XPORT: Extensible Profile-driven Overlay Routing Trees

O. Papaemmanouil, Y. Ahmad, U. Cetintemel, J. Jannotti, Y. Yildirim

Basic XPORT Model

- A generic data dissemination system
 - Overlay network construction
- Separates "plumbing" from app-specific dissemination logic:
 - Apps provide a small set of methods:
 - Data and profile definitions
 - Profile matching functions
 - Performance goals and constraints
 - XPORT automatically builds, maintains, optimizes an overlay dissemination network

Extensibility in XPORT

- Profile/Data extensibility, e.g.,
 - match\((m,p)\): true if message matches profile
 - merge\((p_1,p_2)\): merge two profiles to one
- Cost extensibility: 2-level aggregation model
 - Level 1: Defines the local node cost
 - Aggregation of a metric over some neighbors
 - Level 2: Defines the global system cost
 - Aggregate costs of all nodes

Sample Network Transformations

- subtree promotion
- subtree migration
- sibling swap
- child promotion
- parent-child swap

Example Cost and Constraint Specification

- Optimization goal:
 "Minimize total bandwidth consumption while keeping dissemination latencies under 100ms."
- In XPORT:
 \[\text{min}\left(\sum(\text{children}, \text{in_data})\right) \text{ while } \sum(\text{ancestors}, \text{link_latency}) < 100\text{ms}. \]

Demo Applications:

1) Multiplayer Networked Game
2) RSS Feed Dissemination

Network Configuration and Visualization Tools

XPORT Dissemination Network

Game Server

Player

RSS

<table>
<thead>
<tr>
<th>Diagram</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Network configuration and visualization tools</td>
<td></td>
</tr>
</tbody>
</table>