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Abstract

In real-life decision analysis, the probabilities and val-
ues of consequences are in general vague and imprecise.
One way to model imprecise probabilities is to represent
a probability with the interval between the lowest pos-
sible and the highest possible probability, respectively.
However, there are disadvantages with this approach,
one being that when an event has several possible out-
comes, the distributions of belief in the different proba-
bilities are heavily concentrated to their centers of mass,
meaning that much of the information of the original in-
tervals are lost. Representing an imprecise probability
with the distribution’s center of mass therefore in prac-
tice gives much the same result as using an interval, but
a single number instead of an interval is computation-
ally easier and avoids problems such as overlapping in-
tervals. Using this, we demonstrate why second-order
calculations can add information when handling impre-
cise representations, as is the case of decision trees or
probabilistic networks. We suggest a measure of belief
density for such intervals. We also demonstrate impor-
tant properties when operating on general distributions.
The results herein apply also to approaches which do
not explicitly deal with second-order distributions, in-
stead using only first-order concepts such as upper and
lower bounds.

Introduction
Imprecise probabilities are often modelled by intervals.
There are a number of different approaches to deciding the
interval boundaries; in (Choquet 1954) capacities were in-
troduced, and then further developed in (Huber 1973) and
(Huber & Strassen 1973). Capacities of order 2 can be used
for interval probabilities (Denneberg 1994). Interval-valued
probability functions have been based on classes of proba-
bility measures (Good 1962). The Dempster-Shafer theory
(Dempster 1967), (Shafer 1976) provides a framework for
modelling upper and lower probabilities. In (Walley 1991)
interval based probabilities are thoroughly investigated. A
geometric approach to interval-valued probabilities is taken
in (Ha & Haddaway 1998).

In decision analysis, it is common to seek to maximize the
expected utility. When the probabilities of the possible out-
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comes of an event are expressed using intervals pi ∈ [ai, bi],
one can formulate the problem as a linear programming
(LP) problem with the interval restrictions as constraints
pi ≥ ai, pi ≤ bi. However, the optima of LP problems
are found in the vertices of the feasible region, meaning that
for each i, either interval boundary ai or bi will be used in
the calculation of the optimal expected utility. The optimal
solution then merely tells us what the expected utility would
be if in fact pi = ai or bi, but the interval boundaries are not
decision variables. Another issue is that often the decision-
maker does not hold the interval boundary values to be very
likely. It is for example rare that 20% is regarded as a rea-
sonable probability while 19% is considered impossible.

Another approach for maximizing the expected utility is
to compute the minimal and maximal expected utilities re-
spectively, for each decision alternative, by using the upper
and lower bounds for the probability intervals. If one deci-
sion alternative has a higher minimal expected utility than
the maximal expected utility of another alternative, the lat-
ter is said to be dominated by the former. If one decision
alternative dominates all the others, it is the one to choose.
Typically, however, the respective alternatives’ intervals of
expected utility overlap.

To overcome this difficulty (Danielson & Ekenberg 1998)
suggests contracting the probability intervals until one al-
ternative dominates all the others. Contraction means that
the intervals are narrowed towards the middle of the inter-
vals, in the extreme case even to a single point between ai

and bi. The underlying assumption here is that the decision
maker believes that this contraction point is the best esti-
mate of the probability with a symmetrical margin of error.
This method can be modified by giving three numbers per
probability, lower and upper bound and a value somewhere
in between that is held to be the most likely, contraction is
then made towards this latter value. There is, however, a
certain degree of arbitrariness in the contraction procedure;
the final probability interval used in the calculation of the ex-
pected utility is the one required to obtain an unambiguously
optimal alternative.

Restricting the decision maker to just one value per prob-
ability is one way of solving the problems mentioned above.
This approach might seem to disregard the reason for in-
troducing intervals in the first place, namely the vagueness
of the probability estimates. However, conceptually, impre-
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cision may be reconciled with single-value probabilities if
they are considered as the center of mass of a second or-
der distribution; the single value demanded of the decision
maker is simply the value he believes in the strongest. Em-
ploying the center of mass, or centroid, in this way is sug-
gested in (Ekenberg & Thorbiörnson 2001). We argue that,
in decision situations with many possible outcomes, most
of the information in a second-order distribution is unneces-
sary and that it is enough to calculate the expected utility via
the centroids, avoiding the (in general) cumbersome task of
eliciting a second-order distribution through e.g. sampling
(as in (Druzdzel & van der Gaag 1995)) and computing the
corresponding distribution on the expected utility.

