
e are rapidly heading toward a
world in which the computing infrastructure will contain bil-
lions of devices that are carried or worn by their users as they
go through their daily routines. These devices require two key
resources to function: power and data. The mobile nature of
such devices combined with the economic limitations of size
and cost makes it impractical to keep them continually connect-
ed to fixed sources of either resource. Mobile devices cope with
disconnection from fixed sources of power and data by
“caching.” For power, devices typically use rechargeable batter-
ies; batteries act as a cache of power from the fixed power grid.
Likewise, data from the “information grid” (i.e., the Internet) is
cached in device-local storage (memory, flash memory, disk,
etc.) for use by the applications running on that device.

Periodically, a device’s batteries must be recharged by con-
necting with the fixed power grid. Performing such recharging
is easy: the device can be plugged into any electrical outlet
that is available; the charge can be interrupted at any time —-
the longer it is plugged in, the better the charge gets, until it is
fully charged; and most important, the process happens with
minimal intervention by the user.

Data recharging is a service that aims to provide the analo-
gous functionality for recharging the device-resident data
cache. As with battery recharging, the goal is for data recharg-
ing to function in a flexible and geographically independent
manner. That is, mobile devices should be able to efficiently
recharge their data by connecting at any point in the global
Internet, using whatever bandwidth is available at that point,
connecting for whatever amount of time they can spare, and
doing so with little or no help from the user.

While the analogy between recharging power and recharging
data is an appealing one, obviously it can only be taken so far.
A key place where the analogy breaks down is that while elec-
trons are basically fungible, the data needed on a particular
device is highly dependent on the user of that device and the
tasks they will be performing when they need the data. Thus,
the choice of data that must be sent to a device in order to
recharge it is dependent on the semantics of the applications.
The data recharging infrastructure must therefore maintain and
exploit information about the data needs of users. The key

technology used for communicating and representing such
information in a data recharging system is the user profile.

Profiles for data recharging must contain two types of
information. First, the profile must describe the types of data
that are of interest to the user. This description must be
declarative in nature so that it can encompass newly created
data in addition to existing data. The description must also be
flexible enough to express predicates over different types of
data and media. Second, because of bandwidth, device-local
storage, and recharging time limitations, only a bounded
amount of information can be sent to a device during data
recharging. Thus, the profile must also express the user’s pref-
erences in terms of priorities among data items, desired reso-
lutions of multiresolution items, consistency requirements,
and other properties. A key challenge for data recharging,
therefore, is the development of a suitable language and pro-
cessing strategy for these highly expressive user profiles. In
the remainder of this article we describe these challenges in
more detail, and present our initial approaches toward solving
them. First, however, we describe the data recharging service
and infrastructure in more detail.

Data Recharging
Motivation

Mobile devices in the form of laptops and personal digital assis-
tants (PDAs) have achieved widespread importance as tools for
providing data access to users on the move. With current tech-
nology, the data stored on the devices must be manually main-
tained and synchronized with the fixed data sources; such
synchronization can typically be performed only at specific loca-
tions, such as the user’s (stationary) workstation. These restric-
tions currently place severe limitations on the range and
sophistication of the applications that can run on mobile
devices. Our approach to data recharging is aimed at removing
these limitations by making the process of “recharging” data as
simple and flexible for future mobile users as recharging power
is for today’s users. Below we briefly give two example scenar-
ios where such support is needed.

IEEE Personal Communications • August 20016 1070-9916/01/$10.00 © 2001 IEEE

W

Expressing User Profiles for
Data Recharging

Mitch Cherniack, Brandeis University
Michael J. Franklin, University of California at Berkeley

Stan Zdonik, Brown University

Abstract
Mobile devices need two basic renewable resources — power and data. Power recharging is easy; data recharging is a much more problematic
activity. It requires complex interaction between a user and a collection of data sources. We provide an automatic data recharging capability

based on user profiles written in an expressive profile language. A profile identifies relevant information and orders it by its usefulness.
In this article, we discuss the issues involved in designing a profile language for data recharging.

IEEE Personal Communications • August 2001 7

The Business Traveler — Consider an executive who is travel-
ing for a series of meetings with current and potential cus-
tomers. While on the road, she would like to be kept apprised
of important developments in her company as well as relevant
news articles related to her business. Furthermore, as her sched-
ule of meetings evolves during the trip, she would like to obtain
background information on the people and accounts with whom
she will be meeting. Finally, she would also like to have informa-
tion related to her travel, including local maps, rental car and
shuttle information, directions to her hotel, and so on.

With current technology, this information, if obtainable at
all, would have to be assembled manually and transmitted to
the executive’s mobile device at a point when it can be con-
nected to the network for a sufficient amount of time over a
sufficiently high-bandwidth link. The collection of such infor-
mation is labor-intensive and error-prone. Furthermore, if the
connectivity of the device is interrupted unexpectedly, it is
likely that some important information required by the execu-
tive will not be delivered to her. Even worse, it is quite possi-
ble that the information she stored previously on the device
will be left in a corrupted state due to the incomplete synchro-
nization with the fixed data sources. Because of such prob-
lems, mobile devices today are relegated to serving primarily
as replacements for paper-based tools such as day planners,
and their potential to serve as active personal information
assistants remains largely untapped.

