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ABSTRACT
In this extended abstract, we propose a new technique for
query scheduling with the explicit goal of reducing disk reads
and thus implicitly increasing query performance. We intro-
duce SmartQueue, a learned scheduler that leverages over-
lapping data reads among incoming queries and learns a
scheduling strategy that improves cache hits. SmartQueue
relies on deep reinforcement learning to produce workload-
specific scheduling strategies that focus on long-term perfor-
mance benefits while being adaptive to previously-unseen
data access patterns. We present results from a proof-of-
concept prototype, demonstrating that learned schedulers
can offer significant performance improvements over hand-
crafted scheduling heuristics. Ultimately, we make the case
that this is a promising research direction in the intersection
of machine learning and databases.

1. INTRODUCTION
Query scheduling, the problem of deciding which of a set

of queued queries to execute next, is an important and chal-
lenging task in modern database systems. Query scheduling
can have a significant impact on query performance and re-
source utilization while it may need to account for a wide
number of considerations, such as cached data sets, avail-
able resources (e.g., memory), per-query performance goals,
query prioritization, or inter-query dependencies (e.g., cor-
related data access patterns).

In this work, we attempt to address the query schedul-
ing problem by leveraging overlapping data access requests.
Smart query scheduling policies can take advantage of such
overlaps, allowing queries to share cached data, whereas
naive scheduling policies may induce unnecessary disk reads.
For example, consider three queries q1, q2, q3 which need to
read disk blocks (b1, b2), (b4, b5), and (b2, b3) respectively. If
the DBMS’s buffer pool (i.e., the component of the database
engine that caches data blocks) can only cache two blocks at
once, executing the queries in the order of [q1, q2, q3] will re-
sult in reading 6 blocks from disk. However, if the queries are
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executing in the order [q1, q3, q2], then only 5 blocks will be
read from disk, as q3 will use the cached b2. Since buffer pool
hits can be orders of magnitude faster than cache misses,
such savings could be substantial.

In reality, designing a query scheduler that is aware of
the current buffer pool is a complex task. First, the ex-
act data block read set of a query is not known ahead of
time, and is dependent on data and query plan parame-
ters (e.g., index lookups). Second, a smart scheduler must
balance short-term rewards (e.g., executing a query that will
take advantage of the current buffer state) against long-term
strategy (e.g., selecting queries that keep the most important
blocks cached). One could imagine many simple heuristics,
such as greedily selecting the next query with the highest
expected buffer usage, to solve this problem. However, a
hand-designed policy to handle the complexity of the en-
tire problem, including different buffer sizes, shifting query
workloads, heterogeneous data types (e.g., index files vs base
relations), and balancing short-term gains against long-term
strategy is much more difficult to conceive.

Here, we showcase a prototype of SmartQueue, a deep
reinforcement learning (DRL) system that automatically
learns to maximize buffer hits in an adaptive fashion. Given
a set of queued queries, SmartQueue combines a simple
representation of the database’s buffer state, the expected
reads of queries, and deep Q-learning model to order queued
queries in a way that garners long-term increases in buffer
hits. SmartQueue is fully learned, and requires minimal tun-
ing. SmartQueue custom-tailors itself to the user’s queries
and database, and learns policies that are significantly bet-
ter than naive or simple heuristics. In terms of integrating
SmartQueue into an existing DBMS, our prototype only re-
quires access to the execution plan for each incoming query
(to assess likely reads) and the current state of the DBMS
buffer pool (i.e., its cached data blocks).

We present our system model and formalized our learning
task in Section 2. We present preliminary experimental re-
sults from a proof-of-concept prototype implementation in
Section 3, related work in Section 4, and in Section 5 we
highlight directions for future work.

2. THE SMARTQUEUE MODEL
SmartQueue is a learned query scheduler that automati-

cally learns how to order the execution of queries to mini-
mize disk access requests. The core of SmartQueue includes
a deep reinforcement learning (DRL) agent [3] that learns
a query scheduling policy through continuous interactions
with its environment, i.e., the database and the incoming
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queries. This DRL agent is not a static model, instead it
continuously learns from its past scheduling decisions and
adapts to new data access and caching patterns. Further-
more, as we discuss below, using a DRL model allows us to
define a reward function and scheduling policy that captures
long-term benefits vs short-term gains in disk access.