When the variables xi, i = 1, . . . , n are restricted by in-
tervals [ai, bi], a n-dimensional polytope is formed. In deci-
sion analysis, where the maximal expected utility is sought,
the xi are either the probabilities pi or utilities ui of the pos-
sible outcomes of an event. In the case of probabilities the
n − 1-dimensional polytope formed by xi ∈ [ai, bi], i =
1, . . . , n − 1, (xn = 1 −

∑n−1
i=1 xi) is cut by the plane∑n

i=1 xi = 1.
A point in the polytope represents a probability distribu-

tion over the possible outcomes. Thus, the polytope is a sub-
space of the space of all possible probability distributions.

Below we shall see that in some cases there are strong
second-order effects when all interval based probabilities
pi ∈ [ai, bi] of the n possible outcomes of an event are con-
sidered under the fundamental restriction (normalization)∑n

i=1 pi = 1. When n is large and some of the intervals
are wide, the resulting second-order distribution is warped
towards the lower bound and most of the information of the
intervals is lost. We suggest that the centroid is particularly
suitable for representing a probability in such cases. When
the intervals become more narrow as n grows, the second-
order effects are more subtle and the centers of mass are
closer to the midpoints of the intervals. In either case, the
centroid is a reasonable choice for a single value representa-
tive of a probability.

Belief Distributions and some Properties
The basic idea of belief distributions is that a decision-maker
does not necessarily have to believe as strongly in all possi-
ble functions that the points of the polytope represent. Dis-
tributions expressing various beliefs enable a differentiation
of functions.
Definition 1. Let a unit cube [0, 1]n be given. By a belief
distribution over B, we mean a positive distribution g de-
fined on the unit cube B such that∫

B

g(x) dVB(x) = 1 ,

where VB is some k–dimensional Lebesque measure on B.
Example 1. Let

f(x1, x2) =
{

3(x2
1 + x2

2) if x2 > x1

0 otherwise

be a function defined on the unit cube [0, 1]2. f is a belief
distribution over [0, 1]2 since the volume under the function
surface x3 = f(x1, x2) is one.

In this paper, we assume a belief distribution correspond-
ing to equal belief in all points of the polytope. This ‘uni-
form belief’ assumption will be used for presentational pur-
poses and does not in any way mean that it is the only
valid interpretation of boundary approaches. This issue has
been thoroughly debated over the years. Other approaches,
such as preferences for and valuation of a gamble, lead to
a decision-maker’s support of the gamble, in which case the
second-order distribution could be interpreted as support (ei-
ther varying or uniform). Thus, while the concept ‘belief’
is used throughout the paper, it can be thought of as the
decision-maker’s support. And the existence of the projec-
tion effects discussed does not depend on uniform distribu-
tions; they are merely less complicated from a presentational
point of view.

Belief distributions can also be used to represent subsets
of a unit cube by considering the support of the distributions.
However, when representing a subset of lower dimension
than the unit cube itself, distributions that are upper bounded
cannot be used, since a mass under such a distribution will
be 0 while integrating with respect to some Lebesque mea-
sure defined on the unit cube. This particular problem is
solved in detail in (Ekenberg & Thorbiörnson 2001).

An important task is to investigate the relationship be-
tween different distributions. In particular, we need to study
the relationship between the, typically high-dimensional,
background (global) distribution and projections of this on
various sub-spaces. I.e., we need a semantics for this rela-
tionship – what do beliefs over some subset of a unit cube
mean with respect to beliefs over the entire cube. One rea-
sonable candidate for providing this semantics is provided
by the concept of S-projections.

Definition 2. Let B = [0, 1]k and A = [0, 1]is , ij ∈
{1, . . . , k} be unit cubes. Let F be a belief distribution on
B, and let

fA(x) =
∫

B\A

F (x) dVB\A(x) .

Then fA is the S-projection of F on A.

The S-projection can be regarded as a second-order dis-
tribution on A.

In the sequel, we will only compute S-projections with
respect to a single variable, i.e. A will have dimension one.

Definition 3. Given a belief distribution F over a cube B,
the centroid Fc of F is

Fc =
∫

B

xF (x) dVB(x) ,

where VB is some k-dimensional Lebesque measure on B.