The Mobile CoursePak — Consider a large undergraduate
course in which small teams of students must collaborate on a
group project. With data recharging support, mobile devices
could serve as a key coordination tool for the course and lec-
ture material as well as the group projects. First of all, the cal-
endar functions of the mobile devices would be used to store
the schedule of lecture topics and assignments. Lecture notes,
assignments, grades, discussions, and so forth would be pub-
lished as a CoursePak that is posted electronically and contin-
ually updated during the course of the semester. Data
recharging, keyed off of the class calendar and tailored to the
needs of each student, would allow the relevant parts of the
CoursePak to be downloaded to a student’s mobile device
when they connect to the network. Currently, such connection
would occur at a physical network access point (at a library,
lab, classroom, etc.) but soon many campuses will provide
wireless connectivity, allowing such recharging to be done on
a more continuous basis.

Another important use of recharging technology in this
scenario is for coordination within project groups. When
recharging, a group member could obtain the latest updates of
document sections or code modules from the other group
members. Likewise, the devices could be used for scheduling
and coordinating group meetings at various places on or near
the campus. Finally, the instructors and TAs could also use
the recharging functionality, for example, to obtain the latest
relevant information for an upcoming lecture. Data recharg-
ing issues similar to those described for the business traveler
above will arise in this scenario as well, due to the increasing
prevalence of distance learning in which students may reside
in different campuses, companies, or countries from where the
course is physically being taught.

Data Utility
In the examples described above, students and business travel-
ers who recharge their mobile devices will receive very differ-
ent data, despite having recharged their devices using the
same data recharging service. What determines the result of
data recharging for each client is her user profile. As discussed

in a later section, many information distribution systems pro-
vide some type of support for describing user interests. For
data recharging, however, user profiles must specify not only
the user’s data interests, but also the priorities and prefer-
ences the user has regarding those items. This latter informa-
tion is needed to cope with the resource limitations that arise
in a data recharging scenario. These limitations include those
inherent in the device being recharged (e.g., limited storage,
limited bandwidth, limited screen size) as well as those that
arise as part of the recharging process itself, such as a limited
connection time for performing recharging.

Data recharging permits a mobile device of any kind to
plug into the Internet at any location for any amount of time
and, as a result, end up with more useful data than it had
before. As with power recharging, the initiation of a data
charge simply requires “plugging in” a device to the network.
The longer the device is left plugged in, the more effective the
charge. If available resources are few or a charge ends prema-
turely, received data should still be consistent and uncorrupt-
ed. More resources and longer charges should only enhance
the utility of the data provided by a charge.

Data utility can be influenced along many dimensions,
including resolution, priority, compression, currency, and
fidelity. For any of these dimensions, more useful data
requires more available resources during the data charge. The
resolution of data refers to its level of detail. Low-resolution
forms of an image (which reduce the number of pixels) or a
document (which might exclude figures and formatting) might
be less useful than their higher-resolution equivalents, but
would require fewer resources (e.g., device space, charge
time) to transmit. Prioritization would charge a device with
data by order of importance. In this case, data utility is mea-
sured by the number of priority classes transferred as a result
of the charge. Compressed data might be less useful than
uncompressed data if the compression were lossy, but would
require transmission of fewer bits. Currency ties the utility of
data to its age. Recent versions of data might be more useful
than stale ones, but require more resources to retrieve than
cached older versions. Fidelity refers to the accuracy of data.
More accurate data might result from larger samples of data
sources or corroboration with alternative sources, but both
require use of more resources prior to transmission.

Our current work on profiles for data recharging has
focused on the problems of combining the specification of the
data items that are of interest to a user with a description of
the importance (i.e., “utility”) of each of those items to that
user. These issues are the focus of a later section of this arti-
cle. The additional issues of multiresolution, compression, and
currency are important aspects of our future work, and are
discussed later along with several other advanced topics.
Before going into detail on profiles, however, we first briefly
describe the architectural context in which we expect the data
recharging service to operate.

An Architecture Overview
The data recharging service is implemented as a distributed
system that consists of a network of profile managers located
throughout the Internet. Profile managers are responsible for
retrieving needed data from data sources and packaging it for
delivery to specific devices based on their recharging profiles.
Our approach to developing this infrastructure is based on the
notion of a dissemination-based information system (DBIS)
[1] and is shown in Fig. 1. In our model there are three differ-
ent roles that can be played by a profile manager:
• Data collector – These profile managers interact directly

with the underlying data sources, requesting and, if neces-
sary, reformatting the data.

IEEE Personal Communications • August 20018

• Edge node – These profile managers interact directly with
the user devices and are responsible for storing and manag-
ing profile information for individual users, and for deliver-
ing the data to devices during recharging sessions.

