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Abstract

A major difficulty in building Bayesian network models is the
size of conditional probability tables, which grow exponen-
tially in the number of parents. One way of dealing with this
problem is through parametric conditional probability distri-
butions that usually require only a linear number of param-
eters in the number of parents. In this paper we introduce a
new class of parametric models, the pICI models, that aim at
lowering the number of parameters required to specify local
probability distributions, but are still capable of modeling a
variety of interactions. A subset of the pICI models are de-
composable and this leads to significantly faster inference as
compared to models that cannot be decomposed. We also
show that the pICI models are especially useful for parameter
learning from small data sets and this leads to higher accuracy
than learning CPTs.

Introduction
Bayesian networks (BNs) (Pearl 1988) have become a
prominent modeling tool for problems involving uncertainty.
Some examples from a wide range of their practical applica-
tions are medical diagnosis, hardware troubleshooting, user
modeling, intrusion detection, and disease outbreak detec-
tion. BNs combine strong formal foundations of probability
theory with an intuitive graphical representation of interac-
tions among variables, providing a formalism that is theoret-
ically sound, yet readily understandable for knowledge en-
gineers and fairly easy to apply in practice.

Formally, a BN is a compact representation of a joint
probability distribution (JPD). It reduces the number of pa-
rameters required to specify the JPD by exploiting inde-
pendencies among domain variables. These independencies
are typically encoded in the graphical structure, in which
nodes represent random variables and lack of arcs represents
probabilistic conditional independences. The parametersare
specified by means of local probability distributions associ-
ated with variables. In case of discrete variables (the focus
of this paper), the local probability distributions are encoded
in the form of prior probabilities over nodes that have no par-
ents in the graph and conditional probability tables (CPTs)
for all other nodes. Specifying a series of CPTs instead of
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the JPD already heavily reduces the number of required pa-
rameters. However, the number of parameters required to
specify a CPT for a node grows exponentially in the num-
ber of its parents. Effectively, the size of CPTs is a major
bottleneck in building models and in reasoning with them.
For example, assuming that all variables are binary, a CPT
of a variable with 10 parents requires the specification of
210 = 1, 024 probability distributions. If we introduce an-
other parent, the number of required distributions will grow
to2, 048. This may be overwhelming for an expert if the dis-
tributions are elicited. If the distributions are learned from
a small data set, there might not be enough cases to learn
distributions for all the different parent configurations in a
node (Onísko, Druzdzel, & Wasyluk 2001).

In this paper, we introduce a new class of parametric mod-
els that require significantly fewer parameters to be specified
than CPTs. The new models are a generalization of the class
of Independence of Causal Influence(ICI) models (Hecker-
man & Breese 1996) (they call it the class of causal indepen-
dence models), and their unique feature is that the combina-
tion function does not need to be deterministic. The combi-
nation function takes as input the values of parent variables
and produces a value for the child variable. The most impor-
tant property of the new class is that combination functions
are potentially decomposable, which leads to substantial ad-
vantages in inference. We will denote the newly proposed
classpICI or probabilistic ICI. Whenever confusion can be
avoided, we will use the termdecompositionsto describe
the new models. The pICI models, similarly to the existing
class of ICI models with deterministic combination func-
tions, have two main advantages. The first advantage is that
inference may be faster (Dı́ez & Gaĺan 2003), because the
decompositions result in smaller clique sizes in the joint tree
algorithm (Zhang & Yan 1997). This becomes especially
dramatic when the number of parents is large. The second
advantage is that if we learn the decompositions instead of
CPTs from a small data set, the resulting network is likely
to be more faithful in representing the true underlying prob-
ability distribution, because a lower number of parameters
will prevent the decompositions from overfitting the data.

The remainder of this paper is structured as follows. In the
next section, we discuss ICI models and explain the decom-
posability of the combination function. Then we introduce
the probabilistic ICI models. In the empirical evaluation sec-
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tion, we show that inference in decomposed probabilistic ICI
models is faster, and that learning from small data sets is
more accurate.

