
§1 CLWEB INTRODUCTION 1

1. Introduction. This is CLWEB, a literate programming system for Common Lisp by Alex Plotnick
〈plotnick@cs.brandeis.edu〉. It is modeled after the CWEB system by Silvio Levy and Donald E. Knuth,
which was in turn adapted from Knuth’s original WEB system. It shares with those systems not only their
underlying philosophy, but also most of their syntax. Readers unfamiliar with either of them—or with literate
programming in general—should consult the CWEB manual or Knuth’s «Literate Programming» (csli: 1992).

This is a priliminary, β-quality release of the system. To obtain the latest version, please visit
http://www.cs.brandeis.edu/~plotnick/clweb/ .

2. A CLWEB source file consists of a mixture of TEX, Lisp, and WEB control codes, but which is primary
depends on your point of view. The CWEB manual, for instance, says that “[w]riting CWEB programs is
something like writing TEX documents, but with an additional ‘C mode’ that is added to TEX’s horizontal
mode, vertical mode, and math mode.” The same applies, mutatis mutandis, to the current system, but
one might just as easily think of a web as some code with documentation blocks and special control codes
sprinkled throughout, or as a completely separate language containing blocks that happen to have the syntax
(more or less) of TEX and Lisp. For the purposes of understanding the implementation, this last view is
perhaps the most useful, since the control codes determine which syntax to use in reading the material that
follows.

The syntax of the CLWEB control codes themselves is similar to that of dispatching reader macro characters
in Lisp: they all begin with ‘@x’, where x is a single character that selects the control code. Most of the
CLWEB control codes are quite similar to the ones used in CWEB; see the CWEB manual for detailed descriptions
of the individual codes.

3. A literate programming system provides two primary operations: tangling and weaving . The tangler
prepares a literate program, or web, for evaluation by a machine, while the weaver prepares it for typesetting
and subsequent reading by a human. These operations reflect the two uses of a literate program, and the
two audiences by whom it must be read: the computer on the one hand, and the human programmers that
must understand and maintain it on the other.

Our tangler has two main interface functions: tangle-file and load-web. The first is analogous to compile-
file: given a file containing CLWEB source, it produces an output file that can be subsequently loaded into a
Lisp image with load . The function load-web is analogous to load , but also accepts CLWEB source as input
instead of ordinary Lisp source: it loads a web into the Lisp environment.

The weaver has a single entry point: weave takes a web as input and generates a file that can be fed to
TEX to generate a pretty-printed version of that web.

2 INTRODUCTION CLWEB §4

4. We’ll start by setting up a package for the system. In addition to the top-level tangler and weaver
functions mentioned above, there’s also load-sections-from-temp-file, which is conceptually part of the tangler,
but is a special-purpose routine designed to be used in conjunction with an editor such as Emacs to provide
incremental redefinition of sections; the user will generally never need to call it directly. The remainder of
the exported symbols are condition classes for the various errors and warnings that might be signaled while
processing a web.
(provide "CLWEB")

(eval-when (:compile-toplevel :load-toplevel :execute)
#+:sbcl (require ’sb-cltl2))

(defpackage "CLWEB"

(:use "COMMON−LISP"

#+:sbcl ”SB-CLTL2”
#+:allegro ”SYS”)

(:export "TANGLE−FILE"

"LOAD−WEB"

"WEAVE"

"LOAD−SECTIONS−FROM−TEMP−FILE"

"AMBIGUOUS−PREFIX−ERROR"

"SECTION−NAME−CONTEXT−ERROR"

"SECTION−NAME−USE−ERROR"

"SECTION−NAME−DEFINITION−ERROR"

"UNUSED−NAMED−SECTION−WARNING")
(:shadow "ENCLOSE"

#+:allegro ”FUNCTION-INFORMATION”
#+:allegro ”VARIABLE-INFORMATION”))

(in-package "CLWEB")

5. We’ll define our global variables and condition classes as we need them, but we’d like them to appear
near the top of the tangled output.
〈Global variables 12 〉
〈Condition classes 27 〉

6. Here’s a little utility function that we’ll use often. It’s particularly useful for functions that accept a
list desginator.
(defun ensure-list (object)

(if (listp object) object (list object)))

7. And here’s one taken from pcl: mapappend is like mapcar except that the results are appended together.
(defun mapappend (function &rest args)

(if (some #’null args)
()
(append (apply function (mapcar #’car args))

(apply #’mapappend function (mapcar #’cdr args)))))

§8 CLWEB SECTIONS 3

8. Sections. The fundamental unit of a web is the section, which may be either named or unnamed .
Named sections are conceptually very much like parameterless macros, except that they can be defined
piecemeal. The tangler replaces references to a named section with all of the code defined in all of the
sections with that name. (This is where the name ‘tangling’ comes from: code may be broken up and
presented in whatever order suits the expository purposes of the author, but is then spliced back together
into the order that the programming language expects.) Unnamed sections, on the other hand, are evaluated
or written out to a file for compilation in the order in which they appear in the source file.

Every section is assigned a number, which the weaver uses for generating cross-references. The numbers
themselves never appear in the source file: they are generated automatically by the system.

Aside from a name, a section may have a commentary part , optionally followed by a code part. (We don’t
support the ‘middle’ part of a section that WEB and CWEB’s sections have, since the kinds of definitions that
can appear there are essentially irrelevant in Lisp.) The commentary part consists of TEX material that
describes the section; the weaver copies it (nearly) verbatim into the TEX output file, and the tangler ignores
it. The code part contains Lisp forms and named section references; the tangler will eventually evaluate or
compile those forms, while the weaver pretty-prints them to the TEX output file.

Three control codes begin a section: @ , @*, and @t. Most sections will begin with @ : these are ‘regular’
sections, which might be named or unnamed.
(defclass section ()

((name :accessor section-name :initarg :name)
(number :accessor section-number)
(commentary :accessor section-commentary :initarg :commentary)
(code :accessor section-code :initarg :code))

(:default-initargs :name nil :commentary nil :code nil))

9. Sections introduced with @* (‘starred’ sections) begin a new major group of sections, and get some
special formatting during weaving. The control code @* should be immediately followed by a title for this
group, terminated by a period. That title will appear as a run-in heading at the beginning of the section, as
a running head on all subsequent pages until the next starred section, and in the table of contents.

The tangler does not care about the distinction between sections with stars and ones with none upon
thars.
(defclass starred-section (section) ())

10. Sections that begin with @t are test sections. They are used to include test cases alongside the normal
code, but are treated specially by both the tangler and the weaver. The tangler writes them out to a separate
file, and the weaver may elide them entirely.

Test sections are automatically associated with the last non-test section defined, on the assumption that
tests will be defined immediately after the code they’re designed to exercise.
(defclass test-section (section)

((test-for :accessor test-for-section :initform ∗current-section∗)))
(defclass starred-test-section (test-section starred-section) ())

11. There can also be TEX text preceding the start of the first section (i.e., before the first @ or @*),
called limbo text. Limbo text is generally used to define document-specific formatting macros, set up fonts,
&c. The weaver passes it through virtually verbatim to the output file (only replacing occurrences of ‘@@’
with ‘@’), and the tangler ignores it completely.

A single instance of the class limbo-section contains the limbo text in its commentary slot; it will never
have a code part.
(defclass limbo-section (section) ())

4 SECTIONS CLWEB §12

12. Whenever we create a non-test section, we store it in the global ∗sections∗ vector and set its number
to its index therein. This means that section objects won’t be collected by the garbage collector even after
the tangling or weaving has completed, but there’s a good reason: keeping them around allows incremental
redefinition of a web, which is important for interactive development.

We’ll also keep the global variable ∗current-section∗ pointing to the last section (test or not) created.
〈Global variables 12 〉 ≡
(defvar ∗sections∗ (make-array 128 :adjustable t :fill-pointer 0))
(defvar ∗current-section∗ nil)

See also sections 15, 29, 32, 35, 39, 46, 49, 57, 59, 73, 127, 128, 210, 225, and 235.

This code is used in section 5.

13. 〈 Initialize global variables 13 〉 ≡
(setf (fill-pointer ∗sections∗) 0)
(setf ∗current-section∗ nil)

See also sections 16, 30, 211, and 226.

This code is used in sections 118, 121, and 125.

14. Here’s where section numbers are assigned. We use a generic function for push-section so that we can
override it for test sections.
(defgeneric push-section (section))
(defmethod push-section ((section section))

(setf (section-number section) (vector-push-extend section ∗sections∗))
section)

(defmethod initialize-instance :after ((section section) &rest initargs &key)
(declare (ignore initargs))
(setq ∗current-section∗ (push-section section)))

15. Test sections aren’t stored in the ∗sections∗ vector; we keep them separate so that they won’t interfere
with the numbering of the other sections.
〈Global variables 12 〉 +≡
(defvar ∗test-sections∗ (make-array 128 :adjustable t :fill-pointer 0))

16. 〈 Initialize global variables 13 〉 +≡
(setf (fill-pointer ∗test-sections∗) 0)

17.
(defmethod push-section ((section test-section))

(let ((∗sections∗ ∗test-sections∗))
(call-next-method)))

18. The test sections all get woven to a separate output file, and we’ll need a copy of the limbo text there,
too.
(defmethod push-section :after ((section limbo-section))

(vector-push-extend section ∗test-sections∗))

§19 CLWEB SECTIONS 5

19. We keep named sections in a binary search tree whose keys are section names and whose values are
code forms; the tangler will replace references to those names with the associated code. We use a tree instead
of, say, a hash table so that we can support abbreviations (see below).
(defclass binary-search-tree ()

((key :accessor node-key :initarg :key)
(left-child :accessor left-child :initarg :left)
(right-child :accessor right-child :initarg :right))

(:default-initargs :left nil :right nil))

20. The primary interface to the bst is the following routine, which attempts to locate the node with
key item in the tree rooted at root. If it is not already present and the :insert-if-not-found argument is true,
a new node is created with that key and added to the tree. The arguments :predicate and :test should be
designators for functions of two arguments, both of which will be node keys; :predicate should return true
iff its first argument precedes its second in the total ordering used for the tree, and :test should return true
iff the two keys are to be considered equivalent.

Two values are returned: the node with key item (or nil if no such node was found and :insert-if-not-found
is false), and a boolean representing whether or not the node was already in the tree.
(defgeneric find-or-insert (item root &key predicate test insert-if-not-found))

(defmethod find-or-insert (item (root binary-search-tree) &key
(predicate #’<) (test #’eql)
(insert-if-not-found t))

(flet ((lessp (item node) (funcall predicate item (node-key node)))
(samep (item node) (funcall test item (node-key node))))

(do ((parent nil node)
(node root (if (lessp item node)

(left-child node)
(right-child node))))

((or (null node) (samep item node))
(if node

(values node t)
(if insert-if-not-found

〈 Insert a new node with key item and return it 21 〉
(values nil nil)))))))

21. 〈 Insert a new node with key item and return it 21 〉 ≡
(let ((node (make-instance (class-of root) :key item)))

(when parent
(if (lessp item parent)

(setf (left-child parent) node)
(setf (right-child parent) node)))

(values node nil))

This code is used in section 20.

6 SECTIONS CLWEB §22

22. Besides searching, probably the most common operation on a bst is to traverse it in-order, applying
some function to each node.
(defgeneric maptree (function tree))

(defmethod maptree (function (tree (eql nil)))
(declare (ignore function)))

(defmethod maptree (function (tree binary-search-tree))
(maptree function (left-child tree))
(funcall function tree)
(maptree function (right-child tree)))

23. As mentioned above, named sections can be defined piecemeal, with the code spread out over several
sections in the CLWEB source. We might think of a named section as a sort of ‘virtual’ section, which consists
of a name, the combined code parts of all of the physical sections with that name, and the number of the
first such section.

And that’s what we store in the bst: nodes that look like sections, inasmuch as they have specialized
section-name, section-code, and section-number methods, but are not actually instances of the class section.
The commentary and code is stored in the section instances that comprise a given named section: references
to those sections are stored in the sections slot.

The weaver uses the last two slots, used-by and cited-by , to generate cross-references. They will be
populated during reading with lists of all the sections that reference this named section.
(defclass named-section (binary-search-tree)

((key :accessor section-name :initarg :name)
(sections :accessor named-section-sections :initform ’())
(used-by :accessor used-by :initform ’())
(cited-by :accessor cited-by :initform ’())))

(defmethod named-section-sections :around ((section named-section))
(sort (copy-list (call-next-method)) #’< :key #’section-number))

(defmethod section-code ((section named-section))
(mapappend #’section-code (named-section-sections section)))

(defmethod section-number ((section named-section))
(section-number (first (named-section-sections section))))

24. Section names in the input file can be abbreviated by giving a prefix of the full name followed by ‘. . .’:
e.g., @<Frob...@> might refer to the section named ‘Frob foo and tweak bar ’.