• Broker – These profile managers aggregate profiles from
many devices and data from many sources in order to more
efficiently distribute data through the network.
Profile managers can play one or more of these roles con-

currently. In a sense, profile managers are application-level
routers that move data through the network based on the
detailed information available in the profiles. The profile
information flows from the devices and edge nodes back
through the infrastructure, being aggregated as it goes. The
data collector nodes, to obtain relevant data from the data
sources, ultimately use this aggregated profile information.
The collected data is then spread through the network in the
opposite direction, being distributed to the edge nodes from
which it will ultimately be delivered to the devices.

Describing User Profiles
A business traveler and a student can plug in the same kind of
device at the same location, and yet receive very different
data as a result of data recharging. The individualization of
data recharging is driven by the user profile. But what should
a profile specify, and how should it specify it? In this section
we consider an example profile for a business traveler to illus-
trate these issues.

What Should a Profile Specify?
Consider a profile for a business traveler who is visiting
Boston. Upon her arrival, the traveler will stay at the Copley
Plaza Hotel in downtown Boston. In advance of her trip, she
charges her personal information manager (PIM), expecting
(among other things) data that will help her reach her hotel
from the airport.

The traveler can reach the Copley Plaza by either renting a
car or taking a shuttle. The traveler has no preference about
how she gets there, but wants her PIM to have been charged
with the data required to make the trip by either means:
• If the traveler goes by rental car, she needs data from a

rental car company describing its
rates, location within Logan Air-
port, frequent flier miles policy,
and so on. Having this data for
competing rental car companies is
useful, since it allows her to com-
pare rates or seek alternatives if
one of the companies has no avail-
able cars. However, she decides
that having rental car data for
three companies is enough, and
data for more than this has no
added value to her.

• If the traveler rents a car, she also
needs directions to get to the Cop-
ley Plaza from Logan Airport. In
fact, without these directions,
rental car data has no value to the
traveler.

• If the traveler is going to take a
shuttle to her hotel, she needs a
shuttle schedule for one of the
shuttle companies that serves
downtown Boston. Only one shut-
tle schedule is necessary. If she
takes the shuttle, directions to her

hotel may still be of use (in case the shuttle doesn’t stop at
the Copley Plaza directly, but instead at a nearby hotel),
but the shuttle schedule has value regardless of whether she
also has directions.
The business traveler profile will also specify interest in

other data related to her travels, including restaurant listings,
theatre reviews for current shows, and news items related to
topics on the agenda for her meetings. But even the simplified
profile described here is sufficient to demonstrate what might
be considered good and bad data charges. Given the profile
described above, it is clear that a good data charge will leave
the data traveler either with data for one or more rental car
companies and directions to the Copley Plaza hotel, or with a
shuttle schedule, perhaps with directions to the hotel also. On
the other hand, it is clear that a charge that leaves information
about rental cars without directions to the hotel is undesirable.

As is evident from our example, a profile must be able to
specify two things.

What are the interesting data objects to the user? We
assume here that a data object is any object retrievable via an
http or ftp request off the Internet. This includes files of vary-
ing formats (including text, html, xml, jpeg, gif, wav, and pdf)
as well as objects and tables maintained in a database. In the
case of the business traveler profile, interesting data objects
might be Web pages for rental car companies (hereafter
referred to as rental car objects), files of any kind with direc-
tions from Logan to Copley Plaza (direction objects), and
shuttle schedules serving downtown Boston from Logan (shut-
tle objects). The set of interesting objects specified in a profile
is that profile’s profile domain.

What is the utility of each interesting data object? The utili-
ty of a data object indicates its relative worth when included in
a data charge. A data object’s worth may be independent of
other data objects included in the data charge (as in direction
objects which are always useful), or dependent on the presence
or absence of other data objects in the data charge (as in rental
car objects, whose worth depends on the presence of direction
objects in the same data charge, and shuttle schedules, whose
worth depends on the absence of either direction or rental car
objects). A profile’s utility function maps every potential data
charge to an integer that denotes its value.

� Figure 1. Architecture.

Data

Data

Data

Data

Data sources

Users

Profile
managerProfile

manager

Profile
manager

Profile
manager

Profile
manager

IEEE Personal Communications • August 2001 9

How Should a Profile Be Expressed?

Figure 2 shows one possible way to express the business trav-
eler profile introduced in the previous section. The profile in
this figure has two sections: the DOMAIN section specifies the
profile domain, and the UTILITY section specifies the utility
function. In this section we consider issues in the design of
profile languages, using the profile example of Fig. 2 as an
example.

Before considering issues concerning profile languages, we
first illustrate how profile specifications determine the behavior
of the profile manager. Figure 3 shows a profile, P, in the con-
text of a data recharging system. D, I, and C denote progres-
sively smaller subsets of data objects which are determined by P
and the profile manager that processes P. D is the profile
domain: the set of all data objects that are specified to be of
interest within P’s domain specification. I is the profile instantia-
tion, consisting of the data objects in D the profile manager is
able to locate. C is the chosen data charge: the subset of objects
in I that the profile manager chooses to deliver to the mobile
device on the basis of P’s utility function specification. For the
business traveler profile described in this section, D consists of
three kinds of data objects: rental car objects, direction objects,
and shuttle objects, and C is determined from the rental car,
direction, and shuttle objects the profile manager is able to find
(I), the utility function specification that establishes the relative
worth of these data objects, and the resource restrictions (e.g.,
bandwidth, space available on charged device) evident at the
time when charging occurs.