Our system model is depicted in Figure 1. Incoming user
queries are placed into an execution queue and SmartQueue
decides their order of execution. For each query execution,
the database collects the required data blocks of each in-
put base relation, where a data block is the smallest data
unit used by the database engine. Data blocks requests
are first resolved by the buffer pool. Blocks found in the
buffer (buffer hits) are returned for processing while the
rest of the blocks (buffer misses) are read from disk and
placed into the buffer pool (after possible block evictions).
Higher buffer hit rates (and hence lower disk access rates)
can enormously impact query execution times but require
strategic query scheduling, as execution ordering affects the
data blocks cached in the buffer pool.

One tempting solution to address this challenge could in-
volve a greedy scheduler which executes the query that will
re-use the maximum number of cached data blocks. While
this simple approach would yield short term benefits, it ig-
nores the long-term impact of each choice. Specifically, while
the next query for execution will maximally utilize the buffer
pool contents, it will also lead to newly cached data blocks,
which will affect future queries. A greedy approach fails to
identify whether these new cached blocks could be of any
benefit to the unscheduled yet queries.

SmartQueue addresses this problem by training a deep
reinforcement learning agent to make scheduling decisions
that maximize long term benefits. Specifically, it uses a
model that simultaneously estimates and tries to improve
a weighted average between short-term buffer hits and the
long-term impact of query scheduling choices. In the next
paragraphs, we discuss the details of our approach: (a)
the input features vector that capture data access requests
(Query Bitmap) and buffer state (Buffer Bitmap), and (b)
the formalized DRL task.

Buffer Bitmap. One input to the DRL model is the state of
the buffer pool, namely which blocks are currently cached in
memory. Buffer state B is represented by a bitmap where
rows represent base relations and columns represent data
blocks. The (i, j) entry is set to 1 if the j-th block of relation
i is cached in the buffer pool and is set to zero otherwise.
Since the number of blocks of any given relation can be very
high and different for each relation, each row vector Fi is
downsized by calculating a simple moving average over the
number of its blocks entries. Specifically Di is the downsized
row of a relation i and Fi is the full size row, we have:

Bij = b|Fi|/|Di|c ×
(j+1)×b|Di|/|Fi|c∑
k=j×b|Di|/|Fi|c

Fik (1)

Query Vector. The second input to the DLR model is the
data block requests of each query in the queue. Specifi-
cally, given a query q, we generate a vector that indicates
the data blocks to be accessed by q for each base relation
in the database. To implement this, SmartQueue collects
the query plan of q, and approximates the probability of
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Figure 1: SmartQueue’s system model

each table’s data block being accessed. Our approach han-
dle requests of index file and base relations similarly, as both
type of blocks will be cached into the buffer pool. The query
vector is downsized in the same was as the buffer bitmap.

Full table scans for a base relation i indicate that all data
blocks of the given relation will be accessed, and therefore
each cell of the i-th row vector has the value of 1. For
indexed table scans, we calculate the number of tuples to
be accessed based on the selectivity of the index scan. If
the index scan is feeding a loop-based operator (i.e., nested
loop join) the selectivity is adapted accordingly to account
for any iterations over the relation. We assume the relation
is uniformly stored across data blocks and therefore, if x%
tuples of a base relation are to be selected from an indexed
operation, we set the access probability of each data block
of the relation to x%. Similarly, we assume that the indexed
operation reads x% of the index’s blocks. We note that much
more sophisticated probabilistic models could be used, but
for this preliminary work we use this simple approximation.

Deep Q-Learning. SmartQueue uses deep Q-learning [17]
in order to decide which query to execute next. As with any
deep reinforcement learning system, SmartQueue is an agent
that operates over a set of states S (buffer pool states) and
a set of actions A per state (candidate queries to executed
next). SmartQueue models the problem of query schedul-
ing as a Markov Decision Process (MDP) [38]: by picking
one query from the queue to execute, the agent transitions
from the current to a new buffer pool state (i.e., data blocks
cached). Executing a new query on the current buffer state,
provide the agent with a reward. In our case, the reward
of an action is the buffer hit ratio of the executed query

calculated as
buffer hits

total block requests
.

The goal of the agent is to learn a scheduling policy that
maximizes its total reward. This is a continuousus learning
process: as more queries arrive and the agent makes more
scheduling decisions, it collects more information (i.e., con-
text of the decision and its reward) and adapts its policy
accordingly. The scheduling policy is expressed as a func-
tion Q(St, At), that outputs a Q-value for taking an action
At (i.e., a query to execute next) on a buffer state St. Given
a state St and a action At, the Q-value Q(St, At) is calcu-
lated by adding the maximum reward attainable from future
buffer states to the reward for achieving its current buffer
state, effectively influencing the current scheduling decision
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by the potential future reward. This potential reward is a
weighted sum of the expected buffer hit ratios of all future
scheduling decisions starting from the current buffer state.
Formally, after each action At on a state St the agent learns
a new policy Qnew(St, At) defined as:

Q(St, At) + α[Rt + γmax
a

(Q(St+1, a)−Q(St, At))] (2)

The parameter γ is the discount factor which weighs the
contribution of short-term vs. long-term rewards. Adjusting
the value of γ will diminish (e.g., favor choosing queries that
will make use of the current buffer state) or increase (e.g.,
favor choosing queries that will allow long-term increased
usage of the buffer) the contribution of future rewards. The
parameter α is the learning rate or step size. This sim-
ply determines to what extent newly acquired information
overrides old information: a low learning rate implies that
new information should be treated skeptically, and may be
appropriate when a workload is mostly stable but contains
some outliers. A high learning rate implies that new in-
formation is more fully trusted, and may be appropriate
when query workloads smoothly change over time. Since
the above is a recursive equation, it starts with making ar-
bitrary assumptions for all Q-values (and hence arbitrary
initial scheduling decisions). However, as more experience
is collected through the execution of incoming queries, the
network likely converges to the optimal policy [27].

3. PRELIMINARY RESULTS
Here, we present preliminary experiments demonstrating

that SmartQueue can generate query ordering that increase
the buffer hit ratio and improve query execution times com-
pared with alternative non-learned schedulers.

Experimental Setup. Our experimental study used work-
loads generated using the 99 query templates of the TPC-
DS benchmark [29]. We deployed a database with a size of
49GB on single node server with 4 cores, 32GB of RAM.
For our experiments, we generated 1, 000 random query in-
stances out of these 99 templates and placed them in a ran-
dom order in the execution queue. The benchmark includes
165 tables and indexes, and the number of blocks for each
of these ranged between 100 and 130, 0000. However, after
downsizing both the query vector and buffer state bitmaps,
our representation vectors have a size of 165×1, 000, includ-
ing index tables. We run our experiments on PostgreSQL [1]
with a shared buffer pool size of 2GB.1 For each query, we
collect its query plan without executing the query by using
the EXPLAIN command.

SmartQueue uses a fully-connected neural network. Our
DRL agent was implemented with Keras [12] and uses 2
hidden layers with 128 nerons each. We also use an adaptive
learning rate optimization algorithm (Adam [13]) and our
loss function is the mean squared error.

In our study, we compare SmartQueue with two al-
ternative scheduling approaches. First-Come-First-Served
(FCFS) simply executes queries in the order they appear in
the queue. Greedy employs a simple heuristic to identify the
query with the best expected hit ratio given the current con-
tents of the buffer pool. Specifically, for each queued query

1We configured PostgreSQL to bypass the OS filesystem
cache. In future work, multiple levels of caching should be
considered.

it calculates the dot product of the buffer state bitmap with
the data requests bitmap, estimating essentially the prob-
ability of buffer hits for each data block request. We then
order all queries based on the sum of these probabilities over
all blocks and execute the query with the highest sum value.
Following the execution, the new buffer state is calculated
and the heuristic is applied again until the queue is empty.
This greedy approach focuses on short-terms buffer hits im-
provements.

Effectiveness. First, we demonstrate that SmartQueue
can improve its effectiveness as it collects more experience.
In this set of experiments, we placed all 1, 000 queries in the
queue and we start scheduling them using SmartQueue. In
the beginning our agent will make arbitrary scheduling deci-
sions, but as it schedules more queries, SmartQueue collects
more experience from its past actions and starts improving
its policy. To demonstrate that, we evaluated the learned
model at different stages of its training. Figure 2a and Fig-
ure 2b shows how the model performs as we increase the
number of training queries. In Figure 2a, we measure the
average buffer hit ratio when scheduling our 1, 000 queries
and we compare it with the buffer hit ratio of FCFS and
Greedy (which is not affected by the number of training
queries). We observe that the DRL agent is able to improve
the buffer hit ratio as it schedules more queries. It outper-
forms the buffer hit of the other two heuristics eventually
converging into a ration that is 65% higher than FCFS and
35% higher than Greedy.

In addition, Figure 2b shows the number of executed
queries over time. The results demonstrate that DRL-
guided scheduling of SmartQueue allows our approach to
execute the workload of 1, 000 queries around 42% faster
than Greedy and 55% faster than FCFS. This indicates that
SmartQueue can effectively capture the relationship between
buffer pool state and data access patterns, and leverage
that to better utilize the buffer pool and improve its query
scheduling decisions.

