
Devel-Op: An Optimizer Development Environment
Zhibo Peng, Mitch Cherniack and Olga Papaemmanouil

Computer Science Department, Brandeis University, Waltham, MA
{docp, mfc, olga}@brandeis.edu

Abstract—Recent advances in the underlying architectures
of database management systems (DBMS) have motivated the
redesign of key DBMS components such as the query optimizer.
Optimizers are inherently difficult to build and maintain, and
yet there exists no software engineering tools to facilitate their
development. In this paper, we introduce a [Devel]opment Envi-
ronment for Query [Op]timizers (Devel-Op) designed to facilitate
the rapid prototyping, profiling and benchmarking of optimizers.
Our current version of the tool permits declarative specification
and generation of two key optimizer components (the logical plan
enumerator and physical plan generator) as well as debugging
and visualization tools for profiling generated components.

I. INTRODUCTION

In recent years, new data management systems have
emerged that exploit new hardware technologies (e.g., flash
memory [1]) to outperform the traditional DBMS. As a
result, the designs of many key DBMS components are being
revisited in light of new assumptions. For example, new
approaches to query optimization have been proposed that
assume a distributed shared-nothing architecture rather than a
centralized client-server architecture [2], flash memory storage
rather than disks [3], column-stores rather than row-stores [4]
and compressed data rather than uncompressed [5].

New approaches to query optimization are hindered by the
absence of software engineering tools that support the rapid
prototyping, profiling and benchmarking of optimizers and
their components. In this paper, we introduce Devel-Op: a
[Devel]opment Environment for Query [O]ptimizers consisting
of such tools. Our current version of Devel-Op includes
support for two key components of the query optimizer:
the Logical Plan Enumerator (LPE) and the Physical Plan
Generator (PPG). Rapid prototyping support is provided by
way of declarative specification languages (LSL and PSL) and
corresponding LPE and PPG component generators. Profiling
support is provided with debugger and visualization tools for
tracing the operation of these components over any query.

II. BACKGROUND

Figure 1 shows a generic query optimizer architecture
assumed by Devel-Op. A Logical Plan Enumerator (LPE)
accepts a representation of a given query such as a join
graph, and enumerates a set of logical plans that constrain
the physical plans that the optimizer should consider. These
logical plans are then sent to a Physical Plan Generator (PPG)
which produces a set of physical plans for each logical plan by
replacing each logical join with a physical join operation (e.g.,
merge join), determining which input to that join is outer and
which is inner, and replacing each reference to a table with a

physical access method (e.g., file scan). The Plan Pruner then
selects subsets of these plans on the basis of their estimated
costs or other “interesting” properties.

The operations of the LPE, PPG and Plan Pruner are
typically threaded. For example, bottom-up plan generation
(as in System R [6]) interrupts an LPE after it has produced
some set of logical subplans, invokes the PPG to produce a set
of corresponding physical subplans and then invokes the Plan
Pruner to prune this set. The LPE then resumes, but working
only with those logical plans that survive pruning. The role of
the Controller is to schedule the LPE, PPG and Plan Pruner
threads (i.e., deciding when to transfer control among them)
and thereby determines whether pruning is performed eagerly
on subplans (bottom-up plan generation) or only once entire
plans are constructed (top-down plan generation).

Fig. 1. A Generic Query Optimizer Architecture

Figures 2b-d show examples of the query representations
passed between optimizer components for the TPC-H based
query shown in Figure 2a.1 The join graph for this query,
consisting of nodes for each table and edges between those
for which the query has join predicates, is shown in Figure 2b.
Figure 2c shows a logical plan (annotated with logical plan
properties, OrdSet and Rank) that could be enumerated
for this query by the LPE. Figure 2d shows a physical
plan that could be constructed from this logical plan by the
PPG. The encapsulation of common query optimizer behaviors
with these dedicated components make it straightforward to
prototype and evaluate different approaches to their design.