Expressing Profile Domains — A profile’s domain specifica-
tion determines the data objects in D: the objects of interest to
the client whose device gets charged. In the DOMAIN section of
Fig. 2, we have specified the business traveler’s profile domain
by identifying three disjoint data classes: sets of data objects
with similar semantic content. For this profile, RC names a set
of rental car objects, Dir names a set of direction objects, and
Sh names a set of shuttle objects.

The data classes of Fig. 2 are defined
informally. Any formal language for specify-
ing data classes must satisfy the following
properties:
• Declarative: It must allow data sets to be

specified declaratively. Thus, a profile
domain language has much in common
with a database query language.

• Class membership: It must allow member-
ship in a class to depend on content and
metadata. Content-based criteria might

demand that data objects contain certain keywords
(e.g., rental car objects must contain the keywords
“rates” and “reservations”) or have particular values
for particular fields (in the case of data objects that
are structured, e.g., relational database tables). Meta-
data-based criteria might examine a data object’s for-
mat (e.g., shuttle schedules should be text files),
structure (as in the case of XML data, where struc-
ture might be specified with a DTD), source (e.g.,
rental car objects should be taken from official Web
sites for one of the three largest rental car companies
in the country), creation date, or size.

• Dynamic domain: It must allow class membership to
be determined dynamically, allowing D to expand if
the profile manager finds new objects between data
charges, and allowing D to contract as a result of a
data object becoming stale, or uninteresting because
the client’s context (e.g., the client’s geographical

location) has changed.
One way to identify objects of interest according to content

is to use keywords, as in a Web search engine. Indeed, a search
engine can be viewed as a primitive “data collector” that gener-
ates a profile instantiation (the list of links it finds) given a set
of keywords. Keywords are declarative specifications and per-
mit individual objects to be examined for class membership
dynamically. However, metadata-based criteria for class mem-
bership cannot be expressed with keywords alone.

The fact that profile domains are data sets makes it possi-
ble to specify data classes with database queries. There are
many advantages to expressing profile domains in this way,
especially with regards to data collection where query process-
ing technology could be applied. Queries also permit interest-
ing data to be generated and not just collected “as is,” as in a
profile that integrates data found in different sources. This
becomes especially useful as XML becomes more ubiquitous,
since data restructuring and integration is made simpler by
XML’s use of semantically meaningful data tags.

On the other hand, most query languages do not permit
data to be queried using metadata criteria as we require. For
example, SQL queries filter data according to the content of
the data only. XML-based query languages such as Quilt [2]
support queries that filter data according to structure also,
exploiting the self-describing flavor of XML. Query languages
designed for heterogeneous databases such as SchemaSQL [3]
also allow the structure of data (relations) to be queried.
However, none of these query languages permit data to be
identified by declaratively characterizing data sources (the
query languages we know of demand that sources of data be
explicitly named) or other metadata properties such as the age
of the data. For a query language to be extended to specify a
profile domain, it will be necessary to extend its predicate lan-
guage to permit reasoning about metadata properties. Indeed,
the standard distinction found in query definitions between
data source (FROM clause) and data predicate (WHERE clause)
would have to be blurred in this context, to permit more flexi-

� Figure 2. A business traveler’s profile.

PROFILE BusinessTraveler
DOMAIN:

RC = rental car company web pages
Dir = directions from Logan Airport to Copley Plaza
Sh = shuttle schedules for shuttles serving Boston from Logan

UTILITY:
U (RC) = 0;
U (Dir) = 1;
U (Sh) = 2;
U (RC with Sh) = 2;
U (Dir with Sh) = 3;
U (RC [1] with Dir) = 2;
U (RC [2] with Dir) = 3;
U (RC [i>2] with Dir) = 4;
U (RC [0<i<3] with Dir with Sh) = 3;
U (RC [i>2] with Dir with Sh) = 4

END

� Figure 3. A profile working in a data recharging system.

C

Domain
specification

Utility function
specification

I
D

P

IEEE Personal Communications • August 200110

bility in identifying desirable data sources. Appropriate pro-
cessing techniques for evaluating such queries (for the pur-
pose of data gathering) remain a topic for further research.

To support the dynamic domain requirement, queries used
to specify profile domains must be persistent. A persistent
query is like a view; it defines a result that evolves over time.
Views are handled by database systems in two ways: they are
either reevaluated when they are referenced (e.g., when a
query is posed in terms of a view), or materialized and updat-
ed when the data sources they depend on are modified. Of
these approaches, the latter is likely to be more appropriate in
a data recharging scenario given that data collection should
occur at least partially offline (i.e., between data charge ses-
sions) to make best use of the time available during a data
charge session. On the other hand, the view maintenance
problem for materialized views is made more complicated
because profiles need not explicitly name their data sources.