Independence of Causal Influences (ICI)
Models and Decompositions

The class ofIndependence of Causal Influences(ICI) mod-
els aims at reducing the number of parameters needed to
specify conditional probability distributions. ICI models are
based on the assumption that parent variablesX1, . . . , Xn

act independently in producing the effect on a child vari-
ableY . We can express the ICI assumption in a Bayesian
network by explicitly representing themechanismsthat in-
dependently produce the effect onY . The mechanisms are
introduced to quantify the influence of each cause on the ef-
fect separately. So, if we assume this type of model, we
only need to separately assess the probability distributions
that describe mechanisms, and give a function for combin-
ing the results of the mechanisms. Figure 1(a) shows a
Bayesian network for multiple causesX1, . . . , Xn and an
effectY . In Figure 1(b) we see the same causesX1, . . . , Xn,
but they produce their effect onY indirectly through mech-
anism variablesM1, . . . ,Mn. The double circles indicate
that the value ofY is generated by a deterministic function,
which combines the outputs of the mechanisms. This is a
fundamental assumption of the ICI models.

X1 X2 . . . Xn

Y

X1 X2 . . . Xn

M1 M2 . . . Mn

Y

(a) (b)

Figure 1: (a) A Bayesian network. (b) The class of ICI mod-
els.

An example of a well known ICI model is the noisy-OR
gate (Pearl 1988, Henrion 1989), which reduces the number
of parameters from exponential to linear in the number of
parents. The CPTs for the mechanism variables in the noisy-
OR model are defined as follows:

P (Mi = True|Xi) =

{

pi ∈ [0, . . . , 1], if Xi = True ;

0, if Xi = False .

In the noisy-OR model, every variable has adistinguished
state. Typically, this state indicates absence of a condition.
If all the parents are in their distinguished states (i.e., are ab-
sent), then the child is also in its distinguished state. Note
that the distinguished state is a property of the noisy-OR
gate. Even though variables in most practical ICI models
have distinguished states, it is not a strict requirement.

NodeY in Figure 1(b) is called thecombination function,
which in ICI is a deterministic function taking as input the

values of the set of input variables and produces a value for
the output variable. In case of noisy-OR, it is the determin-
istic OR function. If it is possible to decompose the com-
bination function into a series of binary functions, the ICI
model is said to bedecomposable. An example of a decom-
position is illustrated in Figure 2. In case of the noisy-OR
gate, we can decompose theOR(X1, . . . , Xn) function into
OR(X1, OR(X2, OR(. . . OR(Xn−1, Xn) . . .))). Hecker-
man and Breese (1994) showed empirically that this de-
composition improves the efficiency of belief updating. The
main reason for this improvement is a substantial reduction
of the clique sizes in the joint tree algorithm (Lauritzen &
Spiegelhalter 1988).

X1 X2 . . . Xn

M1 M2 . . . Mn

Y1 . . . Yn

Figure 2: Decomposition of ICI models.

Probabilistic Independence of Causal
Influences (pICI) Models

In this section, we propose a new class of models for mod-
eling local probability distributions that is a generalization
of the ICI models. The main difference is that we relax
the assumption that the combination function is determin-
istic and allow the values in the CPT of the Y node to take
values different from zero and one. Because of this, we call
the new class theprobabilistic ICI (pICI) models. We show
the general model with an arbitrary combination function in
Figure 3. In the following section, we take a look at a three
models from the pICI class.

X1 X2 . . . Xn

M1 M2 . . . Mn

Y

Figure 3: The class of pICI models.

The Average Model
An example of a pICI model that we propose in this paper is
theAverage Model. For this model, we chose a combination
function that takes the average of the outputs of the mecha-
nisms. It is important to realize that each mechanisnMi has
the same number of states as theY node. For example, to
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calculate the value of the first state in nodeY , we count the
number of mechanisms that are in state one, and divide it by
the number of parents. The resulting value will be the prob-
ability for the first state inY . We can repeat this process for
all other states. Formally, the combination function for the
Average model is given by:

P (Y = y|M1, . . . ,Mn) =
1

n

n
∑

i=1

I(Mi = y) ,

whereI is the indicator function that takes 1 when the con-
dition in the brackets is true and 0 otherwise. VariablesMi

and Y , as well as parent variablesXi, do not have to be
binary.