Here’s a little utility routine that makes working with such section names easier. Given a name, it returns
two values: true or false depending on whether the name is a prefix or not, and the length of the non-‘...’
segment of the name.
(defun section-name-prefix-p (name)

(let ((len (length name)))
(if (string= name "..." :start1 (max (- len 3) 0) :end1 len)

(values t (- len 3))
(values nil len))))

§25 CLWEB SECTIONS 7

25. Next we need some special comparison routines for section names that might be abbreviations. We’ll
use these as the :test and :predicate functions, respectively, for our bst.
(defun section-name-lessp (name1 name2)

(let ((len1 (nth-value 1 (section-name-prefix-p name1)))
(len2 (nth-value 1 (section-name-prefix-p name2))))

(string-lessp name1 name2 :end1 len1 :end2 len2)))

(defun section-name-equal (name1 name2)
(multiple-value-bind (prefix-1-p len1) (section-name-prefix-p name1)

(multiple-value-bind (prefix-2-p len2) (section-name-prefix-p name2)
(let ((end (min len1 len2)))

(if (or prefix-1-p prefix-2-p)
(string-equal name1 name2 :end1 end :end2 end)
(string-equal name1 name2))))))

26. When we look up a named section, either the name used to perform the lookup, the name for the
section in the tree, or both might be a prefix of the full section name.
(defmethod find-or-insert (item (root named-section) &key

(predicate #’section-name-lessp)
(test #’section-name-equal)
(insert-if-not-found t))

(multiple-value-bind (node present-p)
(call-next-method item root

:predicate predicate
:test test
:insert-if-not-found insert-if-not-found)

(if present-p
(or 〈Check for an ambiguous match, and raise an error in that case 28 〉

(values node t))
(values node nil))))

27. 〈Condition classes 27 〉 ≡
(define-condition ambiguous-prefix-error (error)

((prefix :reader ambiguous-prefix :initarg :prefix)
(first-match :reader ambiguous-prefix-first-match :initarg :first-match)
(alt-match :reader ambiguous-prefix-alt-match :initarg :alt-match))

(:report
(λ (condition stream)

(format stream "~@<Ambiguous prefix: <~A> matches both <~A> and <~A>~:@>"

(ambiguous-prefix condition)
(ambiguous-prefix-first-match condition)
(ambiguous-prefix-alt-match condition)))))

See also sections 38, 99, 112, 123, and 179.

This code is used in section 5.

8 SECTIONS CLWEB §28

28. If there is an ambiguity in a prefix match, the tree ordering guarantees that it will occur in the sub-tree
rooted at node.
〈Check for an ambiguous match, and raise an error in that case 28 〉 ≡
(dolist (child (list (left-child node) (right-child node)))

(when child
(multiple-value-bind (alt present-p)

(call-next-method item child
:predicate predicate
:test test
:insert-if-not-found nil)

(when present-p
(restart-case

(error ’ambiguous-prefix-error
:prefix item
:first-match (node-key node)
:alt-match (node-key alt))

(use-first-match ()
:report "Use the first match."
(return (values node t)))

(use-alt-match ()
:report "Use alternate match."
(return (values alt t))))))))

This code is used in section 26.

29. We store our named section tree in the global variable ∗named-sections∗, which is reset before each
tangling or weaving. The reason this is global is the same as the reason ∗sections∗ was: to allow incremental
redefinition.
〈Global variables 12 〉 +≡
(defvar ∗named-sections∗ nil)

30. 〈 Initialize global variables 13 〉 +≡
(setq ∗named-sections∗ nil)

31. Section names are normalized by squeeze, which trims leading and trailing whitespace and replaces
all runs of one or more whitespace characters with a single space.
(defun whitespacep (char) (find char ∗whitespace∗ :test #’char=))

(defun squeeze (string)
(loop with squeezing = nil

for char across (string-trim ∗whitespace∗ string)
if (not squeezing)

if (whitespacep char)
do (setq squeezing t) and collect #\ into chars

else
collect char into chars

else
unless (whitespacep char)

do (setq squeezing nil) and collect char into chars
finally (return (coerce chars ’string))))

§32 CLWEB SECTIONS 9

32. This list should contain the characters named ‘Space’, ‘Tab’, ‘Newline’, ‘Linefeed’, ‘Page’, and ‘Return’,
in that order. However, ‘Linefeed’ might be the same character as ‘Newline’ or ‘Return’, and so might not
appear as a distinct character. This is a known bug, caused by the fact that we’re not currently overriding
the character name reader.
〈Global variables 12 〉 +≡
(defparameter ∗whitespace∗

#.(coerce ’(#\ #\Tab #\Newline #\Newline #\Page #\Return) ’string))

33. The next routine is our primary interface to named sections: it looks up a section by name in the
tree, and creates a new one if no such section exists.
(defun find-section (name &aux (name (squeeze name)))

(if (null ∗named-sections∗)
(values (setq ∗named-sections∗ (make-instance ’named-section :name name)) nil)
(multiple-value-bind (section present-p)

(find-or-insert name ∗named-sections∗)
(when present-p

〈Update the section name if the new one is better 34 〉)
(values section present-p))))

34. We only actually update the name of a section in two cases: if the new name is not an abbreviation
but the old one was, or if they are both abbreviations but the new one is shorter. (We only need to compare
against the shortest available prefix, since we detect ambiguous matches.)
〈Update the section name if the new one is better 34 〉 ≡
(multiple-value-bind (new-prefix-p new-len)

(section-name-prefix-p name)
(multiple-value-bind (old-prefix-p old-len)

(section-name-prefix-p (section-name section))
(when (or (and old-prefix-p (not new-prefix-p))

(and old-prefix-p new-prefix-p (< new-len old-len)))
(setf (section-name section) name))))

This code is used in section 33.

10 READING CLWEB §35

35. Reading. We distinguish five distinct modes for reading. Limbo mode is used for TEX text that
proceeds the first section in a file. TEX mode is used for reading the commentary that begins a section.
Lisp mode is used for reading the code part of a section; inner-Lisp mode is for reading Lisp forms that are
embedded within TEX material. And finally, restricted mode is used for reading material in section names
and a few other places.

We use separate readtables for each mode, which are stored in ∗readtables∗ and accessed via readtable-for-
mode. We add an extra readtable with key nil that stores a virgin copy of the standard readtable.
〈Global variables 12 〉 +≡
(eval-when (:compile-toplevel :load-toplevel :execute)

(defparameter ∗modes∗ ’(:limbo :tex :lisp :inner-lisp :restricted)))
(deftype mode () ‘(member ,@∗modes∗))
(defvar ∗readtables∗

(loop for mode in (cons nil ∗modes∗)
collect (cons mode (copy-readtable nil))))

36.
(defun readtable-for-mode (mode)

(declare (type (or mode null) mode))
(cdr (assoc mode ∗readtables∗)))

37. The following macro is just a bit of syntactic sugar for executing the given forms with ∗readtable∗
bound appropriately for the given mode.
(defmacro with-mode (mode &body body)

‘(let ((∗readtable∗ (readtable-for-mode ,mode)))
,@body))

38. Sometimes we’ll have to detect and report errors during reading. This condition class and associated
signaling function allow format-style error reporting.
〈Condition classes 27 〉 +≡
(define-condition simple-reader-error (reader-error simple-condition) ()

(:report (λ (condition stream)
(format stream "~S on ~S:~%~?"

condition (stream-error-stream condition)
(simple-condition-format-control condition)
(simple-condition-format-arguments condition)))))

(defun simple-reader-error (stream control &rest args)
(error ’simple-reader-error

:stream stream
:format-control control
:format-arguments args))

39. We frequently need an object to use as the eof-value argument to read . It need not be a symbol; it
need not even be an atom.
〈Global variables 12 〉 +≡
(defvar ∗eof∗ (make-symbol "EOF"))

40.
(defun eof-p (x) (eq x ∗eof∗))
(deftype eof () ’(satisfies eof-p))

§41 CLWEB READING 11

41. We’ll occasionally need to know if a given character terminates a token or not. This function answers
that question, but only approximately—if the user has frobbed the current readtable and set non-standard
characters to whitespace syntax, this routine will not yield the correct result. There’s unfortunately nothing
that we can do about it portably, since there’s no standard way of determining the syntax of a character or
of obtaining a list of all the characters with a given syntax.
(defun token-delimiter-p (char)

(declare (type character char))
(or (whitespacep char)

(multiple-value-bind (function non-terminating-p) (get-macro-character char)
(and function (not non-terminating-p)))))

42. In some of the reading routines we’ll define below, we need to be careful about reader macro functions
that don’t return any values. For example, if the input file contains ‘(#|...|#)’, and we näıvely call read
in the reader macro function for ‘#\(’ , an error will be signaled, since read will skip over the comment and
invoke the reader macro function for ‘#\)’ .

The solution is to peek at the next character in the input stream and manually invoke the associated
reader macro function (if any), returning a list of the values returned by that function. If the next character
is not a macro character, we just call read or read-preserving-whitespace, returning a list containing the single
object so read.
(defun read-maybe-nothing-internal (read stream eof-error-p eof-value recursive-p)

(multiple-value-list
(let∗ ((next-char (peek-char nil stream nil nil recursive-p))

(macro-fun (and next-char (get-macro-character next-char))))
(cond (macro-fun

(read-char stream)
(call-reader-macro-function macro-fun stream next-char))

(t (funcall read stream eof-error-p eof-value recursive-p))))))

(defun read-maybe-nothing (stream &optional (eof-error-p t) eof-value recursive-p)
(read-maybe-nothing-internal #’read stream eof-error-p eof-value recursive-p))

(defun read-maybe-nothing-preserving-whitespace (stream &optional (eof-error-p t) eof-value recursive-p)
(read-maybe-nothing-internal #’read-preserving-whitespace stream eof-error-p eof-value recursive-p))

43. In SBCL, most of the standard reader macro functions assume that they’re being called in an
environment where the global read buffer is bound and initialized. It would be nice if that wasn’t the
case and we could elide the following nonsense.
(defmacro with-read-buffer ((&rest args) &body body)

(declare (ignorable args))
#+:sbcl ‘(sb-impl::with-read-buffer ,args ,@body)
#–:sbcl ‘(progn ,@body))

(defun call-reader-macro-function (fn stream char)
(with-read-buffer ()

(funcall fn stream char)))

12 READING CLWEB §44

44. We want the weaver to output properly indented code, but it’s basically impossible to automatically
indent Common Lisp code without a complete static analysis. And so we don’t try. What we do instead
is assume that the input is indented correctly, and try to approximate that on output; we call this process
indentation tracking .

The way we do this is to record the the column number, or character position, of every Lisp form in the
input, and use those positions to reconstruct the original indentation.