Expressing Utility Functions — A profile’s utility function
specification specifies the relative worth of data objects speci-
fied in its profile domain. Any language used to specify utility
functions must satisfy the following requirements:
• Conciseness: It must permit complex utility functions to be

expressed concisely; not requiring, for example, space that
is exponential in the number of data classes.

• Comparability: It must indicate which members of a set of
data objects have the most value to the client. For example,
a utility function for a business traveler might indicate that
a shuttle schedule object is more valuable than a rental car
object.

• Dependent Utility: It must allow the worth of data objects to
depend on the presence or absence of other data objects in
the same data charge. For example, the business traveler
profile should have a utility function that specifies the worth
of a rental car object to be dependent on the presence of a
direction object in the same data charge, and the worth of a
shuttle object to be dependent on the absence of either
direction or rental car objects in the same data charge.
One way to express a utility function is in terms of a func-

tion that maps data charges to integer values. We illustrate
this in the UTILITY section of Fig. 2, where 10 equations are
used to specify U: a function that maps subsets of the business
traveler profile domain to integer values. Equations in the
utility function specification are of the form

U (<Class>) = i
such that <Class> specifies a class of subsets of the profile
domain (i.e., a class of potential data charges) which have the
same value, i. To characterize data classes, we reuse the data
class names (RC, Dir, and Sh) introduced in the DOMAIN sec-
tion of the profile. But in this section of the profile, these
names are used to describe properties of data charges, as we
demonstrate with three example equations:
• The class RC characterizes a data charge that includes one

or more rental car objects and no direction objects or shut-
tle objects. Therefore, the equation
U (RC) = 0
indicates that data charges that can be characterized in this
way have value 0. This says that rental car information has
no value when unaccompanied by directions to the travel-
er’s hotel.

• The equation
U (RC [1] with Dir) = 2
says that any data charge that includes exactly one rental car
object (RC [1]), one or more direction objects (Dir), and
no shuttle objects has value 2.

• The equation
U (RC [0 < i < 3] with Dir with Sh) = 3

says that any data charge that includes one or two rental car
objects (RC [0 < i < 3]), one or more direction objects
(Dir), and one or more shuttle objects (Sh) has value 3.
The advantage of expressing the utility function in the

manner shown in Fig. 2 is that it captures the comparison and
dependent utility requirements for a utility function specifica-
tion. One can specify the value of an individual data object of
some data class, D, simply by defining an equation of the form

U (D) = i
if the value of one object in class D is the same as the value of
several objects of class D, or

U (D [i]) = f (i)
(for some function f) if every object in this class gives added
value when present in a data charge. To indicate that the
value of an object is dependent on the presence of another
object in the same charge, one simply associates with the data
charge that contains objects from both data classes a value
larger than the sum of values associated with the data charges
that contain these objects individually. For example, the value
of a data charge that includes one rental car object, at least
one directions object, and no shuttle objects (U (RC [1]
with Dir) is larger than the sum of values of rental car
objects (U (RC)) and directions objects (U (Dir)) consid-
ered separately.

On the other hand, the utility function specification of Fig. 2
is not concise. The number of equations required to express the
values of all potential data charges is exponential in the number
of data classes (or more, if the value of a data charge depends
not on the presence or absence of objects of each data class,
but also on the number of objects that satisfy each data charge).
The example language in this article is just meant to be illustra-
tive of the kinds of things we need to be able to express. We
have recently been investigating alternative approaches based
on declarative languages such as database query languages. In
such an approach, we express utilities independent of how they
will be used. We essentially define utility as a function that
assigns a value to any subset of the domains.

Further Research Issues
Advanced Profiling Issues

Profiles are what drive data recharging. As discussed in the
previous section, the language with which we express profiles
is a key component of any such system. The expressive power
of that language is what provides us with opportunity. The
internal representation of profiles written in that language is
what facilitates our attempts to optimize and plan their use.
There is, of course, a tension between the expressive power of
a profile language and the ability to process it efficiently. A
major thrust of our language design attempts to balance these
conflicting goals.

We see the data recharging problem as requiring addition-
al capability from a profile language in order to realize the
full potential of our vision. In particular, a profile language
must include facilities to specify resolution and context:
• Resolution. When resources such as bandwidth or memory

on the mobile device are limited, it might be desirable to
transmit a lower-resolution version of an object as long as
that version still has some value. By sending less data, we
preserve resources for other objects (possibly at lower reso-
lution as well). Planning the appropriate resolution to send
as well as the order in which to send items is the job of the
data recharging infrastructure.
What constitutes a legitimate lower-resolution object is
dependent on the object’s type. For audio and video, lower
resolutions are obvious. For things like documents or books

IEEE Personal Communications • August 2001 11

(say represented in XML), a lower-resolution version might
omit components. For example, a lower-resolution book
might be the book without its figures. The profile language
would need to specify which combinations of components
make sense as well as how these combinations of compo-
nents should be valued.