The parameters of this model are expressed in terms of
mechanisms — separate influences of a parent on the effect,
and, therefore, they have meaning in the modeled domain,
which is crucial for working with domain experts. The com-
bination function is the average number of instantiations of
mechanism variables. Such a setting has one important ad-
vantage over models like noisy-MAX (the multi-valued ex-
tension of noisy-OR) — it does not require additional se-
mantic knowledge about the values (noisy-MAX assumes
an ordering relation) and, therefore, can be easily appliedto
learning algorithms, as well as it is more flexible in terms of
modeling.

Decomposable pICI models
The most important type of pICI models are those that are
decomposable, similarly to the decomposable ICI models.
The general decomposed form of the model is displayed in
Figure 4. We call it theLadder Model(LM).

X1 X2 . . . Xn

M1 M2 . . . Mn

Y1 . . . Yn

Figure 4: Decomposition of pICI models.

The Average model that we showed as an example of a
pICI model is also decomposable. Formally, the decom-
posed form of the combination function is given by:

P (Yi = y|Yi−1 = a,Mi+1 = b)

=
i

i + 1
I(y = a) +

1

i + 1
I(y = b) ,

for Y2, . . . , Yn−1 andI is again the indicator function.Y1 is
defined as:

P (Y1 = y|M1 = a,M2 = b)

=
1

2
I(y = a) +

1

2
I(y = b) .

Decomposition Number of parameters

CPT my

∏n

i=1
mi

LM (n − 1)m3
y + my

∑n

i=1
mi

Average my

∑n

i=1
mi

SL m1m2my + m2
y

∑n

i=3
mi

Noisy-MAX my

∑n

i=1
(mi − 1)

Table 1: Number of parameters for the different decomposed
models.

Figure 5 shows theSimple Ladder(SL) model which
is basically a LM without the mechanism variables. This
means thatYi defines an interaction between the cumulative
influence of the previous parents accumulated inYi−1 and
the current parentXi+1. The SL model is similar to the de-
compositions proposed by Heckerman & Breese (1994) for
the ICI model. The main differences are: (1) lack of a dis-
tinguished state in pICI models, and (2) theYi nodes are
probabilistic rather than deterministic.

X1 X2 . . . Xn

Y1 . . . Y

Figure 5: The Simple Ladder model.

The number of parameters required to specify relations
between parents and the child variable for each of the models
is shown in Table 1. Becausem3

y is the dominating factor in
case of the LM decomposition, LM is especially attractive
in situations where the child variable has a small number of
states and the parents have a large number of states. SL, on
the other hand, should be attractive in situations where the
parents have small numbers of states (the sum of the parents’
states is multiplied bym2

y).

Empirical Evaluation
Experiment 1: Inference
We compared empirically the speed of exact inference be-
tween CPTs and the new models, using the joint tree algo-
rithm. We were especially interested in how the new mod-
els scale up when the number of parents and states is large
compared to CPTs. We used models with one child node
and a varying number of parents ranging from 5 to 20. We
added arcs between each pair of parents with a probability
of 0.1. Because the randomness of the arcs between the
parents can influence the inference times, we repeated the
procedure of generating arcs between parents 100 times and
took the average inference time for the 100 instances. The
last parameter to fix is the number of states in the variables
and we subsequently used 2, 3, 4, and 5 states for all the
variables. Because of the computational complexity, not all
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Figure 6: Inference results for the network where all vari-
ables have two states.

Figure 7: Inference results for the network where all vari-
ables have five states.

experiments completed to the 20 parents. When there was
not enough memory available to perform belief updating in
case of CPTs, we stopped the experiment.

The results are presented in Figures 6 and 7. We left out
the results for 3 and 4 states, because these were qualita-
tively similar and only differed in the intersection with the
y-axis. It is easy to notice that the decomposable models are
significantly faster for a large number of parents, and the ef-
fect is even more dramatic when more states are used. The
improvement in speed is substantial. Heckerman & Breese
(1994) empirically showed that if decompositions are used
in general BNs, it will speed-up inference.