We’ll define a charpos stream as an object that tracks the character position of an underlying stream.
Note that these aren’t instances of stream (and can’t be, without relying on an extension to Common Lisp
like Gray streams). But they contain a standard composite stream we’ll call a proxy stream which is hooked
up to the underlying stream whose position they’re tracking, and it’s these proxy streams that we’ll pass
around, so that the standard stream functions will all work.
(defclass charpos-stream ()

((charpos :initarg :charpos :initform 0)
(proxy-stream :accessor charpos-proxy-stream :initarg :proxy)))

45. The gf charpos returns the current character position of a charpos stream. It relies on the last
calculated character position (stored in the charpos slot) and a buffer that stores the characters input or
output since the last call to charpos, retrieved with get-charpos-stream-buffer . Tabs in the underlying stream
are interpreted as advancing the column number to the next multiple of ∗tab-width∗.
(defgeneric get-charpos-stream-buffer (stream))

(defgeneric charpos (stream))
(defmethod charpos ((stream charpos-stream))

(with-slots (charpos) stream
(loop for char across (get-charpos-stream-buffer stream)

do (case char
(#\Tab (incf charpos (- ∗tab-width∗ (rem charpos ∗tab-width∗))))
(#\Newline (setf charpos 0))
(t (incf charpos)))

finally (return charpos))))

46. 〈Global variables 12 〉 +≡
(defvar ∗tab-width∗ 8)

47. For tracking the character position of an input stream, our proxy stream will be an echo stream that
takes input from the underlying stream and sends its output to a string stream, which we’ll use as our buffer.
(defclass charpos-input-stream (charpos-stream) ())

(defmethod shared-initialize :around ((instance charpos-input-stream) slot-names &rest initargs &key stream)
(apply #’call-next-method instance slot-names

(list∗ :proxy (make-echo-stream
stream
(make-string-output-stream
:element-type (stream-element-type stream)))

initargs)))

(defmethod get-charpos-stream-buffer ((stream charpos-input-stream))
(get-output-stream-string
(echo-stream-output-stream (charpos-proxy-stream stream))))

§48 CLWEB READING 13

48. For the output stream case, our proxy stream is a broadcast stream to the given stream and a fresh
string stream, again used as a buffer.
(defclass charpos-output-stream (charpos-stream) ())

(defmethod shared-initialize :around ((instance charpos-output-stream) slot-names &rest initargs &key stream)
(apply #’call-next-method instance slot-names

(list∗ :proxy (make-broadcast-stream
(make-string-output-stream
:element-type (stream-element-type stream))

stream)
initargs)))

(defmethod get-charpos-stream-buffer ((stream charpos-output-stream))
(get-output-stream-string
(first (broadcast-stream-streams (charpos-proxy-stream stream)))))

49. Because we’ll be passing around the proxy streams, we need to manually maintain a mapping between
them and their associated instances of charpos-stream.
〈Global variables 12 〉 +≡
(defvar ∗charpos-streams∗ (make-hash-table :test #’eq))

50.
(defmethod initialize-instance :after ((instance charpos-stream) &rest initargs &key)

(declare (ignore initargs))
(setf (gethash (charpos-proxy-stream instance) ∗charpos-streams∗) instance))

51. The top-level interface to the charpos streams are the following two functions: stream-charpos retrieves
the character position of the stream for which stream is a proxy, and release-charpos-stream deletes the
reference to the stream maintained by the associated charpos-stream instance.
(defun stream-charpos (stream)

(charpos (or (gethash stream ∗charpos-streams∗)
(error "Not tracking charpos for ~S" stream))))

(defun release-charpos-stream (stream)
(multiple-value-bind (charpos-stream present-p)

(gethash stream ∗charpos-streams∗)
(cond (present-p

(setf (charpos-proxy-stream charpos-stream) nil) ; release stream
(remhash stream ∗charpos-streams∗))

(t (warn "Not tracking charpos for ~S" stream)))))

14 READING CLWEB §52

52. Here are a few convenience methods for creating charpos streams. The input-stream and output-stream
arguments are stream designators.
(defun make-charpos-input-stream (input-stream &key (charpos 0))

(make-instance ’charpos-input-stream
:stream (case input-stream

((t) ∗terminal-io∗)
((nil) ∗standard-input∗)
(otherwise input-stream))

:charpos charpos))

(defun make-charpos-output-stream (output-stream &key (charpos 0))
(make-instance ’charpos-output-stream

:stream (case output-stream
((t) ∗terminal-io∗)
((nil) ∗standard-output∗)
(otherwise output-stream))

:charpos charpos))

53. And finally, here are a couple of macros that make using them easy and trouble-free. They execute
body in a lexical environment in which var is bound to a proxy stream the tracks the character position for
stream.
(defmacro with-charpos-input-stream ((var stream &key (charpos 0)) &body body)

‘(let ((,var (charpos-proxy-stream (make-charpos-input-stream ,stream :charpos ,charpos))))
(unwind-protect (progn ,@body)

(release-charpos-stream ,var))))

(defmacro with-charpos-output-stream ((var stream &key (charpos 0)) &body body)
‘(let ((,var (charpos-proxy-stream (make-charpos-output-stream ,stream :charpos ,charpos))))

(unwind-protect (progn ,@body)
(release-charpos-stream ,var))))

54. Sometimes we’ll want to look more than one character ahead in a stream. This macro lets us do so,
after a fashion: it executes body in a lexical environment where var is bound to a stream whose input comes
from stream and rewind is a local function that ‘rewinds’ that stream to its state prior to any reads executed
in the body.
(defmacro with-rewind-stream ((var stream &optional (rewind ’rewind))

&body body &aux (out (gensym)))
‘(with-open-stream (,out (make-string-output-stream))

(with-open-stream (,var (make-echo-stream ,stream ,out))
(flet ((,rewind ()

(setq ,var (make-concatenated-stream
(make-string-input-stream (get-output-stream-string ,out))
,var))))

,@body))))

§55 CLWEB READING 15

55. And sometimes, we’ll want to call read on a stream, and keep a copy of the characters that read
actually scans. This macro reads from stream, then executes the body forms with object bound to the object
returned by read and echoed bound to a variable containing the characters so consumed. If prefix is supplied,
it should be a string that will be concatenated onto the front of stream prior to reading.
(defmacro read-with-echo ((stream object echoed &key prefix) &body body &aux

(out (gensym)) (echo (gensym)) (rewind (gensym))
(raw-output (gensym)) (length (gensym)))

‘(with-open-stream (,out (make-string-output-stream))
(with-open-stream (,echo (make-echo-stream ,stream ,out))

(with-open-stream (,rewind (make-concatenated-stream
,@(when prefix

‘((make-string-input-stream ,prefix)))
,echo))

(let∗ ((,object (read-preserving-whitespace ,rewind))
(,raw-output (get-output-stream-string ,out))
(,length (length ,raw-output))
(,echoed (subseq ,raw-output

0
(if (or (eof-p (peek-char nil ,rewind nil ∗eof∗))

(token-delimiter-p (elt ,raw-output (1- ,length))))
,length
(1- ,length)))))

(declare (ignorable ,object ,echoed))
,@body)))))

56. Next, we define a class of objects called markers that denote abstract objects in source code. Some
of these objects, such as newlines and comments, are ones that would ordinarily be ignored by the reader.
Others, such as () and ’, are indistinguishable after reading from other, semantically equivalent objects
(here, nil and quote), but we want to preserve the distinction in the output. In fact, nearly every standard
macro character in Common Lisp is ‘lossy’, in the sense that the text of the original source code can not be
reliably recovered from the object returned by read .

But during weaving, we want to more closely approximate the original source code than would be possible
using the standard reader. Markers are our solution to this problem: we define reader macro functions for all
of the standard macro characters that return markers that let us reconstruct, to varying degrees of accuracy,
what was originally given in the source.

If a marker is bound—i.e., if marker-boundp returns non-nil when called with it as an argument—then the
tangler will call marker-value to obtain the associated value. (The weaver will never ask for a marker’s value).
Otherwise, the marker will be silently dropped from its containing form; this is used, e.g., for newlines and
comments. The value need not be stored in the value slot, but often is.
(defclass marker ()

((value :reader marker-value :initarg :value)))
(defun markerp (x) (typep x ’marker))

(defgeneric marker-boundp (marker))
(defmethod marker-boundp ((marker marker))

(slot-boundp marker ’value))

16 READING CLWEB §57

57. We’ll provide print-object methods for all of our marker classes. These methods are distinct from the
pretty-printing routines used by the weaver, and usually less precise, in that they don’t try to approximate
the original source form. The idea of these methods is to produce a printed representation of an object that
is semantically equivalent to the one originally specified.

We’ll also define also a global variable, ∗print-marker∗, that controls the way markers are printed. If it is
true (as it is by default), then markers will be printed as just described. If it is false, markers are printed
using the unreadable ‘#<’ notation. This can be useful for debugging some of the reader routines, but might
break others, so be careful. Routines that depend on this being set should explicitly bind it.
〈Global variables 12 〉 +≡
(defvar ∗print-marker∗ t)

58. The simple method defined here suffices for many marker types: it simply prints the marker’s value
if it is bound. Markers that require specialized printing will override this method.
(defmethod print-object ((obj marker) stream)

(if ∗print-marker∗
(when (marker-boundp obj)

(write (marker-value obj) :stream stream))
(print-unreadable-object (obj stream :type t :identity t)

(when (marker-boundp obj)
(princ (marker-value obj) stream)))))

59. A few of the markers behave differently when tangling for the purposes of evaluation (e.g., within a
call to load-web) than when writing out a tangled Lisp source file. We need this distinction only for read-time
evaluated constructs, such as #. and #+/#−.
〈Global variables 12 〉 +≡
(defvar ∗evaluating∗ nil)

60. Our first marker is for newlines, which we preserve for the purposes of indentation. They are
represented in code forms by an unbound marker, so the tangler will ignore them.

Note that we don’t set a macro character for #\Newline in inner-Lisp mode, since indentation is completely
ignored there.
(defclass newline-marker (marker)

((indentation :accessor indentation :initform nil)))
(defun newlinep (obj) (typep obj ’newline-marker))

(set-macro-character #\Newline
(λ (stream char)

(declare (ignore stream char))
(make-instance ’newline-marker))

nil (readtable-for-mode :lisp))

61. The rest of the reader macro functions for standard macro characters are defined in the order given
in section 2.4 of the ansi Common Lisp standard. We override all of the standard macro characters except
#\) and #\" (the former because the standard reader macro function just signals an error, which is fine,
and the latter because we don’t need markers for strings).

§62 CLWEB READING 17

62. Left-Parenthesis. We have two different kinds of markers for lists. The first is one for empty lists, so
that we can maintain a distinction that the standard Lisp reader does not: between the empty list and nil .
The second, for non-empty lists, stores not just the elements of the list, but their character positions as well;
this is what allows us to do our indentation tracking.

Note that we bind our empty-list marker to the value ’() so that it’s preserved during tangling.
(defclass empty-list-marker (marker) () (:default-initargs :value ’()))
(defvar ∗empty-list∗ (make-instance ’empty-list-marker))

(defclass list-marker (marker)
((length :accessor list-marker-length :initarg :length)
(list :accessor list-marker-list :initarg :list)
(charpos :accessor list-marker-charpos :initarg :charpos)))

(defun list-marker-p (obj) (typep obj ’list-marker))

(defclass consing-dot-marker (marker) ())
(defvar ∗consing-dot∗ (make-instance ’consing-dot-marker))

(defmethod marker-boundp ((marker list-marker)) t)
(defmethod marker-value ((marker list-marker))

(do∗ ((list (list nil))
(tail list)
(marker-list (list-marker-list marker) (cdr marker-list))
(x (car marker-list) (car marker-list)))

((endp marker-list) (cdr list))
(cond ((eq x ∗consing-dot∗)

(rplacd tail 〈Find the tail of the list marker 63 〉)
(return (cdr list)))

((markerp x)
(when (marker-boundp x)

(let ((obj (list x)))
(rplacd tail obj)
(setq tail obj))))

(t (let ((obj (list x)))
(rplacd tail obj)
(setq tail obj))))))

63. There might be more than one object in a list marker following a consing dot, because of unbound
markers (e.g., newlines and comments). So we just use the first bound marker or non-marker object that we
find.
〈Find the tail of the list marker 63 〉 ≡
(dolist (x marker-list (error "Nothing after . in list"))

(when (or (not (markerp x))
(and (markerp x)

(marker-boundp x)))
(return x)))

This code is used in section 62.

18 READING CLWEB §64

64. We don’t use list-markers at all in inner-Lisp mode (since we don’t do indentation tracking there), but
we still want markers for the empty list. The function make-list-reader returns a closure that peeks ahead in
the given stream looking for a closing parenthesis, and either returns an empty-list marker or invokes a full
list-reading function, which is stored in the variable next. For inner-Lisp mode, that function is the standard
reader macro function for ‘#\(’ .
(defun make-list-reader (next)

(λ (stream char)
(if (char= (peek-char t stream t nil t) #\))

(progn (read-char stream t nil t) ∗empty-list∗)
(funcall next stream char))))

(set-macro-character #\((make-list-reader (get-macro-character #\(nil))
nil (readtable-for-mode :inner-lisp))

65. In Lisp mode, we need a full list reader that records character positions of the list elements. This
would be almost straightforward if not for the consing dot.
(defun list-reader (stream char)

(declare (ignore char))
(loop with list = ’()

with charpos-list = ’()
for n upfrom 0
and next-char = (peek-char t stream t nil t)
as charpos = (stream-charpos stream)
until (char= #\) next-char)
if (char= #\. next-char)

do 〈Read the next token from stream, which might be a consing dot 66 〉
else

do 〈Read the next object from stream and push it onto list 67 〉
finally (read-char stream t nil t)

(return (make-instance ’list-marker
:length n
:list (nreverse list)
:charpos (nreverse charpos-list)))))

(set-macro-character #\((make-list-reader #’list-reader)
nil (readtable-for-mode :lisp))

66. If the next character is a dot, it could either be a consing dot, or the beginning of a token that happens
to start with a dot. We decide by looking at the character after the dot: if it’s a delimiter, then it was a
consing dot; otherwise, we rewind and carefully read in the next object.
〈Read the next token from stream, which might be a consing dot 66 〉 ≡
(with-rewind-stream (stream stream)

(read-char stream t nil t) ; consume dot
(let ((following-char (read-char stream t nil t)))

(cond ((token-delimiter-p following-char)
(unless (or list ∗read-suppress∗)

(simple-reader-error stream "Nothing appears before . in list."))
(push ∗consing-dot∗ list)
(push charpos charpos-list))

(t (rewind)
〈Read the next object from stream and push it onto list 67 〉))))

This code is used in section 65.