• Context. As mobile users conduct business, they find them-
selves in different states in space and time. We call a repre-
sentation of these states the context. Profiles for data
recharging produce different charges depending on a user’s
current context. A profile language must incorporate con-
text in order to adjust the domain D and the value of
charges accordingly.
A context can be defined by the user’s location, PIM-based
calendar, and/or current task/subtask. For the latter, the
task might be defined by a series of smaller steps in the
form of a formal workflow diagram. The state of the task
within that workflow would affect the data included in the
charge. For example, if a user is in Washington on her way
to a meeting with the President and has just completed a
meeting with the Mexican ambassador, the charge might
include recent documents on proposed revisions to NAFTA.

Efficient Profile Processing
A data recharging system must be capable of handling a very
large number of users in the context of huge amounts of data.
Finding the absolute best recharge for all users at all times is
a daunting (likely exponentially complex) task. Thus, one of
the biggest challenges facing any real implementation involves
developing profile optimization (analogous to query optimiza-
tion) techniques that mitigate the computational burden of
the problem. It should be noted that since profiles specified
by users are a best guess at where their future interests will
lie, an optimal solution is likely not necessary. A good approx-
imation will serve our purposes quite well.

When a data recharge is needed for a mobile user, we
need a way to create this recharge without having to generate
and test the powerset of all objects in the profile domain D.
Here, we need ways to add objects to the charge using some
kind of hill-climbing technique. Our experience to date sug-
gests that the internal representation of profiles will have a
significant impact on how expensive this is. We have begun to
look at the problem of how to efficiently generate a charge
and have explored greedy algorithms as well as the Prece-
dence Constrained Knapsack Problem (PCKP) as a solution.

Furthermore, we need strategies for processing multiple
user profiles together. If there is commonality in some group
of profiles, it makes sense to process the common part once
and share the result.

Data Management Issues
Data recharging provides data to a mobile device at any loca-
tion in the network. Moreover, a fully deployed data recharg-
ing system must be able to efficiently scale to millions of
users. We believe this can be achieved by providing data man-
agement capability within the data recharging system. To this
end, profiles can serve a second purpose of guiding the man-
agement of data prior to its delivery. Thus, there must be a
sophisticated data management and delivery infrastructure to
support this.

For example, profiles can provide an opportunity to plan
the flow of data in the network in order to optimize anticipat-
ed recharging events. Intuitively speaking, the data ought to
follow users in their travels. While this may be impractical for
all data for all users, it might be possible for popular data to
move to a location that is “closest” (in terms of latency) to the
highest number of interested users.

While profiles form the basis for data recharging decisions,
they can also be used for making data management decisions
within the data recharging infrastructure. Data management
decisions include caching, prestaging, indexing, clustering,
replication, and precomputation. The mode of delivery of data
related to a charge would also be included as a kind of data
management policy. Data delivery can be push-based or pull-
based; it can be unicast or multicast. We expect that this work
would contribute substantially to the development of a data
recharging infrastructure.

Two-Way Data Flow
Up to this point, the data recharging discussion has focused
largely on scenarios in which data recharges flow from the
fixed data grid to mobile devices. In many applications, how-
ever, data will be updated or collected at the mobile device.
Data that originates in the mobile device will often need to
flow back into the network for use by other applications. This
reverse information flow introduces a further dimension to
the design of the data recharging infrastructure.

While current PDA devices support such bidirectional syn-
chronization, the task is more difficult in the data recharging
framework due to the expressiveness of the profile description
language and data model. Data cached on the mobile device
is essentially a materialized view of data abstracted from sites
across the Internet. Thus, one problem that must be addressed
is the mapping of updates back to base data. A second chal-
lenge is the maintenance of data consistency in the presence
of mobile updates. Either pessimistic (i.e., avoidance-based)
or optimistic (i.e., resolution-based) approaches to consistency
could be used. While there are difficulties in supporting such
techniques in the general case, protocols could be developed
that are tailored to the specific sharing characteristics of many
recharging-based applications. Such protocols will necessarily
trade off strict consistency for availability in a way that is most
appropriate for each type of application.

Related Work
User profiles form the basis of many types of information deliv-
ery systems, ranging from information filtering applications to
the personalization of content on the World Wide Web. Data
recharging profiles are unique in that they combine a powerful
language for specifying predicates over data items with detailed
specifications of the users’ preferences, priorities, and require-
ments. Still, there has been significant work in user profile
modeling and management on which we can draw.

File hoarding for mobile, disconnected operation has been
studied in the Coda system [4] as well as the SEER system [5].
In these efforts, hoarding profiles specify user interest in files,
and this information is used to prefetch files in anticipation of
a disconnection event. A CODA profile is a list of file or
directory path specifiers with additional annotations. An
annotation, for example, can state that a directory and all its
children are of interest. Such a path specification can also be
assigned a priority, which matches our notion of utility. Our
notion of a profile includes a more declarative specification of
the data of interest and also expands the idea of a priority to
include more application-level complexities such as utility
dependencies. There has been some work [6] on the specifica-
tion of hoarding profiles that takes the semantics of data into
account. The hoards in this work are defined as partitioned
views on a set of base relations without any notion of utility.

