution π′ over ModΠ(Σ′) to a possibility
distribution ModΠ(ϕ)(π′) over ModΠ(Σ) in the following
way:

ModΠ(ϕ)(π′)(ω) = π′(ϕ(ω)) (5)
It is obvious that ModΠ(ϕ)(π′) is a possibility distribution.

For a propositional formula A ∈ SenB(Σ), we have
ModΠ(ϕ)(π′)(A) = π′(ϕ(A)).

797



Satisfaction relation: The satisfaction relation |=Π,Σ ⊆

|ModΠ(Σ) | × SenΠ(Σ) is defined, for any Σ ∈ |SigΠ |, by

π |=Π,Σ (B|A) iff π(AB) > π(AB)

Therefore, a conditional (B|A) is satisfied (or accepted) by
the possibility distribution π iff its confirmation AB is more
possible than its refutation AB.

Proposition 9 InstΠ = 〈SigΠ, ModΠ, SenΠ, |=Π 〉 is
an institution.

Relationships between different conditional
institutions

Since InstK, InstO, and InstΠ, all have the same category
SigB of signatures, a natural choice for the signature trans-
lation component φ in any morphism between these institu-
tions is the identity idSig

B
which we will use in the follow-

ing. Moreover, since all sentences functors are also identical
to SenK, any morphism between these institutions should
use the identical natural transformation

αid : SenK =⇒ SenK αid,Σ((B|A)) = (B|A) .

We will relate InstK to each of InstO and InstΠ; relations
between InstO and InstΠ can be obtained directly by com-
bining the results shown.

Relating InstK and InstΠ

In this subsection, we will investigate whether the introduc-
tion of numbers in possibility theory makes a substantial dif-
ference to interpreting conditionals in a purely qualitative
way, as is done in InstK.

We are left with the problem of specifying natural trans-
formations β1 : ModK =⇒ ModΠ and β2 : ModΠ =⇒
ModK between the models.

The models of InstK are total preorders on the set of
possible worlds ΩΣ and hence correspond to comparative
possibility distributions (see (Benferhat, Dubois, & Prade
1999)). Obviously, each possibility distribution π on ΩΣ

can be mapped onto a total preorder

Rπ ∈ ModK(Σ), ω1 �R ω2 iff π(ω1) > π(ω2).

Conversely, if R is a total preorder in ModK(Σ) defining a
partitioning Ω0, Ω1, . . . , Ωn on ΩΣ with Min(R) = Ω0, we
choose a sequence a0 = 1 > a1 > . . . > an > 0 of real
numbers and define a (normalized) possibility distribution
πR ∈ ModΠ(Σ), πR(ω) = ai iff ω ∈ Ωi. Hence plau-
sibility is identified with possibility. Each possibility distri-
bution determines a total preorder in a unique way, but note
that a whole bunch of possibility distributions give rise to
the same total preorder.

βK/Π : ModK =⇒ ModΠ βK/Π,Σ(R) = πR

βΠ/K : ModΠ =⇒ ModK βΠ/K,Σ(π) = Rπ

(6)
are both natural transformations establishing morphisms be-
tween both institutions:

Proposition 10 Let the natural transformations
βK/Π and βΠ/K be as defined in (6). Then both
〈 idSig

B
, αid, βK/Π 〉 : InstK −→ InstΠ and

〈 idSigB
, αid, βΠ/K 〉 : InstΠ −→ InstK are institu-

tion morphisms. Moreover, 〈 idSig
B
, αid, βΠ/K 〉 is the only

such morphism.

Relating InstO and InstK
We focus our investigations on relating models of these in-
stitutions by natural transformations.

Going from InstO to InstK, we have to transform ordinal
conditional functions into total preorders so that the satisfac-
tion condition for morphisms

κ |=O,Σ (B|A) iff βO/K,Σ(κ) |=K,Σ (B|A)

holds with a natural transformation βO/K : ModO =⇒
ModK, βO/K,Σ(κ) = Rκ. It is obvious to define Rκ by

ω1 �Rκ
ω2 iff κ(ω1) 6 κ(ω2). (7)

This is lifted easily to the level of propositions, i.e. we have
A �Rκ

B iff κ(A) 6 κ(B), since both κ and Rκ evaluate
formulas on minimal worlds. This implies A ≺Rκ

B iff
κ(A) 6 κ(B), which is important for checking conditionals.