III. DEVEL-OP

Our current version of Devel-Op [7] supports component-
specific prototyping and profiling. Therefore it offers a system-
atic solution for the development of well-modularized query
optimizer that clearly distinguishes us from existing work on
profiling optimizers (e.g., Picasso Visualizer [8]) and providing
extensibility in query optimization (e.g., EvitaRaced [9]). In

1Tables L, O, C and N are short for TPC-H tables, Lineitem, Orders,
Customer and Nation respectively.



Fig. 2. A query (a), its join graph (b), and logical (c) and physical (d) plans

Fig. 3. An LPE Specification in LPL

the following paragraphs we describe in detail our unique
component specification and generation process as well as our
profiling and visualization tool.

A. Component Specification and Generation

We have defined declarative specification languages LSL and
PSL for specifying the LPE and PPG optimizer components
respectively, and component generators that generate LPE
and PPG components from their corresponding specifications.
Specifications in LSL resemble attribute grammars as found
in compiler generation tools such as Yacc [10], OX [11] and
Antlr [12]. The grammar of an LSL specification defines the
logical plan tree that is enumerated by the generated LPE,
while attributes (denoted with ‘$’) specify the logical plan
properties (e.g., result cardinality) associated with each node
in the tree. Note that the specification shown in Figure 3
is very simple, assuming logical plans consisting solely of
tables (tablePlan), simple selections (selectPlan) and
equijoins (joinPlan). The simplicity of this example facil-
itates presentation and in no way reflects limitations on the
expressivity of LSL specifications.

The LSL specification shown in Figure 3 defines two logical
plan properties: OrdSet and Rank. OrdSet denotes the set
of all sort orders (columns) that hold of any physical plan that
could be generated from a given logical plan. For example,
the subplan denoting L ./ O in Figure 2c has OrdSet equal

to {o_okey / l_okey}, indicating that there is just one
sort order (on column o_okey, which because of the join
predicate on L and O, has alias l_okey) resulting from
the physical plans generated from this logical plan. As we
will see below, this is because the simplistic physical plan
generator specified in Figure 4 only generates a merge join
from logical joins. If, for example, it also generated an indexed
nested loop join with O as the outer relation, then OrdSet
would also contain the sort orders associated with table O. The
LSL expression, ALL (att) specifies that the value of this
property is the set of all values for the physical property named
att in all physical plans generated from a given logical plan.

All LSL join specifications must define the special property,
Rank which is used by generated LPEs to determine which
join orderings to enumerate for any given query. A join rank
should be high (i.e., close to or equal to 1) if it is a join
that should be performed early in a plan such as a local join
requiring no data transfer between nodes prior to performing
the join in a distributed DBMS), and a higher rank otherwise.
The LPE enumeration algorithm then converts join graphs into
logical plans incrementally by converting each edge and the
nodes it connects, in rank order, into a join node denoting
a logical join subplan. Thus, generated LPEs enumerate only
those logical plans whose join subplans have rank equal to
or higher than any join plans that contain them. For the LPE
specification of Figure 3, Rank assigns a join a rank of 1 if
both of its inputs are potentially ordered on their respective
join attributes (meaning that the join could be implemented as
a merge join without requiring prior sorting of its inputs), 2
if one of the inputs is so ordered and 3 otherwise.

Fig. 4. A PPG Specification in PSL

PPGs are specified in specification language PSL as shown
in Figure 4. PSL specifications resemble Tree Attribute Gram-
mars (TAGs) [13] that are commonly used in compiler genera-
tion to specify language translators. TAGs differ from standard
attribute grammars in that they consist of translation rather
than grammar rules with left-hand sides that are parse tree
expressions (from the language being translated) rather than



nonterminals. Analagously with LSL, the attributes of PSL
denote physical plan properties which annotate the nodes of
the physical plan trees that generate PPGs construct.