§67 CLWEB READING 19

67. We have to be careful when reading in a list, because the next character might be a macro character
whose associated reader macro function returns zero values, and we don’t want to accidentally read the
closing ‘#\)’ .
〈Read the next object from stream and push it onto list 67 〉 ≡
(let ((values (read-maybe-nothing stream t nil t)))

(when values
(push (car values) list)
(push charpos charpos-list)))

This code is used in sections 65 and 66.

68. Single-Quote. We want to distinguish between a form quoted with a single-quote and one quoted (for
whatever reason) with quote, another distinction ignored by the standard Lisp reader. We’ll use this marker
class for #’, too, which is why it’s a little more general than one might think is needed.
(defclass quote-marker (marker)

((quote :reader quote-marker-quote :initarg :quote)
(form :reader quoted-form :initarg :form)))

(defmethod marker-boundp ((marker quote-marker)) t)
(defmethod marker-value ((marker quote-marker))

(list (quote-marker-quote marker) (quoted-form marker)))

(defun single-quote-reader (stream char)
(declare (ignore char))
(make-instance ’quote-marker :quote ’quote :form (read stream t nil t)))

(dolist (mode ’(:lisp :inner-lisp))
(set-macro-character #\’ #’single-quote-reader nil (readtable-for-mode mode)))

69. Semicolon. Comments in Lisp code also need to be preserved for output during weaving. Comment
markers are always unbound, and are therefore stripped during tangling.
(defclass comment-marker (marker)

((text :reader comment-text :initarg :text)))

70. To read a comment, we accumulate all of the characters starting with the semicolon and ending just
before the next newline, which we leave for the newline reader to pick up. If the comment is empty, though,
the newline is consumed, and we return zero values. This provides for ‘soft newlines’; i.e., line breaks in the
source file that will not appear in the woven output.
(defun comment-reader (stream char)

(if (char= (peek-char nil stream nil #\Newline t) #\Newline)
(progn (read-char stream t nil t) (values))
(make-instance ’comment-marker

:text 〈Read characters up to, but not including, the next newline 71 〉)))
(set-macro-character #\; #’comment-reader nil (readtable-for-mode :lisp))

71. 〈Read characters up to, but not including, the next newline 71 〉 ≡
(with-output-to-string (s)

(write-char char s) ; include the opening #\;
(do ()

((char= (peek-char nil stream nil #\Newline t) #\Newline))
(write-char (read-char stream t nil t) s)))

This code is used in section 70.

20 READING CLWEB §72

72. Backquote is hairy, and so we use a kludge to avoid implementing the whole thing. Our reader
macro functions for #\‘ and #\, do the absolute minimum amount of processing necessary to be able to
reconstruct the forms that were read. When the tangler asks for the marker-value of a backquote marker, we
reconstruct the source form using the printer, then read it back in. The read is done using inner-Lisp mode
so that we can pick up named section references, and we’ll bind the global variable ∗re-reading∗ to true to
avoid infinite regress.

Of course, this trick assumes read-print equivalence, but that’s not unreasonable, since without it the file
tangler won’t work anyway. It’s also the reason we need print-object methods for all the markers.
(defclass backquote-marker (marker)

((form :reader backq-form :initarg :form)))

(defmethod marker-boundp ((marker backquote-marker)) t)
(defmethod marker-value ((marker backquote-marker))

(let ((∗print-pretty∗ nil)
(∗print-readably∗ t)
(∗print-marker∗ t)
(∗readtable∗ (readtable-for-mode :inner-lisp))
(∗re-reading∗ t))

(values (read-from-string (prin1-to-string marker)))))

(defmethod print-object ((obj backquote-marker) stream)
(if ∗print-marker∗

(format stream "‘~W" (backq-form obj))
(print-unreadable-object (obj stream :type t :identity t))))

(defun backquote-reader (stream char)
(if ∗re-reading∗

(funcall (get-macro-character char (readtable-for-mode nil)) stream char)
(make-instance ’backquote-marker :form (read stream t nil t))))

(dolist (mode ’(:lisp :inner-lisp))
(set-macro-character #\‘ #’backquote-reader nil (readtable-for-mode mode)))

73. 〈Global variables 12 〉 +≡
(defvar ∗re-reading∗ nil)

74. In order to support named section references in backquoted forms, we need to be able to print them
readably. The simple and obvious method works fine, since ‘readably’ here means readable in inner-Lisp
mode.
(defmethod print-object ((obj named-section) stream)

(format stream "@<~A@>" (section-name obj)))

§75 CLWEB READING 21

75. Comma is really just part of the backquote-syntax, and so we’re after the same goal as above:
reconstructing just enough of the original source so that the reader can do what it would have done had we
not been here in the first place.

Note that comma markers are bound, but self-evaluating: they need to be printed and re-read as part of
a backquote form to retrieve their actual value.
(defclass comma-marker (marker)

((form :reader comma-form :initarg :form)
(modifier :reader comma-modifier :initarg :modifier))

(:default-initargs :modifier nil))

(defmethod marker-boundp ((marker comma-marker)) t)
(defmethod marker-value ((marker comma-marker)) marker)

(defmethod print-object ((obj comma-marker) stream)
(if ∗print-marker∗

(format stream ",~@[~C~]~W" (comma-modifier obj) (comma-form obj))
(print-unreadable-object (obj stream :type t :identity t))))

(defun comma-reader (stream char)
(if ∗re-reading∗

(funcall (get-macro-character char (readtable-for-mode nil)) stream char)
(case (peek-char nil stream t nil t)

((#\@ #\.) (make-instance ’comma-marker
:modifier (read-char stream)
:form (read stream t nil t)))

(t (make-instance ’comma-marker :form (read stream t nil t))))))

(dolist (mode ’(:lisp :inner-lisp))
(set-macro-character #\, #’comma-reader nil (readtable-for-mode mode)))

76. Allegro Common Lisp’s pretty printer tries to be clever about certain forms, like defun and cond ,
which might have a list as their cadr . However, it fails to notice when such a list is one constructed by their
reader for a comma. It therefore doesn’t print such lists using the comma syntax, yielding forms that can’t
be read in other Lisps. The following pretty printing routines work around this problem.
(defun pprint-list (stream list)

(format stream "~:@<~/pprint−fill/~:>" list))

(defun pprint-comma (stream list)
(format stream "~[,~;,@~;,.~]~W"

(position (car list)
#+:allegro ’(excl::bq-comma excl::bq-comma-atsign excl::bq-comma-dot)
#–:allegro ’(:comma :comma-atsign :comma-dot))

(cadr list)))

#+:allegro (deftype comma () ’(member excl::bq-comma excl::bq-comma-atsign excl::bq-comma-dot))
#+:allegro (deftype broken-pprint-operators () ’(member defun defmacro macrolet cond))
#+:allegro (set-pprint-dispatch ’(cons comma) #’pprint-comma)
#+:allegro (set-pprint-dispatch ’(cons broken-pprint-operators) #’pprint-list)

77. Sharpsign is the all-purpose dumping ground for Common Lisp reader macros. Because it’s a
dispatching macro character, we have to handle each sub-char individually, and unfortunately we need
to override most of them. We’ll handle them in the order given in section 2.4.8 of the CL standard.

22 READING CLWEB §78

78. Sharpsign single-quote is just like single-quote, except that the form is ‘quoted’ with function instead
of quote.
(defclass function-marker (quote-marker) ())

(defun sharpsign-quote-reader (stream sub-char arg)
(declare (ignore sub-char arg))
(make-instance ’function-marker :quote ’function :form (read stream t nil t)))

(dolist (mode ’(:lisp :inner-lisp))
(set-dispatch-macro-character #\# #\’ #’sharpsign-quote-reader (readtable-for-mode mode)))

79. Sharpsign left-parenthesis creates simple-vectors. The feature that we care about preserving is the
length specification and consequent possible abbreviation.
(defclass simple-vector-marker (marker)

((length :initarg :length)
(elements :initarg :elements)
(element-type :initarg :element-type))

(:default-initargs :element-type t))

(defmethod marker-boundp ((marker simple-vector-marker)) t)
(defmethod marker-value ((marker simple-vector-marker))

(with-slots (elements element-type) marker
(if (slot-boundp marker ’length)

(with-slots (length) marker
(let ((supplied-length (length elements)))

(fill (replace (make-array length :element-type element-type) elements)
(elt elements (1- supplied-length))
:start supplied-length)))

(coerce elements ‘(vector ,element-type)))))

;; Adapted from SBCL’s sharp-left-paren.
(defun simple-vector-reader (stream sub-char arg)

(declare (ignore sub-char))
(let∗ ((list (read-delimited-list #\) stream t))

(length (handler-case (length list)
(type-error (error)

(declare (ignore error))
(simple-reader-error stream "improper list in #(): ~S" list)))))

(unless ∗read-suppress∗
(if arg

(if (> length arg)
(simple-reader-error stream "vector longer than specified length: #~S~S" arg list)
(make-instance ’simple-vector-marker :length arg :elements list))

(make-instance ’simple-vector-marker :elements list)))))

(dolist (mode ’(:lisp :inner-lisp))
(set-dispatch-macro-character #\# #\(#’simple-vector-reader (readtable-for-mode mode)))

§80 CLWEB READING 23

80. Sharpsign asterisk is similar, but the token following the asterisk must be composed entirely of 0s and
1s, from which a simple-bit-vector is constructed. It supports the same kind of abbreviation that #() does.

Note the use of the word ‘token’ above. By defining #* in terms of the token following the *, the authors
of the standard have made it very, very difficult for a portable program to emulate the specified behavior,
since only the built-in reader knows how to tokenize for the current readtable. What we do is resort to a
dirty trick: we set up an echo stream, use the standard reader to parse the bit vector, then build our marker
from the echoed characters.
(defclass bit-vector-marker (simple-vector-marker) ()

(:default-initargs :element-type ’bit))

(defun simple-bit-vector-reader (stream sub-char arg)
(declare (ignore sub-char))
(let ((∗readtable∗ (readtable-for-mode nil)))

(read-with-echo (stream vector bits :prefix (format nil "#~@[~D~]*" arg))
(apply #’make-instance ’bit-vector-marker

:elements 〈Build a bit vector from the characters in bits 81 〉
(if arg (list :length arg))))))

(dolist (mode ’(:lisp :inner-lisp))
(set-dispatch-macro-character #\# #\∗ #’simple-bit-vector-reader (readtable-for-mode mode)))

81. The string bits now contains the ‘0’ and ‘1’ characters that make up the bit vector. But it might also
contain the delimiter that terminates the token, so we have to be careful.
〈Build a bit vector from the characters in bits 81 〉 ≡
(map ’bit-vector

(λ (c) (ecase c (#\0 0) (#\1 1)))
(subseq bits 0 (let ((n (length bits)))

(case (elt bits (1- n)) ((#\0 #\1) n) (t (1- n))))))

This code is used in section 80.