User profiles for Web-based applications (MyYahoo,
PointCast [7], etc.) are typically fairly simple, allowing the
user to specify particular categories of information they are
interested in receiving. Such categories are often referred to

IEEE Personal Communications • August 200112

as “channels,” thereby emphasizing the similarity of the ser-
vice to that of broadcast media. This approach to building
information dissemination systems is generally known as the
“publish/subscribe” model [8]. Publish/subscribe systems tend
to use a “walled garden” approach, in which the universe of
data that can be delivered to the user is restricted to specific
content sites. Most systems allow simple, channel-specific
predicates to be applied to the data on the channels selected
by the user, for example, to specify particular companies (for
stock prices), cities (for weather), or teams (for sports scores)
of interest to the user. The Grand Central Station system [9],
developed at IBM Almaden, provides a more general form of
predicates over its channels, and is therefore closer to our
notion of the domain specification portion of a profile.

User profiles for text-based data have been extensively
investigated in the context of information filtering and selec-
tive dissemination of information research [10]. The systems
in these areas use techniques from the information retrieval
(IR) world for filtering unstructured text-based documents
[11]. In general, IR profile systems use either a Boolean
model or a similarity-based model. In the Boolean model a
user profile is constructed by combining keywords with
Boolean operators (e.g., And, Or, Not), and an “exact match’’
semantics is used — a document either satisfies the predicate
or not. Similarity-based models use a “fuzzy match” semantics
in which the profiles and documents are assigned a similarity
value (typically based on a vector space model [12]) . A docu-
ment whose similarity to a profile is above a certain threshold
is said to match that profile. The Stanford Information Filter-
ing Tool (SIFT) [13] is a well-known content-based text filter-
ing system for Internet news articles. With the advent of
XML, filtering of Web documents based on structure as well
as content has become more feasible. The XFilter system [14]
is a recent example of such a filtering system.

Our notion of user profiles is also related to the notion of
continuous queries (CQs) as studied in the database community.
Continuous queries are standing queries that allow users to be
informed when updates of interest occur in a database. Early
work on CQ for relational databases was done by Terry et al.
[15]. More recently, several CQ systems have been proposed
for information delivery on the Internet. OpenCQ [16] employs
an SQL-like query language and runs on top of a distributed
information mediation system that integrates heterogeneous
data sources. The NiagaraCQ system [17], allows the specifica-
tion of standing queries using an XML-based query language.
The C3 project [18] provides a service that allows users to sub-
scribe to changes in semi-structured information sources.

Finally, data recharging will make heavy use of techniques
to generate and deliver data at multiple resolutions. Multires-
olution delivery of media has long been advocated for mobile
environments (e.g., [19]). We plan to extend these techniques
to deal with structured and semi-structured documents as well
as to aggregated data delivered from databases.

Conclusions
As mobile devices become smaller and more pervasive, con-
sumers of computing technology will be able to perform their
tasks using many different platforms throughout their working
day. We see the ability to supply these devices with the data
they need in a manner as simple as the way they recharge
their battery power as being crucial to realizing the full poten-
tial of device-based computing.

Data recharging is fundamentally dependent on the ability
to express rich information requirements in the form of a pro-
file. We have discussed some of the requirements of a lan-
guage for expressing these profiles. Like a query language, a

profile language should be declarative; however, unlike a
query, a profile does not specify a single correct answer. The
profile is simply a specification of items of interest and their
relative values. Moreover, unlike a query, a profile can gener-
ate an “answer” that is dependent on context and the avail-
able resources in the environment.

Data recharging is a fertile area for further research. We
believe that the study of profiles and their role in advanced
applications like data recharging is a key area for the applica-
tion of data management ideas and techniques. If this work is
ultimately successful, it will allow for useful mobile and perva-
sive computing to take place without as much user interven-
tion as is required today.

We are presently exploring the infrastructure that is required
to build real data recharging systems. This includes the study of
appropriate algorithms (e.g., caching and prefetching), the
identification and construction of common services (e.g., data
caches), designing appropriate APIs (e.g., negotiation protocols
from device to wired machine), and building a small but realis-
tic application (e.g., Mobile CoursePak).

Acknowledgments
This work was supported in part by the National Science
Foundation under NSF Grant number IIS00-86057. Addition-
al support was provided by NSF grant IRI96-32629, DARPA
grant #N66001-99-2-8913 and by contributions from IBM,
Microsoft, Sun Microsystems, and Siemens. We would like to
thank Danny Tom and Matt Denny of UC Berkeley, Eddie
Galvez of Brandeis University, and Don Carney, Greg Seid-
man, Nesime Tatbul, and Ying Xing of Brown University for
their valuable contributions to the Data Recharging project.

References
[1] M. Altinel et al., “DBIS Toolkit: Adaptable Middleware for Large Scale

Data Delivery,” Proc. ACM SIGMOD Conf., Philadelphia, PA, June 1999.
[2] D. Chamberlin, J. Robie, and D. Florescu, “Quilt: An XML Query Lan-

guage for Heterogeneous Data Sources,” Proc. WebDB 2000 Wksp.,
Dallas, TX, June 2000.