Experiment 2: Learning
In this experiment, we investigated empirically how well
we can learn the decompositions from small data sets. We
selected ‘gold standard’ families (child plus parents) that
had three or more parents from the following real-life net-
works (available athttp://genie.sis.pitt.edu/):
HAILFINDER (Edwards 1998), HEPAR II (Oniśko,
Druzdzel, & Wasyluk 2001) and PATHFINDER (Heckerman,
Horvitz, & Nathwani 1992). We generated a complete data
set from each of the selected families. Because the EM
algorithm requires an initial set of parameters, we scram-
bled randomly the prior parameters. We then relearned the

parameters of the CPTs and decomposed models from the
same data using the EM algorithm (Dempster, Laird, &
Rubin 1977), repeating the procedure 50 times for different
data sets. The number of cases in the data sets ranged
from 10% of the parameters in the CPT, to 200%. For
example, if a node has 10 parameters, the number of cases
used for learning ranged from 1 to 20. In learning, we
assumed that the models are decomposable, i.e., that they
can be decomposed according to the LM, Average, and
SL decompositions. The difference between the LM and
Average model is that in the Average model the combi-
nation function is fixed, and in the LM we are learning
the combination function. Note that the EM algorithm is
especially useful here, because the decompositions will
have hidden variables (e.g., the mechanism nodes). The EM
algorithm is able to handle missing data. Our hypothesis is
that the decompositions learn better than CPTs as long as
the number of cases is low. We compared the original CPTs
with the relearned CPTs, decompositions and noisy-MAX
using the Hellinger’s distance (Kokolakis & Nanopoulos
2001). The Hellinger distance between two probability
distributionsF andG is given by:

DH(F,G) =

√

∑

i

(
√

fi −
√

gi)2 .

To account for the fact that a CPT is really a set of distri-
butions, we define a distance between two CPTs of nodeX
as the sum of distances between corresponding probability
distributions in the CPT weighted by the joint probability
distribution over the parents ofX. This approach is justified
by the fact that in general it is desired to have the distribu-
tions closer to each other when the parent configuration is
more likely. If this is the case, the model will perform well
for the majority of cases.

We decided to use the Hellinger distance, because, unlike
the Euclidean distance, it is more sensitive to differencesin
small probabilities, and it does not pose difficulties for zero
probabilities, as is the case for Kullback-Leibler divergence
(Kullback & Leibler 1951).

In order to do noisy-MAX learning, we had to identify
the distinguished states. To find the distinguished states,we
used a simple approximate algorithm to find both the dis-
tinguished states of the parents and the child. We based the
selection of distinguished states on counting the occurrences
of parent-child combinationsNij , wherei is the child state
andj is the parent state. The next step was to normalize the
child states for each parent:N∗

ij =
Nij

P

i
Nij

. Child statei and
parent statej are good distinguished state candidates ifN∗

ij

has a relatively high value. But we have to account for the
fact that one child can have multiple parents, so we have to
combine the results for each of the parents to determine the
distinguished state of the child. For each parent, we select
the maximum value of the state of a parent given the child
state. We take the average of one of the child states over
all the parents. The child state corresponding to the highest
value of the average child states values is considered to be
the child’s distinguished state. Now that we have the child’s
distinguished state, it is possible to find the parents’ distin-
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Model CPT Average SL LM MAX
Hepar – 3 – 1 1

Hailfinder – 1 4 1 –
Pathfinder 4 – 10 – 6

Table 2: Number of best fits for each of the networks for 2
cases per CPT parameter. For example, if the original CPT
has 10 parameters, we used 20 cases to learn the models.