The PPG generated from the PSL specification of Fugure 4
constructs the physical plan shown in Figure 2d (as well as
other physical plans) from the logical plan of Figure 2c. This
specification indicates how to translate each logical subplan
into its equivalent physical plans; for this example, a file scan
(pscan) for the logical select plan, a merge join (pmjoin)
for the logical join plan, and a table reference (ptable) for
the logical table plan. Observe that there are three translation
rules (each denoted by “->”) for translating a logical join
into physical merge joins with each rule predicated by the
conditions delimited by the reserved word, WHEN. The rule
of line 13 says that a logical join can be translated into a
physical merge join without prior sorting if both inputs are
already sorted on their respective join attributes. The rules of
lines 17 and 21 say that if just one of the join inputs is sorted, a
merge join must be preceded by a sort of the other join input.
All physical plans generated according to this specification
includes the physical plan property, Ord, which specifies the
attribute on which a plan’s result will be sorted (or is null if
the result is not sorted). This property is used in two ways: to
determine if an input to a merge join needs to be sorted, and
in determining the set of values associated with the logical
property, OrdSet.

PSL includes two unique features not found in traditional
TAGs:

Multiple mappings: Unlike traditional translators which map
every expression of one language into a single expression
of another language, physical plan generation might map a
given logical plan into several physical plans with selection
occurring later in the optimization process (i.e., during plan
pruning). Thus, PSL specifications allow each logical plan
expression to be associated with multiple translation rules,
with each rule applied only when some set of conditions
(expressed in PSL with a WHEN clause) is satisfied. Space
limitations prevent us from showing other join translation rules
such as hash join or indexed nested loop join for the example
of Figure 4, but such rules could lead a logical join plan to
be translated into several different physical join plans.
Shared properties: As we saw with the OrdSet property in
the LSL specification of Figure 3, physical plan properties
such as Ord can be shared with logical plan specifications
as in the definition of OrdSet which was defined as the set
of all values for Ord taken from all physical plans resulting
from translation of a logical plan. Property sharing works in
the other direction also; logical plan properties are implicitly
shared with the physical plans into which they are translated.2

B. Debugging and Visualization

Figure 5 shows a screenshot from the Devel-Op environ-
ment assuming a LPE and PPG generated from the examples

2Of course, problems can arise from the cycles of shared properties, but
our component generator tools detect and forbid such cycles.

Fig. 5. A Screenshot of the Devel-Op Debugger and Visualizer

of Figures 3 and 4, and the query of Figure 2a. The Derivation
window gives an overview of the optimization process on
the current query. Nodes in this window denote join graphs,
logical plans, or sets of physical plans. By selecting different
derivation nodes, users can view the corresponding state of
optimization consisting of: the current join graph (shown in the
Join Graph window), as well as the set of logical or physical
plans produced at that step (shown in the Plans window).
Users can also examine the values of properties of join graph
or plan nodes. The Command window is where a user can
control the optimization process using standard commands as
found in debuggers for programming languages such as GDB
for Gnu C++ [14]. Debugging commands include:

1) next: used to join the highest ranked edges of current
selected join graph to generate the intermediate join
graphs, or generate the physical plans from current
selected logical plan

2) run: used to generate all logical and physical plans
generated from the join graph or logical plan currently
selected in the Join Graph window, and

3) complete: used to generate all remaining logical and
physical plans from the entire query.

IV. A DEMONSTRATION SCENARIO

We will demonstrate the version of Devel-Op available as
of the time of the conference. Our current version includes
declarative specification languages for the LPE and PPG
components of the optimizer and component generators that
generate LPE and PPG components from their specifications
and debugging and visualization tools that enable profiling
of generated optimizers. We also expect to include generation
tools for Plan Pruners and possibly Controllers. In the absence
of specifiable Plan Pruners and Controllers, generated optimiz-
ers will use a default bottom-up Controller and prune the set
of generated physical plans at the end to single physical plan
using a simple built-in I/O based cost model as in [15].