As can be seen from the definition, a centroid is a center
of mass generalized to arbitrary dimensions.

Here, we study distributions where
∑n

i=1 xi = 1 and xi ∈
[ai, bi] for i = 1, . . . , n − 1, xn = 1 −

∑n−1
i=1 . I.e., we can

interpret xi, i = 1, . . . , n as probabilities and we assume
that belief is uniformly distributed over the polytope.
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The Warp Effect of S-Projections
In order to see which second-order distributions on the sin-
gle probabilities comply with a uniform distribution on the
polytope xi ∈ [ai, bi](i = 1, . . . , n − 1),

∑n
i=1 xi = 1,

we will project the uniform distribution on one of the axis.
That is, we will compute the S-projection f(x1) and cen-
troid fc of x1. We choose x1 w.l.o.g. since if one wishes
to compute, say, the S-projection f(x3) or the correspond-
ing centroid one can either switch x1 and x3 or replace x1

in the formulas below with x3. Since in our formulation
only x1, . . . xn−1 have interval boundaries, we work with
the (n − 1)-dimensional polytope formed by xi ∈ [ai, bi]
for (i = 1, . . . , n− 1) and

∑n−1
i=1 xi ≤ 1.

We denote the k ≤ 2n−1 vertices of the rectangular par-
allelepiped defined by xi ∈ [ai, bi], i = 1, . . . , n − 1 that
fall inside the (hyper-)pyramid with apex in (0, 0, . . . , 0) and
base

∑n−1
i=1 xi = 1 by σj =

∑n−1
i=1 ci,j , ci,j ∈ {ai, bi},

ordered such that δ1 ≥ δ2 ≥ . . . ≥ δk, where δj =
1− σj + c1,j = 1−

∑n−1
i=2 ci,j . Further, for each vertex σj ,

we let Pj be the pyramid with apex in (c1,j , c2,j , . . . , cn−1,j)
and base

∑n−1
i=1 xi = 1.

f(x1) is produced by integrating over the solid with re-
spect to all variables except x1 and dividing by its volume.
fc is then obtained by integrating x1f(x1) with respect to
x1. First we compute the solid’s volume.
Lemma 1. The volume of the solid resulting from the rectan-
gular parallelepiped defined by xi ∈ [ai, bi], i = 1, . . . , n−
1 being cut by the plane

∑n−1
i=1 xi = 1 is∑k

i=1(−1)mi(1− σi)n−1

(n− 1)!
,

where mi is the number of terms bj in σi.
Proof We first compute the volume of the pyramid P1

with apex in (a1, a2, . . . , an−1) and then subtract the vol-
umes of all the other Pi, i = 2, . . . k since they are outside
of the solid. But the pyramids Pi corresponding to σi with
an even number m of bj :s will have to be added, they are
already removed twice since they are subsets of

∑m−1
i=0

(
m
i

)
removed pyramids; if σi ≤ 1 has a term bj , there must be a
σp = σi + aj − bj ≤ 1.

And the volume of the pyramid Pi is∫ 1−c2,i−c3,i−···−cn−1,i

c1,i

∫ 1−x1−c3,i−···−cn−1,i

c2,i

. . .∫ 1−x1−x2−···−xn−1

cn−1,i

dxn−1 . . . dx2 dx1 =
(1− σi)n−1

(n− 1)!
,

completing the proof. �

Theorem 1. With δk+1 = a1 the S-projection f(x1) equals∑
i∈Ij

(−1)mi(n− 1)(δi − x1)n−2

∑k
i=1(−1)mi(1− σi)n−1

,

where Ij = {i ∈ N : 1 ≤ i ≤ j − 1, c1,i 6= b1}, for
δj ≤ x1 ≤ min(δj−1, b1), j = 2, . . . , k + 1.

Proof We divide the interval a1 ≤ x1 ≤ 1 − a1 − · · · −
an−1 into k segments, where k is the number of σi that are
less than or equal to one, δi ≤ x1 ≤ δi−1, i = 2, . . . k+1. In
each such segment we proceed as in Lemma 1 and integrate
over the pyramids Pj , adding and subtracting the results as
appropriate. Here, though, when δi ≤ x1 ≤ δi−1, only P1

through Pi−1 come into consideration.
And integrating over the pyramid Pi with respect to all

variables except x1 results in∫ 1−x1−c3,i−···−cn−1,i

c2,i

∫ 1−x1−x2−c4,i−···−cn−1,i

c3,i

. . .∫ 1−x1−x2−···−xn−1

cn−1,i

dxn−1 . . . dx3 dx2 =

(δi − x1)n−2

(n− 2)!
.