guished states in a similar way.
We ran the learning experiment for all families from the

three networks in which the child node had a smaller num-
ber of parameters for all decomposition than the CPT. The
results were qualitatively comparable for each of the net-
works. We selected three nodes, one from each network,
and show the results in Figures 8 through 10. It is clear that
the CPT network performs poorly when the number of cases
is low, but when the number of cases increases, it comes
closer to the decompositions. In the end (i.e., when the data
set is infinitely large) it will fit better, because the cases are
generated from CPTs. For node F5 from the PATHFINDER
network, the Average model provided a significantly worse
fit than the other models. This means that the Average model
did not reflect the underlying distribution well. For other dis-
tributions, the Average model could provide a very good fit,
while, for example, the noisy-MAX model performs poorly.
Another interesting phenomenon is that in node F5 from
the PATHFINDER network the parameters for the Average
model were learned poorly. This is probably because the
data comes from a distribution that cannot be accurately rep-
resented as the Average model. Again, it is important to em-
phasize that the pICI models performed better for almost all
the decomposed nodes as is shown in the next paragraph.

Table 2 shows a summary of the best fitting model for
each network. The number indicates for how many fami-
lies a given model was the best fit for the situation when
the number of cases was equal to two times the number of
parameters in the CPT. We see that the selection of the best
model is heavily dependent on the characteristics of the CPT
— the distribution of the parameters and its dimensional-
ity. However, in 27 of the 31 nodes, taken from the three
networks, the decompositions (noisy-MAX included) per-
formed better than CPTs. Also, the CPTs in our experiments
relatively small — for HEPAR II it was roughly in the range
of 100 to 400 parameters, for HAILFINDER 100 to 1200, and
for PATHFINDER 500 to 8000. As we demonstrated in Ex-
periment 1, our method scales to larger CPTs and we should
expect more dramatic results there.

There is no general a priori criteria to decide which model
is better. Rather these models should be treated as comple-
mentary and if one provides a poor fit, there is probably an-
other model with different assumptions that fits better. We
investigate how to address the problem of selecting an ap-
propriate model in Experiment 3.

Experiment 3: Practical Application of Learning
One objection that could be made against our work is that
in real-life we do not know the true underlying probabil-

Figure 8: Results for the ALT node in the Hepar network.

Figure 9: Results for the F5 node in the Pathfinder network.

Figure 10: Results for the PlainFcst node in the HAIL -
FINDER network.

ity distribution. Hence, we have to use the available data
for selecting the right ICI or pICI model. That is why we
performed an experiment to test if it is possible to use the
likelihood function of the data, to see which model fits the
data best. The likelihood function is given byl(θDecomp :
D) = P (D|θDecomp), whereθDecompdenotes the parameters
corresponding to a decomposition andD denotes the data.

We used cross-validation to verify if the likelihood func-
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Figure 11: Likelihood for node F5.

tion is suitable to select the best decomposition. The exper-
imental setup was the following. We used the same families
as in experiment 1 and generated a data set from the gold
standard model and split it into a training and test set. We
used the training set to learn the model and a test data set of
the same size as the training set to calculate the likelihood
function. Figure 9 shows the Hellinger’s distance for node
F5, and Figure 11 shows the corresponding likelihood func-
tion. The shapes of the functions are essentially the same,
showing that the likelihood function is a good predictor of
model fit.

Conclusions
We introduced a new class of parametric models, the pICI
models, that relax some assumptions of causal independence
models and that allow for modeling wider variety of interac-
tions. We proposed two pICI models, Ladder with Mecha-
nisms and the Average model, and one derived model called
Simple Ladder. The new models have a probabilistic com-
bination function that takes the values of the input variables
and produces a value for the output variable.

We focussed on a subset of the new class of models with
decomposable combination functions. We showed the re-
sults of an empirical study that demonstrates that such de-
compositions lead to significantly faster inference. We also
showed empirically that when we use these models for pa-
rameter learning with the EM algorithm from small data
sets, the resulting networks will be closer to the true under-
lying distribution than what it would be with CPTs. Finally,
we demonstrated that in real-life situations, we can use the
likelihood function to select the decomposition that fits the
model best.

Our models are intended for usage in real life models
when a child node has a large number of parents and, there-
fore, the number of parameters in its CPTs is prohibitively
large. In practice, this happens quite often, as is clear from
the Bayesian networks that we used in our experiments.
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