24 READING CLWEB §82

82. Sharpsign dot permits read-time evaluation. Ordinarily, of course, the form evaluated is lost, as only
the result of the evaluation is returned. We want to preserve the form for both weaving and tangling to a
file. But we also want to return the evaluated form as the marker-value when we’re tangling for evaluation.
So if we’re not evaluating, we return a special ‘pseudo-marker’ with a specialized print-object method. This
gives us an appropriate value in all three situations: during weaving, we have just another marker; when
tangling for evaluation, we get the read-time-evaluated value; and in a tangled source file, we get a #. form.
(defclass read-time-eval ()

((form :reader read-time-eval-form :initarg :form)))

(defmethod print-object ((obj read-time-eval) stream)
(if ∗print-marker∗

(format stream "#.~W" (read-time-eval-form obj))
(print-unreadable-object (obj stream :type t :identity t))))

(defclass read-time-eval-marker (read-time-eval marker) ())

(defmethod marker-boundp ((marker read-time-eval-marker)) t)
(defmethod marker-value ((marker read-time-eval-marker))

(if ∗evaluating∗
(call-next-method)
(make-instance ’read-time-eval :form (read-time-eval-form marker))))

(defun sharpsign-dot-reader (stream sub-char arg)
(declare (ignore sub-char arg))
(let∗ ((∗readtable∗ (if ∗evaluating∗ (readtable-for-mode nil) ∗readtable∗))

(form (read stream t nil t)))
(unless ∗read-suppress∗

(unless ∗read-eval∗
(simple-reader-error stream "can’t read #. while *READ−EVAL* is NIL"))

(make-instance ’read-time-eval-marker :form form :value (eval form)))))

(dolist (mode ’(:lisp :inner-lisp))
(set-dispatch-macro-character #\# #\. #’sharpsign-dot-reader (readtable-for-mode mode)))

83. Sharpsign B, O, X, and R all represent rational numbers in a specific radix, but the radix is discarded
by the standard reader, which just returns the number. We use the standard reader macro function for
getting the actual value, and store the radix in our marker.
(defclass radix-marker (marker)

((base :reader radix-marker-base :initarg :base)))

(defparameter ∗radix-prefix-alist∗ ’((#\B . 2) (#\O . 8) (#\X . 16) (#\R . nil)))

(defun radix-reader (stream sub-char arg)
(make-instance ’radix-marker

:base (or (cdr (assoc (char-upcase sub-char) ∗radix-prefix-alist∗)) arg)
:value 〈Call the standard reader macro function for #〈sub-char〉 84 〉))

(dolist (mode ’(:lisp :inner-lisp))
(dolist (sub-char ’(#\B #\b #\O #\o #\X #\x #\R #\r))

(set-dispatch-macro-character #\# sub-char #’radix-reader (readtable-for-mode mode))))

84. 〈Call the standard reader macro function for #〈sub-char〉 84 〉 ≡
(funcall (get-dispatch-macro-character #\# sub-char (readtable-for-mode nil))

stream sub-char arg)

This code is used in section 83.

§85 CLWEB READING 25

85. Sharpsign S requires determining the standard constructor function of the structure type named,
which we simply can’t do portably. So we use the same trick we used for backquote above: we cache the
form as given, then dump it out to a string and let the standard reader parse it when we need the value.
(defclass structure-marker (marker)

((form :reader structure-marker-form :initarg :form)))

(defmethod marker-boundp ((marker structure-marker)) t)
(defmethod marker-value ((marker structure-marker))

(let ((∗print-pretty∗ nil)
(∗print-readably∗ t)
(∗print-marker∗ t)
(∗readtable∗ (readtable-for-mode nil)))

(values (read-from-string (prin1-to-string marker)))))

(defmethod print-object ((obj structure-marker) stream)
(if ∗print-marker∗

(format stream "#S~W" (structure-marker-form obj))
(print-unreadable-object (obj stream :type t :identity t))))

(defun structure-reader (stream sub-char arg)
(declare (ignore sub-char arg))
(make-instance ’structure-marker :form (read stream t nil t)))

(dolist (mode ’(:lisp :inner-lisp))
(set-dispatch-macro-character #\# #\S #’structure-reader (readtable-for-mode mode)))

86. Sharpsign + and – provide read-time conditionalization based on feature expressions, described in
section 24.1.2 of the CL standard. This routine, adapted from SBCL, interprets such an expression.
(defun featurep (x)

(etypecase x
(cons
(case (car x)

((:not not)
(cond

((cddr x) (error "too many subexpressions in feature expression: ~S" x))
((null (cdr x)) (error "too few subexpressions in feature expression: ~S" x))
(t (not (featurep (cadr x))))))

((:and and) (every #’featurep (cdr x)))
((:or or) (some #’featurep (cdr x)))
(t
(error "unknown operator in feature expression: ~S." x))))

(symbol (not (null (member x ∗features∗ :test #’eq))))))

26 READING CLWEB §87

87. For sharpsign +/–, we use the same sort of trick we used for #. above: we have a marker that returns
the appropriate value when tangling for evaluation, but returns a ‘pseudo-marker’ when tangling to a file,
so that we can preserve the original form.

This case is slightly trickier, though, because we can’t just call read on the form, since if the the test fails,
∗read-suppress∗ will be true, and we won’t get anything back. So we use an echo stream to catch the raw
characters that the reader scans, and use that to reconstruct the form.
(defclass read-time-conditional ()

((plusp :reader read-time-conditional-plusp :initarg :plusp)
(test :reader read-time-conditional-test :initarg :test)
(form :reader read-time-conditional-form :initarg :form)))

(defmethod print-object ((obj read-time-conditional) stream)
(if ∗print-marker∗

(format stream "#~:[−~;+~]~S ~A"
(read-time-conditional-plusp obj)
(read-time-conditional-test obj)
(read-time-conditional-form obj))

(print-unreadable-object (obj stream :type t :identity t))))

(defclass read-time-conditional-marker (read-time-conditional marker) ())

(defmethod marker-boundp ((marker read-time-conditional-marker))
(if ∗evaluating∗

(call-next-method)
t))

(defmethod marker-value ((marker read-time-conditional-marker))
(if ∗evaluating∗

(call-next-method)
(make-instance ’read-time-conditional

:plusp (read-time-conditional-plusp marker)
:test (read-time-conditional-test marker)
:form (read-time-conditional-form marker))))

(defun read-time-conditional-reader (stream sub-char arg)
(declare (ignore arg))
(let∗ ((plusp (ecase sub-char (#\+ t) (#\− nil)))

(∗readtable∗ (readtable-for-mode nil))
(test (let ((∗package∗ (find-package "KEYWORD"))

(∗read-suppress∗ nil))
(read stream t nil t)))

(∗read-suppress∗ (if plusp (not (featurep test)) (featurep test))))
(peek-char t stream t nil t)
(read-with-echo (stream value form)

(apply #’make-instance ’read-time-conditional-marker
:plusp plusp :test test :form form
(and (not ∗read-suppress∗) (list :value value))))))

(dolist (mode ’(:lisp :inner-lisp))
(set-dispatch-macro-character #\# #\+ #’read-time-conditional-reader (readtable-for-mode mode))
(set-dispatch-macro-character #\# #\− #’read-time-conditional-reader (readtable-for-mode mode)))

§88 CLWEB READING 27

88. So much for the standard macro characters. Now we’re ready to move on to WEB-specific reading. We
accumulate TEX mode material such as commentary, section names, &c. using the following function, which
reads from stream until encountering either EOF or an element of the control-chars argument, which should
be a designator for a list of characters.
(defun snarf-until-control-char (stream control-chars &aux (control-chars (ensure-list control-chars)))

(with-output-to-string (string)
(loop for char = (peek-char nil stream nil ∗eof∗ nil)

until (or (eof-p char) (member char control-chars))
do (write-char (read-char stream) string))))

89. In TEX mode (including restricted contexts), we allow embedded Lisp code to be surrounded by |...|,
where it is read in inner-Lisp mode.
(defun read-inner-lisp (stream char)

(with-mode :inner-lisp
(read-delimited-list char stream)))

(dolist (mode ’(:tex :restricted))
(set-macro-character #\| #’read-inner-lisp nil (readtable-for-mode mode)))

90. The call to read-delimited-list in read-inner-lisp will only stop at the closing | if we make it a terminating
macro character, overriding its usual Lisp meaning as an escape character.
(set-macro-character #\| (get-macro-character #\) nil) nil (readtable-for-mode :inner-lisp))

91. We make #\@ a non-terminating dispatching macro character in every mode, and define some
convenience routines for retrieving and setting the reader macro functions that implement the control codes.
(dolist (mode ∗modes∗)

;; The CL standard does not say that calling make-dispatch-macro-character
;; on a character that’s already a dispatching macro character is supposed
;; to signal an error, but SBCL does so anyway; hence the ignore-errors.
(ignore-errors

(make-dispatch-macro-character #\@ t (readtable-for-mode mode))))

(defun get-control-code (sub-char mode)
(get-dispatch-macro-character #\@ sub-char (readtable-for-mode mode)))

(defun set-control-code (sub-char function &optional (modes ∗modes∗))
(dolist (mode (ensure-list modes))

(set-dispatch-macro-character #\@ sub-char function (readtable-for-mode mode))))

92. The control code @@ yields the string "@" in all modes, but it should really only be used in TEX text.
(set-control-code #\@ (λ (stream sub-char arg)

(declare (ignore sub-char stream arg))
(string "@")))

28 READING CLWEB §93

93. Non-test sections are introduced by @ or @*, which differ only in the way they are output during weav-
ing. The reader macro functions that implement these control codes return an instance of the appropriate
section class.
(defun start-section-reader (stream sub-char arg)

(declare (ignore stream arg))
(make-instance (ecase sub-char

(#\ ’section)
(#\∗ ’starred-section))))

(dolist (sub-char ’(#\ #\∗))
(set-control-code sub-char #’start-section-reader ’(:limbo :tex :lisp)))

94. Test sections are handled similarly, but are introduced with @t. Test sections may also be ‘starred’.
Immediately following whitespace is ignored.
(defun start-test-section-reader (stream sub-char arg)

(declare (ignore sub-char arg))
(prog1 (if (and (char= (peek-char t stream t nil t) #\∗)

(read-char stream t nil t))
(make-instance ’starred-test-section)
(make-instance ’test-section))

(loop until (char/= (peek-char t stream t nil t) #\Newline)
do (read-char stream t nil t))))

(set-control-code #\t #’start-test-section-reader ’(:limbo :tex :lisp))

95. The control codes @l and @p (where ‘l’ is for ‘Lisp’ and ‘p’ is for ‘program’—both control codes do
the same thing) begin the code part of an unnamed section. They are valid only in TEX mode; every section
must begin with a commentary, even if it is empty. We set the control codes in Lisp mode only for error
detection.
(defclass start-code-marker (marker)

((name :reader section-name :initarg :name))
(:default-initargs :name nil))

(defun start-code-reader (stream sub-char arg)
(declare (ignore stream sub-char arg))
(make-instance ’start-code-marker))

(dolist (sub-char ’(#\l #\p))
(set-control-code sub-char #’start-code-reader ’(:tex :lisp)))

96. The control code @e (‘e’ for ‘eval’) indicates that the following form should be evaluated by the section
reader, in addition to being tangled into the output file. Evaluated forms should be used only for establishing
state that is needed by the reader: package definitions, structure definitions that are used with #S, &c.
(defclass evaluated-form-marker (marker) ())

(defun read-evaluated-form (stream sub-char arg)
(declare (ignore sub-char arg))
(loop for form = (read stream t nil t)

until (not (newlinep form)) ; skip over newlines
finally (return (make-instance ’evaluated-form-marker :value form))))

(set-control-code #\e #’read-evaluated-form :lisp)

§97 CLWEB READING 29

97. Several control codes, including @<, contain ‘restricted’ TEX text, called control text, that extends to
the next @>. When we first read control text, we ignore inner-Lisp material (that is, Lisp forms surrounded
by |...|). During weaving, we’ll re-scan it to pick up such material. The reason for this two-pass approach
is that control text will frequently be used as keys in the various binary search trees, so it’s convenient to
keep it in string form until the last possible moment (i.e., right up until we need to print it out).

The only control codes that are valid in restricted mode are @> and @@.
(defvar ∗end-control-text∗ (make-symbol "@>"))
(set-control-code #\> (constantly ∗end-control-text∗) :restricted)

(defun read-control-text (stream &optional (eof-error-p t) eof-value recursive-p)
(with-output-to-string (string)

(with-mode :restricted
(loop for text = (snarf-until-control-char stream #\@)

for next = (read-preserving-whitespace stream eof-error-p eof-value recursive-p)
do (write-string text string)
if (eq next ∗end-control-text∗) do (loop-finish)
else do (write-string next string)))))

98. The control code @< introduces a section name, which extends to the closing @>. Its meaning is
context-dependent.

In TEX mode, a name must be followed by =, which attaches the name to the current section and begins
the code part.