Dividing by the volume from Lemma 1 gives the result. �

Corollary 1. The centroid fc of x1 is

k∑
i=1

(−1)mi
(
(1− σi)n−1 ((n− 1)c1,i + δi)

)
n

(∑k
i=1(−1)mi(1− σi)n−1

) .

Proof The corollary follows from integrating xf(x1) with
f(x1) as in Theorem 1 from a1 to min(δ1, b1). �

Exploring the Warp Effect
The warp effect is important for real-life applications of
uncertain interval reasoning and interval decision analysis.
Whenever a decision-maker makes statements of probabil-
ity using intervals as representations of second-order uncer-
tainty (i.e. not uncertainty of the event itself occurring but
rather of the probability of the event occurring), the upper
and lower pair of boundaries must be handled. As the warp
effect shows, the results are far from the everyday intuition.
In order to make the discussion of the effect clearer, we
present some examples highlighting the nature of the warp
effect.

Example 2. We have x1 ∈ [0.2, 0.6], x2 ∈ [0.1, 0.2] and
x3 ∈ [0.2, 0.7], n = 4, k = 3, σ1 = a1 + a2 + a3 =
0.5, δ1 = 1−a2−a3 = 0.7, σ2 = b1 +a2 +a3 = 0.9, δ2 =
1 − a2 − a3 = 0.7, σ3 = a1 + b2 + a3 = 0.6, and δ3 =
1− b2 − a3 = 0.6. Then

f(x1) =
3

(
(0.7− x1)2 − (0.6− x1)2

)
0.53 − 0.43 − 0.13

if 0.2 ≤ x1 ≤ 0.6,
and fc = (1−σ1)

3(3a1+δ1)−(1−σ2)
3(3b1+δ2)−(1−σ3)

3(3a1+δ3)
4((1−σ1)3−(1−σ2)3−(1−σ3)3)

=
0.347. We see the graph of f(x1) in Figure 1.

Example 3. Let σ1 = a1+a2+a3+a4 = 0.2+0.1+0.05+
0.15 = 0.5 and σ2 = a1 +b2 +a3 +a4 = 0.2+0.3+0.05+
0.15 = 0.7 be the only sums c1 + c2 + c3 + c4 that are less
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Figure 1: f(x1) when x1 ∈ [0.2, 0.6], x2 ∈ [0.1, 0.2] and
x3 ∈ [0.2, 0.7]

than or equal to one. Then n = 5, k = 2, δ1 = 0.7, δ2 = 0.5
and

f(x1) =

{
4((0.7−x1)

3−(0.5−x1)
3)

0.54−0.34 , 0.2 ≤ x1 ≤ 0.5
4(0.7−x1)

3

0.54−0.34 , 0.5 ≤ x1 ≤ 0.7
;

the graph of f(x1) is shown in Figure 2, and fc = 0.306.

Figure 2: Example of S-projection f(x1) when n = 5.

Example 4. If we let n = 6 and x1 ∈ [0.15, 0.7], x2 ∈
[0.1, 0.2], x3 ∈ [0, 0.25], x4 ∈ [0.2, 0.55] and x5 ∈
[0.25, 0.7], k = 3, σ1 = 0.7, σ2 = 0.8, σ3 = 0.95, δ1 =
0.45, δ2 = 0.35, and δ3 = 0.2. Then

f(x1) =
5

`
(0.45 − x1)

4 − (0.35 − x1)
4 − (0.2 − x1)

4´
0.35 − 0.25 − 0.055

if 0.15 ≤ x1 ≤ 0.2,

f(x1) =
5

(
(0.45− x1)4 − (0.35− x1)4

)
0.35 − 0.25 − 0.055

if 0.2 ≤ x1 ≤ 0.35 and

f(x1) =
5(0.45− x1)4

0.35 − 0.25 − 0.055

if 0.35 ≤ x1 ≤ 0.45.
And fc = 0.203. We see the graph of f(x1) in Figure 3.

Figure 3: Example of S-projection f(x1), 0.15 ≤ x1 ≤ 0.45
when n = 6.