Adaptability to new queries. Next we studies
SmartQueue’s ability to adapt to unseen queries. For
these experiments, we trained SmartQueue by first schedul-
ing 950 random queries out of 79 TPC-DS templates. We
then test the model over 50 random queries out 20 unseen
before TPC-DS templates. Figure 3a demonstrates how
average buffer hit ratio of the testing queries is affected as
SmartQueue collects experience increases from scheduling
more training queries. The graph shows that the average
buffer hit ratio of the testing queries is increased from
0.2 (when the SmartQueue is untrained) to 0.64 (when
SmartQueue has schedule all 950 queries). Furthermore,
SmartQueue outperforms FCFS and Greedy after having
scheduled less than 500 queries.

Finally, Figure 3b, shows that the query latency of
our testing queries keeps decreasing (and eventually out-
performs FCFS and Greedy) as SmartQueue is trained on
more queries. Our approach enables unseen queries to be
eventually executed 11% faster than FCFS and 22% than
Greedy. These results indicate that query scheduling pol-
icy can adapt to new query templates leading to significant
performance and resource sharing improvements.
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Figure 2: SmartQueue’s effectiveness (buffer hit ratio and query completion rate) with increasing training sets.
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Figure 3: Buffer hit ratio and latency improvement on unseen query templates and increasing training queries.

Overhead. We also measured the training and inference
time. Our proof-of-concept prototype needed 240 mins to
incorporate 950 queries in our agent (so in average the train-
ing overhead is 3.95 mins per query). This time does not
include the execution time of the query. This training over-
head can potentially be optimized by offloading it into an-
other thread, introducing early stopping, or re-using previ-
ous network weights to get a good ”starting point.” There is
no training overhead for FCFS and Greedy. The inference
time of SmartQueue is 3.12seconds while the inference time
for Greedy is 2.52 seconds and 0.0012 seconds for FCFS.

4. RELATED WORK
Prior work on query scheduling have focused on query par-

allelism [40], elastic cloud databases [4, 9, 18, 19, 22, 24, 30],
meeting SLAs [6, 7, 15, 25, 33, 34, 43, 44], or cluster schedul-
ing [20, 36, 39]. In terms of buffer pools and caching, most
prior work has focused on smart cache management [2, 10]
(i.e., assuming the query order is fixed and choose which
blocks to evict or replace), or on (memory) cache-aware al-
gorithms [46]. Here, we take a flipped approach, in which
we assume the buffer management policy is fixed and the
query order may be modified (e.g., batch processing). More
broadly, work on learned indexes follows recent trends in
integrating machine learning components into systems [11],
especially database systems. Machine learning techniques
have also been applied to query optimization [23, 32, 41],
cardinality estimation [14, 31, 45], cost modeling [37], data
integration [8, 28], tuning [42], and security [35].

5. CONCLUSION AND FUTURE WORK

We have presented SmartQueue, a deep reinforcement
learning query scheduler that seeks to maximize buffer hit
rates in database management systems. While simple,
SmartQueue was able to provide substantial improvements
over naive and simple heuristics, suggesting that cache-
aware deep learning powered query schedulers are a promis-
ing research direction. SmartQueue is only an early pro-
totype, and in the future we plan to conduct a full exper-
imental study of SmartQueue. In general, we believe the
following areas of future work are promising.

Neural network architecture. While effective in our ini-
tial experiments, a fully connected neural network is likely
not the correct inductive bias [26] for this problem. A
fully connected neural network is not likely to innately
carry much useful information for query scheduling [21],
nor is there much of an intuitive connection between a
fully-connected architecture and the query scheduling prob-
lem [5]. The first layer of our network learns one linear
combination per neuron of the entire input. These linear
combinations would have to be extremely sparse to learn
features like ”the query reads this block, which is cached.”
Other network architectures – like locally connected neural
networks [16] – may provide significant benefit.

SLAs. Improving raw workload latency is helpful, but of-
ten applications have much more complex performance re-
quirements (e.g., some queries are more important than oth-
ers). Integrating query priorities and customizable Service
Level Agreements (SLAs) into SmartQueue by modifying
the reward signal could result in an buffer-aware and SLA-
compliant scheduler.
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Query optimization. Different query plans may per-
form differently with different buffer states. Integrating
SmartQueue into the query optimizer – so that query plans
can be selected to maximize buffer usage – may provide sig-
nificant performance gains.

Buffer management. SmartQueue only considers query
ordering, and assumes that the buffer management policy is
opaque. A larger system could consider both query ordering
and buffer management, choosing to evict or hold buffered
blocks based on future queries. Such a system could repre-
sent an end-to-end query scheduling and buffer management
policy.
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