In a similar way as for possibilistic conditionals (see
Proposition 10), it can be shown that the satisfaction con-
dition above is equivalent to stating ω1 �Rκ

ω2 iff κ(ω1) 6

κ(ω2). Therefore, we have proved the following

Proposition 11 Let βO/K be as defined in (7). Then
βO/K is the only natural transformation such that
〈 idSigB

, αid, βO/K 〉 : InstO −→ InstK is an institution
morphism.

In the other direction, i.e. from InstK to InstO, we have
to associate ordinal conditional functions to total preorder R.
Each such R induces a partitioning Ω0, Ω1, . . . of Ω, and we
set κR(ω) = i iff ω ∈ Ωi. κR is an ordinal conditional
function, and choosing the natural transformation

βK/O : ModK =⇒ ModO, βK/O,Σ(R) = κR,Σ (8)

gives rise to an institution morphism.

Proposition 12 Let βK/O be as defined in (8). Then
〈 idSig

B
, αid, βK/O 〉 : InstK −→ InstO is an institution

morphism.

Note that in this case, βK/O is not uniquely determined by
the satisfaction condition, hence the institution morphism is
not unique.

Related and further work
In this paper, we focus on qualitative conditional seman-
tics. One of the most popular semantics of conditionals,
however, is the one which is based on conditional probabil-
ities. We proved in (Beierle & Kern-Isberner 2002), that in
such a quantitative environment, an institution of probabilis-
tic conditionals InstC can be defined in a very similar way,
as was done here in a qualitative framework. But crucial dif-
ferences became apparent when studying relationships be-
tween InstC and InstK via morphisms. As might have been
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Figure 1: Institution morphisms between InstK, InstO,
InstΠ, and InstS

expected, a unique institution morphism going from InstC
to InstK can be defined in a canonical way, but in princi-
ple, there is no morphism going in the other direction. As
we found morphisms between InstO, InstΠ, and InstK in
the previous section, similar results hold for all three institu-
tions. This means that the probabilistic semantics for condi-
tionals can be projected onto each qualitative semantics, but
there is no way to recover the richness of conditional proba-
bilities from within a qualitative semantical framework.

A particular interesting comparison can be made between
the conditional semantics studied here and the qualitative
probabilistic semantics defined via so-called atomic bound
systems, introduced by Snow in (Snow 1994; 1996) and also
known as big-stepped probabilities (this more intuitive name
was coined by Benferhat, Dubois & Prade, see (Benfer-
hat, Dubois, & Prade 1999)). Big-stepped probability dis-
tributions P are such that all P (ω) are positive and form
a linearly ordered set, and it holds that for all ω0 ∈ Ω,
P (ω0) >

∑
ω:P (ω0)>P (ω) P (ω). So, in a big-stepped prob-

ability distribution, the probability of each possible world
is bigger than the sum of all probabilities of less probable
worlds. Big-stepped probabilities actually provide a stan-
dard probabilistic semantics for system P (cf. (Benferhat,
Dubois, & Prade 1999)), by accepting conditionals (B|A)
iff P (AB) > P (AB). Again, an institution InstS of big-
stepped probabilities can be defined (cf. (Beierle & Kern-
Isberner 2003)). Although the big-stepped conditional se-
mantics seems to be much more coarse-grained than full
probabilistic semantics, and much closer to qualitative con-
ditional semantics, we showed in (Beierle & Kern-Isberner
2003) that there is still a gap between InstK and InstS :
There is no institution morphism from InstK to InstS (but a
canonical morphism going into the other direction). Hence,
in spite of superficial similarity, basic differences between
these two kinds of qualitative reasoning could be made clear
by using the formal framework of institutions. Similar re-
sults hold for the possibilistic and ordinal semantics, too.
Figure 1 illustrates the existing and non-existing links via
morphisms between the institutions of purely qualitative,
possibilistic, ordinal, and big-stepped conditionals, respec-
tively.

Conclusion
In this paper, we investigated formal logical relationships
between various popular semantics for conditionals. By
making use of the abstract framework of institutions for
specifying logical systems, we were able to prove that the

purely qualitative semantics based on plausibility, the ordi-
nal semantics using rankings and the possibilistic semantics
are all similar, but each semantics allows specific features
of expressiveness. The purely qualitative conditional insti-
tution InstK provides the weakest semantics, since the mod-
els of both the possibilistic and the ordinal institutions can
be mapped uniquely to a model of InstK, but each model of
InstK gives rise to a class of models of the other institutions.

As part of our future work, we will use institutions for
semantics induced by so-called conditional valuation func-
tions (Kern-Isberner 2001), aiming at completing quite a
general formal picture of conditional semantics.
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