Example 5. When n = 6, x1 ∈ [0.15, 0.7], x2 ∈
[0.1, 0.2], x3 ∈ [0, 0.25], x4 ∈ [0.2, 0.55] and x5 ∈
[0.1, 0.7], k = 4 and σ1 = 0.55, σ2 = 0.65, σ3 = 0.8, σ4 =
0.9, δ1 = 0.6, δ2 = 0.5, δ3 = 0.35, and δ4 = 0.25, we get

f(x1) =
5

`
(0.6 − x1)

4 − (0.5 − x1)
4 − (0.35 − x1)

4 + (0.25 − x1)
4´

0.455 − 0.355 − 0.25 + 0.15

if 0.15 ≤ x1 ≤ 0.25,

f(x1) =
5

(
(0.6− x1)4 − (0.5− x1)4 − (0.35− x1)4

)
0.455 − 0.355 − 0.25 + 0.15

if 0.25 ≤ x1 ≤ 0.35,

f(x1) =
5

(
(0.6− x1)4 − (0.5− x1)4

)
0.455 − 0.355 − 0.25 + 0.15

if 0.35 ≤ x1 ≤ 0.5,

f(x1) =
5(0.6− x1)4

0.455 − 0.355 − 0.25 + 0.15

if 0.5 ≤ x1 ≤ 0.6,
and fc = 0.233. The graph of the S-projection f(x1) is
shown in Figure 4.
Example 6. If ai = 0 and bi = 1, f(x1) = (n − 1)(1 −
x1)n−2 , and fc = 1

n . In Figure 5 we see the graphs of f(x1)
for n = 3, 4, 5, 6, 7, and 8.

Example 7. If ai = 0 and bi = b =
1

n−1+ 1
n−2

2 , every possi-
ble sum

∑n−1
i=1 ci is less than one, except

∑n−1
i=1 bi. Then we

can express f(x1) as

(n− 1)
(∑n−2

i=0 (−1)i
(
n−2

i

)
(1− ib− x1)n−2

)
∑n−2

i=0 (−1)i
(
n−1

i

)
(1− ib)n−1
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Figure 4: f(x1) from Example 5, 0.15 ≤ x1 ≤ 0.6 when
n = 6, k = 4

Figure 5: xi ∈ [0, 1], n = 3, 4, 5, 6, 7 and 8

for 0 ≤ x1 ≤ 1− (n− 2)b and

(n− 1)
(∑n−3

i=0 (−1)i
(
n−2

i

)
(1− ib− x1)n−2

)
∑n−2

i=0 (−1)i
(
n−1

i

)
(1− ib)n−1

for 1− (n− 2)b ≤ x1 ≤ b.
The graphs of f(x1) for n = 3, 4, 5, 6, 7, and 8 are shown

in Figure 6. We see that when, as in this case, the upper
bound bi is adjusted to the fact that

∑n
i=1 xi = 1, the second

order distribution of xi approaches the uniform distribution
and the centroid goes to the middle point of the interval as
n grows.

Conclusions
We have demonstrated that second-order belief can supply
important insights to the decision-maker when handling in-

Figure 6: xi ∈ [0, 1
2(n−1) + 1

2(n−2) ], n = 3, 4, 5, 6, 7 and 8

terval representations, such as in decision trees or probabilis-
tic networks, and that interval estimates (upper and lower
bounds) in themselves are not complete. The results apply
also to approaches which do not explicitly deal with belief
distributions.

The main second-order effect on interval based probabili-
ties is the centroid tending towards the lower bound when n
grows as the upper part of the interval contains a shrinking
part of the total belief. This effect is dramatic when all or
some of the intervals are wide but less pronounced when the
intervals are allowed to shrink in inverse proportion to n.

Therefore, it is mainly when there are relatively many
possible outcomes to an event and the probability intervals
are fairly wide that using the centroid of a probability’s
second-order distribution as single-value representation is
crucial. When the intervals are narrower, the centroid is
closer to the intervals’ mid-points, thus using either cen-
troids or mid-point contraction of intervals in these cases
give roughly the same result.

This is an important observation for reasoning with inter-
val probabilities, either in the form of decision analysis or
by other means of inference. The interval boundaries (upper
and lower) do not carry the same information. Neither do
points in between, and disregarding this information leads
to warp effects in the results of probabilistic interval compu-
tations.
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