In Lisp and inner-Lisp modes, a name is taken to refer to the section so named. During tangling, such
references in Lisp mode will be replaced with the code defined for that section. References in inner-Lisp
mode are only citations, and so are not expanded.
(defun make-section-name-reader (definition-allowed-p use)

(λ (stream sub-char arg)
(declare (ignore sub-char arg))
(let∗ ((name (read-control-text stream t nil t))

(definitionp (eql (peek-char nil stream nil nil t) #\=)))
(if definitionp

(if definition-allowed-p
(progn

(read-char stream)
(make-instance ’start-code-marker :name name))

〈Signal an error about section definition in Lisp mode 100 〉)
(if definition-allowed-p

〈Signal an error about section name use in TEX mode 101 〉
(let ((named-section (find-section name)))

(if use
(pushnew ∗current-section∗ (used-by named-section))
(pushnew ∗current-section∗ (cited-by named-section)))

named-section))))))

(set-control-code #\< (make-section-name-reader t nil) :tex)
(set-control-code #\< (make-section-name-reader nil t) :lisp)
(set-control-code #\< (make-section-name-reader nil nil) :inner-lisp)

30 READING CLWEB §99

99. 〈Condition classes 27 〉 +≡
(define-condition section-name-context-error (error)

((name :reader section-name :initarg :name)))

(define-condition section-name-definition-error (section-name-context-error)
()
(:report (λ (condition stream)

(format stream "Can’t define a named section in Lisp mode: ~A"
(section-name condition)))))

(define-condition section-name-use-error (section-name-context-error)
()
(:report (λ (condition stream)

(format stream "Can’t use a section name in TeX mode: ~A"
(section-name condition)))))

100. 〈Signal an error about section definition in Lisp mode 100 〉 ≡
(restart-case (error ’section-name-definition-error :name name)

(use-section ()
:report "Don’t define the section, just use it."
(find-section name)))

This code is used in section 98.

101. 〈Signal an error about section name use in TEX mode 101 〉 ≡
(restart-case (error ’section-name-use-error :name name)

(name-section ()
:report "Name the current section and start the code part."
(make-instance ’start-code-marker :name name))

(cite-section ()
:report "Assume the section is just being cited."
(find-section name)))

This code is used in section 98.

102. The control code @x reads the following form, which should be a designator for a list of packages,
and informs the indexing sub-system that symbols in those packages are to be indexed. It returns the form.

The usual idiom is to use this control code in a defpackage form; e.g., (defpackage @x"FOO" . . .) will index
the symbols in the package named FOO.

Note that this is completely different than the @x control code of WEB and CWEB, which is part of their
change-file system.
(defun index-package-reader (stream sub-char arg)

(declare (ignore sub-char arg))
(let ((form (read stream)))

(index-package form)
form))

(set-control-code #\x #’index-package-reader :lisp)

§103 CLWEB READING 31

103. These next control codes are used to manually create index entries. They differ only in how they
are typeset in the woven output.
(defun index-entry-reader (stream sub-char arg)

(declare (ignore arg))
(add-index-entry ∗index∗

(make-instance (ecase sub-char
(#\^ ’heading)
(#\. ’tt-heading)
(#\: ’custom-heading))

:name (read-control-text stream))
∗current-section∗)

(values))

(dolist (sub-char ’(#\^ #\. #\:))
(set-control-code sub-char #’index-entry-reader ’(:tex :lisp)))

104. When we’re accumulating forms from the code part of a section, we’ll interpret two newlines in a
row as ending a paragraph, as in TEX.
(defclass par-marker (newline-marker) ())
(defvar ∗par∗ (make-instance ’par-marker))

105. We need one last utility before coming to the main section reader. When we’re accumulating text,
we don’t want to bother with empty strings. So we use the following macro, which is like push, but does
nothing if the new object is an empty string or nil .
(defmacro maybe-push (obj place &aux (g (gensym)))

‘(let ((,g ,obj))
(when (if (stringp ,g) (plusp (length ,g)) ,g)

(push ,g ,place))))

32 READING CLWEB §106

106. We come now to the heart of the WEB parser. This function is a tiny state machine that models
the global syntax of a WEB file. (We can’t just use reader macros since sections and their parts lack explicit
closing delimiters.) It returns a list of section objects.
(defun read-sections (input-stream &key (append t))

(with-charpos-input-stream (stream input-stream)
(flet ((finish-section (section commentary code)

〈Trim whitespace and reverse commentary and code 114 〉
(setf (section-commentary section) commentary)
(setf (section-code section) code)
(when (section-name section)

(let ((named-section (find-section (section-name section))))
(if append

(push section (named-section-sections named-section))
(setf (named-section-sections named-section) (list section)))))

section))
(prog (form commentary code section sections)

(setq section (make-instance ’limbo-section))
〈Accumulate limbo text in commentary 107 〉

commentary
〈Finish the last section and initialize section variables 108 〉
〈Accumulate TEX-mode material in commentary 109 〉

lisp
〈Accumulate Lisp-mode material in code 110 〉

eof
(push (finish-section section commentary code) sections)
(return (nreverse sections))))))

107. Limbo text is TEX text that proceeds the first section marker, and we treat it as commentary for a
special section with no code. Note that inner-Lisp material is not recognized in limbo text.
〈Accumulate limbo text in commentary 107 〉 ≡
(with-mode :limbo

(loop
(maybe-push (snarf-until-control-char stream #\@) commentary)
(let ((next-input (read-maybe-nothing-preserving-whitespace stream nil ∗eof∗ nil)))

(when next-input
(typecase (setq form (car next-input))

(eof (go eof))
(section (go commentary))
(t (push form commentary)))))))

This code is used in section 106.

108. 〈Finish the last section and initialize section variables 108 〉 ≡
(push (finish-section section commentary code) sections)
(check-type form section)
(setq section form

commentary ’()
code ’())

This code is used in sections 106 and 111.

§109 CLWEB READING 33

109. The commentary part that begins a section consists of TEX text and inner-Lisp material surrounded
by |...|. It is terminated by either the start of a new section, the beginning of the code part, or EOF. If
a code part is detected, we also set the name of the current section, which may be nil .
〈Accumulate TEX-mode material in commentary 109 〉 ≡
(with-mode :tex

(loop
(maybe-push (snarf-until-control-char stream ’(#\@ #\|)) commentary)
(let ((next-input (read-maybe-nothing-preserving-whitespace stream nil ∗eof∗ nil)))

(when next-input
(typecase (setq form (car next-input))

(eof (go eof))
(section (go commentary))
(start-code-marker (setf (section-name section) (section-name form))

(go lisp))
(t (push form commentary)))))))

This code is used in section 106.

110. The code part of a section consists of zero or more Lisp forms and is terminated by either EOF or
the start of a new section. This is also where we evaluate @e forms.
〈Accumulate Lisp-mode material in code 110 〉 ≡
(check-type form start-code-marker)
(with-mode :lisp

(loop
(let ((next-input (read-maybe-nothing-preserving-whitespace stream nil ∗eof∗ nil)))

(when next-input
(typecase (setq form (car next-input))

(eof (go eof))
(section (go commentary))
(start-code-marker 〈Complain about starting a section without a commentary part 111 〉)
(newline-marker 〈Maybe push the newline marker 113 〉)
(evaluated-form-marker (let ((form (marker-value form)))

(let ((∗evaluating∗ t)
(∗readtable∗ (readtable-for-mode nil)))

(eval (tangle form)))
(push form code)))

(t (push form code)))))))

This code is used in section 106.

This code is cited in section 114.

111. 〈Complain about starting a section without a commentary part 111 〉 ≡
(cerror "Start a new unnamed section with no commentary."

’section-lacks-commentary :stream stream)
(setq form (make-instance ’section))
〈Finish the last section and initialize section variables 108 〉
This code is used in section 110.

34 READING CLWEB §112

112. 〈Condition classes 27 〉 +≡
(define-condition section-lacks-commentary (parse-error)

((stream :initarg :stream :reader section-lacks-commentary-stream))
(:report (λ (error stream)

(let∗ ((input-stream
(do ((stream (section-lacks-commentary-stream error)))

(())
(typecase stream

(echo-stream
(setq stream (echo-stream-input-stream stream)))

(t (return stream)))))
(position (file-position input-stream))
(pathname (when (typep input-stream ’file-stream)

(pathname input-stream))))
(format stream

"~@<Can’t start a section with a code part ~
~:[~;~:*at position ~D in file ~A.~]~:@>"

position (or pathname input-stream))))))

113. We won’t push a newline marker if no code has been accumulated yet, and we’ll push a paragraph
marker instead if there are two newlines in a row.
〈Maybe push the newline marker 113 〉 ≡
(unless (null code)

(cond ((newlinep (car code))
(pop code)
(push ∗par∗ code))

(t (push form code))))

This code is used in section 110.

114. We trim trailing whitespace from the last string in commentary , leading whitespace from the first, and
any trailing newline marker from code. (Leading newlines are handled in 〈Accumulate Lisp-mode material
in code 110 〉.)
〈Trim whitespace and reverse commentary and code 114 〉 ≡
(when (stringp (car commentary))

(rplaca commentary (string-right-trim ∗whitespace∗ (car commentary))))
(setq commentary (nreverse commentary))
(when (stringp (car commentary))

(rplaca commentary (string-left-trim ∗whitespace∗ (car commentary))))
(setq code (nreverse (member-if-not #’newlinep code)))

This code is used in section 106.

§115 CLWEB THE TANGLER 35

115. The tangler. Tangling involves recursively replacing each reference to a named section with the
code accumulated for that section. The function tangle-1 expands one level of such references, returning the
possibly-expanded form and a boolean representing whether or not any expansions were actually performed.

Note that this is a splicing operation, like ‘,@’, not a simple substitution, like normal Lisp macro expansion:
if 〈 foo n 〉≡(x y), then (tangle-1 ’(a 〈 foo n 〉 b)) → (a x y b), t.

Tangling also replaces bound markers with their associated values, and removes unbound markers. If the
keyword argument expand-named-sections is false, then this is in fact all that tangle-1 does; we’ll use this
capability later in the indexing code.
(defun tangle-1 (form &key (expand-named-sections t))

(flet ((tangle-1 (form)
(tangle-1 form :expand-named-sections expand-named-sections)))

(typecase form
(marker (values (marker-value form) t))
(atom (values form nil))
((cons named-section ∗)
(multiple-value-bind (d cdr-expanded-p) (tangle-1 (cdr form))

(if expand-named-sections
(values (append (section-code (car form)) d) t)
(values (cons (car form) d) cdr-expanded-p))))

((cons marker ∗)
(values (if (marker-boundp (car form))

(cons (marker-value (car form)) (tangle-1 (cdr form)))
(tangle-1 (cdr form)))

t))
(t (multiple-value-bind (a car-expanded-p) (tangle-1 (car form))

(multiple-value-bind (d cdr-expanded-p) (tangle-1 (cdr form))
(values (if (and (eql a (car form))

(eql d (cdr form)))
form
(cons a d))

(or car-expanded-p cdr-expanded-p))))))))

116. tangle repeatedly calls tangle-1 on form until it can no longer be expanded. Like tangle-1 , it returns
the possibly-expanded form and an ‘expanded’ flag. This code is adapted from SBCL’s macroexpand .
(defun tangle (form &key (expand-named-sections t))

(labels ((expand (form expanded)
(multiple-value-bind (new-form newly-expanded-p)

(tangle-1 form
:expand-named-sections expand-named-sections)

(if newly-expanded-p
(expand new-form t)
(values new-form expanded)))))

(expand form nil)))

117. This little utility function returns a list of all of the forms in all of the unnamed sections’ code parts.
This is our first-order approximation of the complete program; if you tangle it, you get the whole thing.
(defun unnamed-section-code-parts (sections)

(mapappend #’section-code (coerce (remove-if #’section-name sections) ’list)))

36 THE TANGLER CLWEB §118

118. We’re now ready for the high-level tangler interface. We begin with load-web, which uses a helper
function, load-web-from-stream, so that it can handle input from an arbitrary stream. The logic is straight-
forward: we loop over the tangled forms read from the stream, evaluating each one in turn.