[3] F. Gingras et al., “Langauges for Multi-database Interoperability,” Proc.
ACM SIGMOD Conf., Tucson, AZ, May 1997.

[4] J. Kistler and M. Satyanarayanan, “Disconnected Operation in the CODA File
System,” ACM Trans. Comp. Sys., vol. 6, no. 1, Feb. 1992, pp. 1–25.

[5] G. Kuenning, “The Design of the SEER Predictive Caching System,” Proc.
Wksp. Mobile Comp. Sys. and Apps., Santa Cruz, CA, Dec. 1994.

[6] B. R. Badrinath and S. H. Phatak, “On Clustering in Database Servers for
Supporting Mobile Clients,” Cluster Computing, Jan. 1998, pp. 149–59.

[7] S. Ramakrishnan and V. Dayal, “The PointCast Network,” Proc. ACM
SIGMOD Conf., Seattle, WA, May 1998.

[8] B. Oki et al., “The Information Bus – An Architecture for Extensible Dis-
tributed Systems,” Proc. 14th SOSP, Ashville, NC, Dec. 1993.

[9] Q. Lu, M. Eichstaedt, and D. Ford, “Efficient Profile Matching for Large Scale
Webcasting,” 7th Int’l. WWW Conf., Brisbane, Australia, Apr. 1998

[10] P. W. Foltz and S. T. Dumais, “Personalized Information Delivery: An
Analysis of Information Filtering Methods,” Commun. ACM, vol. 35, no.
12, Dec. 1992, pp. 51–60.

[11] N. J. Belkin and B. W. Croft, “Information Filtering and Information
Retrieval: Two Sides of the Same Coin?,” Commun. ACM, vol. 35, no.
12, Dec. 1992, pp. 29–38.

[12] G. Salton, C. S. Yang, and A. Wong, “A Vector Space Model for Infor-
mation Retrieval,” Commun. ACM, vol. 18, 1975.

[13] T. W. Yan and H. Garcia-Molina: “The SIFT Information Dissemination
System,” ACM Trans. Database Sys., vol. 24, no. 4 1999, pp. 529–65.

[14] M. Altinel, and M. J. Franklin, “Efficient Filtering of XML Documents
for Selective Dissemination of Information,” Proc. VLDB Conf., Cairo,
Egypt, Sept. 2000.

[15] D. B. Terry et al., “Continuous Queries over Append-only Databases,”
Proc. ACM SIGMOD Conf., June 1992, pp. 321–30.

[16] L. Liu, C. Pu, and W. Tang, “Continual Queries for Internet Scale Event-
Driven Information Delivery,” Special Issue on Web Technologies, IEEE
Trans. Data Eng., Jan. 1999.

[17] J. Chen et al., “NiagaraCQ: A Scalable Continuous Query System for
Internet Databases,” Proc. ACM SIGMOD Conf., Dallas, TX, June 2000.

[18] S. Chawathe, S. Abiteboul, and J. Widom., “Representing and Query-
ing Changes in Semistructured Data,” Proc. Int’l. Conf. Data Eng.,

IEEE Personal Communications • August 2001 13

Orlando, FL, Feb. 1998.
[19] R. H. Katz, “Adaptation and Mobility in Wireless Information Systems,”

IEEE Pers. Commun., vol. 1, no. 1, 1st qtr., 1994, pp. 6–17.

Biographies
MITCH CHERNIACK (mfc@cs.brandeis.edu) has been an assistant professor at
Brandeis University since January 1999. Before that, he completed his Ph.D.
at Brown University. His research interests include formal methods (espe-
cially as applied to database development), web databases and program-
ming languages. He was a recipient of an NSF CAREER grant in 2000, for
his work on developing correct query optimizers using formal methods.

MICHAEL FRANKLIN (franklin@cs.berkeley.edu) is an associate professor of
computer science at the University of California, Berkeley. His research
focuses on the architecture and performance of distributed databases and
information systems. Previously, he was at the University of Maryland, Col-
lege Park, where he led the development of the DIMSUM flexible query
processing architecture and was a co-developer of the Broadcast Disks data
dissemination paradigm. He is an Editor of ACM Transactions on Database
Systems and is Program Chair for the 2002 ACM SIGMOD Conference. He
received the NSF CAREER award in 1995.

STAN ZDONIK (sbz@cs.brown.edu) is currently a professor of computer science
at Brown University. He received his Ph.D. from the Massachusetts Institute
of Technology in 1983. He did extensive work on the topic of object-oriented
databases and was co-developer of Broadcast Disks. He leads the Network
Data Management Group at Brown and is the co-principal investigator of the
NSF-sponsored Data Centers project. He is an Associate Editor for ACM Com-
puting Surveys, the International Journal of Distributed and Parallel Databas-
es, and the Journal of Intelligent Information Systems. His research interests
include network data management, mobile database systems, profile pro-
cessing, and database query processing.