Suppose that a developer for some DBMS vendor specifies
an optimizer based on the LPE specification of Figure 3,



and the PPG specification of Figure 4. After compiling these
specifications using our generators, the developer might profile
the resulting optimizer using TPC-H queries such as that of
Figure 2a, and see the result of optimization exhibited in the
Devel-Op environment as shown in Figure 5. Looking at the
result of optimization, the developer might notice that the
optimizer did not select the desired plan for this query (shown
in Figure 7b). He then needs to determine which component
of the optimizer is at fault; the LPE if it failed to enumerate
the proper logical plan (the one shown in Figure 7a), the PPG
if the right logical plan was enumerated but not translated into
the desired physical plan, or the pruner if the desired physical
plan was constructed but not selected. The developer would
need to examine the set of logical and physical plans generated
to see where correction is required.

Suppose that examination of enumerated logical plans re-
veals that the desired logical plan shown in Figure 7a was
never enumerated by the LPE. To see why this was the
case, the developer might trace the operation of the LPE as
illustrated in Figure 6. Figure 6a shows the initial join graph
(JG0) for this query with edges annotated with their ranks.
The developer might issue the command next to see the
join graph of JG1 shown in Figure 6b, and see that L will
be joined with O ./ C before N is in all enumerated logical
plans. Thus, the fault lies in the ranking for the join of O ./ C
with N; the rank should be higher because one of the inputs
to this join (N) is small. The developer would then modify the
LPE specification, modifying the formula determining Rank
to also consider another logical plan property (Size) returning
a cardinality estimate for each plan. After modifying and
recompiling this specification, a trace of the resulting optimizer
over the same query would be as shown in Figure 6c and d,
leading to enumeration of the desired logical plan shown in
Figure 7a. At this point, if the desired physical plan is still
not selected, the developer would need to see if the PPG
constructed this plan for the optimizer to consider. If it didn’t,
the PPG specification would need to be modified as well. If
it did, then the problem would lie with the Pruner and its
associated cost model.

V. CONCLUSION

This demonstration shows that our novel query optimizer
development environment (Devel-Op) addresses the rapid pro-
totyping and profiling needs of query optimizer developers and
researchers.

REFERENCES

[1] P. Bonnet, L. Bouganim, I. Koltsidas, and S. Viglas, “System co-design
and data management for flash devices,” PVLDB, pp. 1504–1505, 2011.

[2] S. Krishnamoorthy, A. K. Saple, and P. H. Achutharao, “An integrated
query optimization system for data grids,” in COMPUTE ’08, 2008.

[3] Tsirogiannis et al, “Query processing techniques for solid state drives,”
in SIGMOD, 2009.

[4] Stonebraker et al, “C-store: a column-oriented dbms,” in VLDB, 2005.
[5] Z. Chen, J. Gehrke, and F. Korn, “Query optimization in compressed

database systems,” in SIGMOD, 2001.
[6] Selinger et al, “Access path selection in a relational database manage-

ment system,” in SIGMOD, 1979.
[7] “Devel-Op Project Website, http://www.cs.brandeis.edu/ develop.”

(a) (b)

(c) (d)

Fig. 6. A Debugging Trace with Devel-Op

(a) (b)
Fig. 7. Desired Logical (a) and Physical (b) Plans for Query of Figure 2a

[8] J. R. Haritsa, “The Picasso Database Query Optimizer Visualizer,” in
VLDB, 2010.

[9] Condie et al, “EvitaRaced: Metacompilation for Declarative Networks,”
in VLDB, 2008.

[10] S. C. Johnson, “Yacc: Yet another compiler-compiler,” 1975.
[11] C. Fl, K. M. Bischoff, and K. M. Bischoff, “Ox: An attribute-grammar

compiling system based on yacc, lex, and c,” 1993.
[12] T. J. Parr, T. J. Parr, and R. W. Quong, “Antlr: A predicated-ll(k) parser

generator,” 1995.
[13] T. Parr, The Definitive ANTLR Reference: Building Domain-Specific

Languages. Pragmatic Bookshelf, 2007.
[14] “GDB: The GNU Project Debugger, http://www.gnu.org/software/gdb/.”
[15] A. Silberschatz, H. Korth, and S. Sudarshan, Database Systems Con-

cepts, 5th ed. New York, NY, USA: McGraw-Hill, Inc., 2006.