Note that like load , we bind ∗readtable∗ and ∗package∗ to their current values, so that assignments to
those variables in the WEB code will not affect the calling environment.
(defun load-web-from-stream (stream print &key (append t) &aux

(∗readtable∗ ∗readtable∗)
(∗package∗ ∗package∗)
(∗evaluating∗ t))

(dolist (form (tangle (unnamed-section-code-parts
(read-sections stream :append append))) t)

(if print
(let ((results (multiple-value-list (eval form))))

(format t "~&; ~{~S~^, ~}~%" results))
(eval form))))

(defun load-web (filespec &key
(verbose ∗load-verbose∗)
(print ∗load-print∗)
(if-does-not-exist t)
(external-format :default))

"Load the web given by FILESPEC into the Lisp environment."
〈 Initialize global variables 13 〉
(when verbose (format t "~&; loading WEB from ~S~%" filespec))
(if (streamp filespec)

(load-web-from-stream filespec print)
(with-open-file (stream (merge-pathnames filespec (make-pathname :type "CLW" :case :common))

:direction :input
:external-format external-format
:if-does-not-exist (if if-does-not-exist :error nil))

(load-web-from-stream stream print))))

119. This next function exists solely for the sake of front-ends that wish to load a piece of a WEB, such
as the author’s ‘clweb.el’. Note that it does not initialize the global variables like ∗named-sections∗; this
allows for incremental redefinition.
(defun load-sections-from-temp-file (file append &aux

(truename (probe-file file)))
"Load web sections from FILE, then delete it."
(when truename

(unwind-protect
(with-open-file (stream truename :direction :input)

(load-web-from-stream stream t :append append))
(delete-file truename))))

§120 CLWEB THE TANGLER 37

120. Both tangle-file and weave, below, take a tests-file argument that has slightly hairy defaulting
behavior. If it’s supplied and is non-nil , then we use a pathname derived from the one given by merging in
a default type ("lisp" in the case of tangling, "tex" for weaving). If it’s not supplied, then we construct
a pathname from the output file by appending the string "−tests" to its name component. Finally, if the
argument is supplied and is nil , then no tests file will be written at all.
(defun tests-file-pathname (output-file type &key (tests-file nil tests-file-supplied-p) &allow-other-keys)

(if tests-file
(merge-pathnames tests-file (make-pathname :type type :case :common))
(unless tests-file-supplied-p

(make-pathname :name (concatenate ’string
(pathname-name output-file :case :common)
"−TESTS")

:type type
:defaults output-file
:case :common))))

38 THE TANGLER CLWEB §121

121. The file tangler operates by writing out the tangled code to a Lisp source file and then invoking
the file compiler on that file. The arguments are essentially the same as those to compile-file, except for the
tests-file keyword argument, which specifies the file to which the test sections’ code should be written.
(defun tangle-file (input-file &rest args &key

output-file
tests-file
(verbose ∗compile-verbose∗)
(print ∗compile-print∗)
(external-format :default) &allow-other-keys &aux
〈Merge defaults for tangler file names 122 〉
(∗readtable∗ ∗readtable∗)
(∗package∗ ∗package∗))

"Tangle and compile the web in INPUT−FILE, producing OUTPUT−FILE."
(declare (ignore output-file tests-file))
(when verbose (format t "~&; tangling web from ~A:~%" input-file))
〈 Initialize global variables 13 〉
(with-open-file (input input-file

:direction :input
:external-format external-format)

(read-sections input))
〈Complain about any unused named sections 124 〉
(flet ((write-forms (sections output-file)

(with-open-file (output output-file
:direction :output
:if-exists :supersede
:external-format external-format)

(format output ";;;; TANGLED WEB FROM \"~A\". DO NOT EDIT." input-file)
(let ((∗evaluating∗ nil)

(∗print-marker∗ t)
(∗print-level∗ nil))

(dolist (form (tangle (unnamed-section-code-parts sections)))
(pprint form output))))))

(when (and tests-file
(> (length ∗test-sections∗) 1)) ; there’s always a limbo section

(when verbose (format t "~&; writing tests to ~A~%" tests-file))
(write-forms ∗test-sections∗ tests-file)
(compile-file tests-file ; use default output file

:verbose verbose
:print print
:external-format external-format))

(when verbose (format t "~&; writing tangled code to ~A~%" lisp-file))
(write-forms ∗sections∗ lisp-file)
(apply #’compile-file lisp-file :allow-other-keys t args)))

122. 〈Merge defaults for tangler file names 122 〉 ≡
(input-file (merge-pathnames input-file (make-pathname :type "CLW" :case :common)))
(output-file (apply #’compile-file-pathname input-file :allow-other-keys t args))
(lisp-file (merge-pathnames (make-pathname :type "LISP" :case :common) output-file))
(tests-file (apply #’tests-file-pathname output-file "LISP" args))

This code is used in section 121.

§123 CLWEB THE TANGLER 39

123. A named section doesn’t do any good if it’s never referenced, so we issue warnings about unused
named sections.
〈Condition classes 27 〉 +≡
(define-condition unused-named-section-warning (simple-warning) ())

124. 〈Complain about any unused named sections 124 〉 ≡
(let ((unused-sections ’()))

(flet ((note-unused-section (section)
(when (null (used-by section))

(push section unused-sections))))
(maptree #’note-unused-section ∗named-sections∗)
(map nil

(λ (section)
(warn ’unused-named-section-warning

:format-control "Unused named section <~A>."

:format-arguments (list (section-name section))))
(sort unused-sections #’< :key #’section-number))))

This code is used in section 121.

40 THE WEAVER CLWEB §125

125. The weaver. The top-level weaver interface is modeled after compile-file. The function weave
reads the WEB input-file and produces an output TEX file named by output-file. If output-file is not supplied
or is nil , a pathname will be generated from input-file by replacing its type component with "tex".

If verbose is true, weave prints a message in the form of a comment to standard output indicating what
file is being woven. If verbose is not supplied, the value of ∗weave-verbose∗ is used.

If print is true, the section number of each section encountered is printed to standard output, with starred
sections prefixed with *. If print is not supplied, the value of ∗weave-print∗ is used.

Finally, the external-format argument specifies the external file format to be used when opening both the
input file and the output file. N.B.: standard TEX only handles 8-bit characters, and the encodings for
non-printable-ascii characters vary widely.

If successful, weave returns the truename of the output file.
(defun weave (input-file &rest args &key

output-file tests-file (index-file nil index-file-supplied-p)
(verbose ∗weave-verbose∗)
(print ∗weave-print∗)
(if-does-not-exist t)
(external-format :default) &aux
〈Merge defaults for weaver file names 126 〉
(∗readtable∗ ∗readtable∗)
(∗package∗ ∗package∗))

"Weave the web contained in INPUT−FILE, producing the TeX file OUTPUT−FILE."
(declare (ignore tests-file))
(when verbose (format t "~&; weaving web from ~A:~%" input-file))
〈 Initialize global variables 13 〉
(with-open-file (input input-file

:direction :input
:external-format external-format
:if-does-not-exist (if if-does-not-exist :error nil))

(read-sections input))
(when (and tests-file

(> (length ∗test-sections∗) 1)) ; there’s always a limbo section
(when verbose (format t "~&; weaving tests to ~A~%" tests-file))
(weave-sections ∗test-sections∗

:output-file tests-file
:print print
:verbose verbose
:external-format external-format))

(when verbose (format t "~&; weaving sections to ~A~%" output-file))
(weave-sections ∗sections∗

:output-file output-file
:index-file index-file
:sections-file sections-file
:verbose verbose
:print print
:external-format external-format))

§126 CLWEB THE WEAVER 41

126. 〈Merge defaults for weaver file names 126 〉 ≡
(input-file (merge-pathnames input-file (make-pathname :type "CLW" :case :common)))
(output-file (if output-file

(merge-pathnames output-file (make-pathname :type "TEX" :case :common))
(merge-pathnames (make-pathname :type "TEX" :case :common) input-file)))

(tests-file (apply #’tests-file-pathname output-file "TEX" args))
(index-file (if index-file

(merge-pathnames index-file (make-pathname :type "IDX" :case :common))
(when (not index-file-supplied-p)

(merge-pathnames (make-pathname :type "IDX" :case :common) output-file))))
(sections-file (when index-file

(merge-pathnames (make-pathname :type "SCN" :case :common) index-file)))

This code is used in section 125.

127. 〈Global variables 12 〉 +≡
(defvar ∗weave-verbose∗ t)
(defvar ∗weave-print∗ t)

128. The individual sections and their contents are printed using the pretty printer with a customized
dispatch table.
〈Global variables 12 〉 +≡
(defparameter ∗weave-pprint-dispatch∗ (copy-pprint-dispatch nil))

42 THE WEAVER CLWEB §129

129. The following routine does the actual writing of the sections to the output file.
(defun weave-sections (sections &key

output-file index-file sections-file
(verbose ∗weave-verbose∗)
(print ∗weave-print∗)
(external-format :default))

(flet ((weave (object stream)
(write object

:stream stream
:case :downcase
:escape nil
:level nil
:pretty t
:pprint-dispatch ∗weave-pprint-dispatch∗
:right-margin 1000)))

(macrolet ((with-output-file ((stream filespec) &body body)
‘(with-open-file (,stream ,filespec

:direction :output
:external-format external-format
:if-exists :supersede)

,@body)))
(with-output-file (out output-file)

(format out "\\input clwebmac~%")
(if print

(pprint-logical-block (nil nil :per-line-prefix "; ")
(map nil

(λ (section)
(format t "~:[~;~:@_*~]~D~:_ "

(typep section ’starred-section)
(section-number section))

(weave section out))
sections))

(map nil (λ (section) (weave section out)) sections))
(when index-file

(when verbose (format t "~&; writing the index to ~A~%" index-file))
(with-output-file (idx index-file)

(weave (index-sections sections) idx))
(with-output-file (scn sections-file)

(maptree (λ (section)
(weave (make-instance ’section-name-index-entry :named-section section) scn))

∗named-sections∗))
(format out "~&\\inx~%\\fin~%\\con~%"))

(format out "~&\\end~%")
(truename out)))))

130. The rest of the weaver consists entirely of pretty-printing routines that are installed in ∗weave-pprint-
dispatch∗.
(defun set-weave-dispatch (type-specifier function &optional (priority 0))

(set-pprint-dispatch type-specifier function priority ∗weave-pprint-dispatch∗))

§131 CLWEB THE WEAVER 43

131. TEX-mode material is represented as a list of strings containing pure TEX text and lists of (inner-
)Lisp forms, and this routine is responsible for printing it. It takes a &rest parameter so that it can be used
with the ‘~/.../’ format directive.
(defun print-tex (stream tex-mode-material &rest args)

(declare (ignore args))
(dolist (x tex-mode-material)

(etypecase x
(string (write-string x stream))
(list (dolist (form x)

(format stream "\\(~W\\)" form))))))

132. Control text (like section names) and comments are initially read as strings containing pure TEX
text, but they actually contain restricted TEX-mode material, which may include inner-Lisp material. This
routine re-reads such strings and picks up any inner-Lisp material.
(defun read-tex-from-string (input-string)

(with-mode :restricted
(with-input-from-string (stream input-string)

(loop for text = (snarf-until-control-char stream #\|)
for forms = (read-preserving-whitespace stream nil ∗eof∗ nil)
if (plusp (length text)) collect text
if (eof-p forms) do (loop-finish) else collect forms))))

133.
(defun print-limbo (stream section)

(let ((commentary (section-commentary section)))
(when commentary

(print-tex stream commentary)
(terpri stream))))

(set-weave-dispatch ’limbo-section #’print-limbo 1)

44 THE WEAVER CLWEB §134

134.

(defun print-section (stream section)
(format stream "~&\\~:[M~;N{1}~]{~:[~;T~]~D}" ; {1} should be depth

(typep section ’starred-section)
(typep section ’test-section)
(section-number section))

(let∗ ((commentary (section-commentary section))
(name (section-name section))
(named-section (and name (find-section name)))
(code (section-code section)))

(print-tex stream commentary)
(fresh-line stream)
(cond ((and commentary code) (format stream "\\Y\\B~%"))

(code (format stream "\\B~%")))
(when named-section

(print-section-name stream named-section)
(format stream "${}~:[\\mathrel+~;~]\\E{}$~%"

(= (section-number section) (section-number named-section))))
(when code

(dolist (form code)
(if (list-marker-p form)

(format stream "~@<\\+~@;~W~;\\cr~:>" form)
(format stream "~W~:[\\par~;~]" form (newlinep form))))

(format stream "~&\\egroup~%")) ; matches \bgroup in \B

(when (and (typep section ’test-section) (section-code section))
(format stream "\\T~P~D.~%"

(length (section-code section))
(section-number (test-for-section section))))

(when (and named-section
(= (section-number section)

(section-number named-section)))
(print-xrefs stream #\A

(remove section (named-section-sections named-section)))
(print-xrefs stream #\U

(remove section (used-by named-section)))
(print-xrefs stream #\Q

(remove section (cited-by named-section)))))
(format stream "\\fi~%"))

(set-weave-dispatch ’section #’print-section)

135. The cross-references lists use the macros \A (for ‘also’), \U (for ‘use’), \Q (for ‘quote’), and their
pluralized variants, along with the conjunction macros \ET (for two section numbers) and \ETs (for between
the last of three or more).
(defun print-xrefs (stream kind xrefs)

(when xrefs
;; This was 16 lines of code over two sections in CWEB. I love format.
(format stream "\\~C~{~#[~;~D~;s ~D\\ET~D~:;s~@{~#[~;\\ETs~D~;~D~:;~D, ~]~}~]~}.~%"

kind (sort (mapcar #’section-number xrefs) #’<))))

§136 CLWEB THE WEAVER 45

136. Aside from printing the section name in the body of the woven output, this routine also knows how
to print entries for the section name index, which uses a similar, but slightly different format.
(defun print-section-name (stream section &key (indexing nil))

(format stream "~:[~;\\I~]\\X~{~D~^, ~}:~/clweb::print−TeX/\\X"
indexing
(if indexing

(sort (mapcar #’section-number (named-section-sections section)) #’<)
(list (section-number section)))

(read-tex-from-string (section-name section))))

(set-weave-dispatch ’named-section #’print-section-name)

137. When printing the section name index, the weaver wraps each named section in a section-name-index
instance so that we can dispatch on that type.
(defclass section-name-index-entry ()

((named-section :accessor named-section :initarg :named-section)))

(set-weave-dispatch ’section-name-index-entry
(λ (stream section-name &aux (section (named-section section-name)))

(print-section-name stream section :indexing t)
(terpri stream)
(print-xrefs stream #\U (remove section (used-by section)))
(print-xrefs stream #\Q (remove section (cited-by section)))))

138. Because we’re outputting TEX, we need to carefully escape characters that TEX treats as special.
Unfortunately, because TEX’s syntax is so malleable (not unlike Lisp’s), it’s nontrivial to decide what to
escape, how, and when.

The following routine is the basis for most of the escaping. It writes string to the output stream designated
by stream, escaping the characters given in the a-list ∗print-escape-list∗. The entries in this a-list should be of
the form ‘(〈characters〉 . 〈replacement〉)’, where 〈replacement〉 describes how to escape each of the characters
in 〈characters〉. Suppose c is a character in string that appears in one of the 〈characters〉 strings. If the
corresponding 〈replacement〉 is a single character, then print-escaped will output it prior to every occurrence
of c. If 〈replacement〉 is a string, it will be output instead of every occurrence of c in the input. Otherwise,
c will be output without escaping.

The default value for ∗print-escape-list∗ defined below is suitable for escaping most TEX metacharacters;
callers should bind it to a new value if they require specialized escaping.
(defparameter ∗print-escape-list∗

’((" \\%&#$^_~<>" . #\\) ("{" . "$\\{$") ("}" . "$\\}$")))

(defun print-escaped (stream string &rest args &aux
(stream (case stream

((t) ∗terminal-io∗)
((nil) ∗standard-output∗)
(otherwise stream))))

(declare (ignore args))
(loop for char across string

as escape = (cdr (assoc char ∗print-escape-list∗ :test #’find))
if escape

do (etypecase escape
(character (write-char escape stream)

(write-char char stream))
(string (write-string escape stream)))

else
do (write-char char stream)))

46 THE WEAVER CLWEB §139

139. We need to be careful about embedded newlines in string literals.
(defun print-string (stream string)

(loop with ∗print-escape-list∗ = ‘(("{*}" . #\\)
("\\" . "\\\\\\\\")
("\"" . "\\\\\"")
,@∗print-escape-list∗)

for last = 0 then (1+ newline)
for newline = (position #\Newline string :start last)
as line = (subseq string last newline)
do (format stream "\\.{~:[~;\"~]~/clweb::print−escaped/~:[~;\"~]}"

(zerop last) line (null newline))
when newline do (format stream "\\cr~:@_") else do (loop-finish)))

(set-weave-dispatch ’string #’print-string)

140.
(defun print-char (stream char)

(let ((graphicp (and (graphic-char-p char) (standard-char-p char)))
(name (char-name char))
(∗print-escape-list∗ ‘(("{}" . #\\) ,@∗print-escape-list∗)))

(format stream "\\#\\CH{~/clweb::print−escaped/}"

(if (and name (not graphicp))
name
(make-string 1 :initial-element char)))

char))

(set-weave-dispatch ’character #’print-char)

141. Symbols are printed by first writing them out to a string, then printing that string. This relieves us
of the burden of worrying about case conversion, package prefixes, and the like—we just let the Lisp printer
handle it.

Lambda-list keywords and symbols in the ‘keyword’ package have specialized TEX macros that add a bit
of emphasis.
(defun print-symbol (stream symbol)

(let ((group-p (cond ((member symbol lambda-list-keywords)
(write-string "\\K{" stream))

((keywordp symbol)
(write-string "\\:{" stream)))))

(print-escaped stream (write-to-string symbol :escape nil :pretty nil))
(when group-p (write-string "}" stream))))

(set-weave-dispatch ’symbol #’print-symbol)

142. Lambda gets special treatment.
(set-weave-dispatch ’(eql λ)

(λ (stream obj)
(declare (ignore obj))
(write-string "\\L" stream))

1)

§143 CLWEB THE WEAVER 47

143. Next, we turn to list printing, and the tricky topic of indentation. On the assumption that the
human writing a web is smarter than a program doing any sort of automatic indentation, we attempt to
approximate (but not duplicate) on output the indentation given in the input by utilizing the character
position values that the list reader stores in the list markers. We do this by breaking up lists into logical
blocks—the same sort of (abstract) entities that the pretty printer uses, but made concrete here. A logical
block defines a left edge for a list of forms, some of which may be nested logical blocks.
(defstruct (logical-block (:constructor make-logical-block (list)))

list)

144. The analysis of the indentation is performed by a recursive labels routine, to which we will come in a
moment. That routine operates on an list of (form . charpos) conses, taken from a list marker. Building this
list does cost us some consing, but vastly simplifies the logic, since we don’t have to worry about keeping
multiple indices synchronized.
(defun analyze-indentation (list-marker)

(declare (type list-marker list-marker))
(labels ((find-next-newline (list) (member-if #’newlinep list :key #’car))

(next-logical-block (list) 〈Build a logical block from list 145 〉))
;; Sanity check.
(assert (= (length (list-marker-list list-marker))

(length (list-marker-charpos list-marker)))
((list-marker-list list-marker) (list-marker-charpos list-marker))
"List marker’s list and charpos−list aren’t the same length.")

(next-logical-block (mapcar #’cons
(list-marker-list list-marker)
(list-marker-charpos list-marker)))))

48 THE WEAVER CLWEB §145

145. To build a logical block, we identify groups of sub-forms that share a common left margin, which
we’ll call the block indentation. If that left margin is to the right of that of the current block, we recursively
build a new subordinate logical block. The block ends when the first form on the next line falls to the left
of the current block, or we run out of forms.

For example, consider the following simple form:
(first second

third)

We start off with an initial logical block whose indentation is the character position of first: this is the block
indentation. Then we look at second , and see that the first form on the following line, third , has the same
position, and that it exceeds the current indentation level. And so we recurse, appending to the new logical
block until we encounter a form whose indentation is less than the new block indentation, or, as in this
trivial example, the end of the list.

More concretely, next-logical-block returns two values: the logical block constructed, and the unused
portion of the list, which will always either be nil (we consumed the rest of the forms), or begin with a
newline.

We keep a pointer to the next newline in newline, and next-indent is the indentation of the immediately
following form, which will become the current indentation when we pass newline. As we do so, we store
the difference between the current indentation and the block indentation in the newline marker, so that the
printing routine, below, doesn’t have to worry about character positions at all: it can just look at the newline
markers and the logical block structure.

As an optimization, if we build a block that doesn’t directly contain any newlines—a trivial logical block—
we simply return a list of sub-forms instead of a logical block structure. This allows the printer to elide the
alignment tabs, and makes the resulting TEX much simpler.
〈Build a logical block from list 145 〉 ≡
(do∗ ((block ’())

(block-indent (cdar list))
(indent block-indent)
(newline (find-next-newline list))
(next-indent (cdadr newline)))

((or (endp list)
(and (eq list newline) next-indent (< next-indent block-indent)))

(values (if (notany #’newlinep block)
(nreverse block)
(make-logical-block (nreverse block)))

list))
(if (and indent next-indent

(> next-indent indent)
(= next-indent (cdar list)))

(multiple-value-bind (sub-block tail) (next-logical-block list)
(check-type (caar tail) (or newline-marker null))
(push sub-block block)
(setq list tail))

(let ((next (car (pop list))))
(push next block)
(when (and list (newlinep next))

(setf indent (cdar list)
(indentation next) (- indent block-indent)
newline (find-next-newline list)
next-indent (cdadr newline))))))

This code is used in section 144.

§146 CLWEB THE WEAVER 49

146. Printing list markers is now simple, since the complexity is all in the logical blocks. . .
(defun print-list (stream list-marker)

(let ((block (analyze-indentation list-marker)))
(etypecase block

(list (format stream "~<(~;~@{~W~^ ~}~;)~:>" block))
(logical-block (format stream "(~W)" block)))))

(set-weave-dispatch ’list-marker #’print-list)

147. . . .but even here, it’s not that bad. We start with a \!, which is just an alias for \cleartabs. Then
we call (unsurprisingly) pprint-logical-block, using a per-line-prefix for our alignment tabs.

In the loop, we keep a one-token look-ahead to check for newlines, so that we can output separating spaces
when and only when there isn’t a newline coming up.

The logical-block building machinery above set the indentation on newlines to the difference in character
positions of the first form following the newline and the block indentation. For differences of 1 or 2 columns,
we use a single quad (\1); for any more, we use two (\2).
(defun print-logical-block (stream block)

(write-string "\\!" stream)
(pprint-logical-block (stream (logical-block-list block) :per-line-prefix "&")

(do (indent
next
(obj (pprint-pop) next))

(nil)
(cond ((newlinep obj)

(format stream "\\cr~:@_")
(setq indent (indentation obj))
(pprint-exit-if-list-exhausted)
(setq next (pprint-pop)))

(t (format stream "~@[~[~;\\1~;\\1~:;\\2~]~]~W" indent obj)
(setq indent nil)
(pprint-exit-if-list-exhausted)
(setq next (pprint-pop))
(unless (newlinep next)

(write-char #\ stream)))))))

(set-weave-dispatch ’logical-block #’print-logical-block)

148. Finally, we come to the printing of markers. These are all quite straightforward; the only thing to
watch out for is the priorities. Because pprint-dispatch doesn’t respect sub-type relationships, we need to set
a higher priority for a sub-class than for its parent if we want a specialized pretty-printing routine.

Many of these routines output TEX macros defined in clwebmac.tex, which see.

149.
(set-weave-dispatch ’newline-marker

(λ (stream obj)
(declare (ignore obj))
(terpri stream)))

(set-weave-dispatch ’par-marker
(λ (stream obj)

(declare (ignore obj))
(format stream "~&\\Y~%"))

1)

50 THE WEAVER CLWEB §150

150.
(set-weave-dispatch ’empty-list-marker

(λ (stream obj)
(declare (ignore obj))
(write-string "()" stream)))

(set-weave-dispatch ’consing-dot-marker
(λ (stream obj)

(declare (ignore obj))
(write-char #\. stream)))

151.
(set-weave-dispatch ’quote-marker

(λ (stream obj)
(format stream "\\’~W" (quoted-form obj))))

152.
(set-weave-dispatch ’comment-marker

(λ (stream obj)
(format stream "\\C{~/clweb::print−TeX/}"

(read-tex-from-string (comment-text obj)))))

153.
(set-weave-dispatch ’backquote-marker

(λ (stream obj)
(format stream "\\‘~W" (backq-form obj))))

(set-weave-dispatch ’comma-marker
(λ (stream obj)

(format stream "\\CO{~@[~C~]}~W"

(comma-modifier obj)
(comma-form obj))))

154.
(set-weave-dispatch ’function-marker

(λ (stream obj)
(format stream "\\#\\’~S" (quoted-form obj)))

1)

§155 CLWEB THE WEAVER 51

155.
(set-weave-dispatch ’simple-vector-marker

(λ (stream obj)
(format stream "\\#~@[~D~]~S"

(and (slot-boundp obj ’length)
(slot-value obj ’length))

(slot-value obj ’elements))))

(set-weave-dispatch ’bit-vector-marker
(λ (stream obj)

(format stream "\\#~@[~D~]*~{~[0~;1~]~}"

(and (slot-boundp obj ’length)
(slot-value obj ’length))

(map ’list #’identity
(slot-value obj ’elements))))

1)

156.
(set-weave-dispatch ’read-time-eval-marker

(λ (stream obj)
(format stream "\\#.~W" (read-time-eval-form obj))))

157.
(set-weave-dispatch ’radix-marker

(λ (stream obj)
(format stream "$~VR_{~2:*~D}$"

(radix-marker-base obj) (marker-value obj))))

158.
(set-weave-dispatch ’structure-marker

(λ (stream obj)
(format stream "\\#S~W" (structure-marker-form obj))))

159.
(set-weave-dispatch ’read-time-conditional-marker

(λ (stream obj)
(format stream "\\#~:[−−~;+~]\\RC{~S ~/clweb::print−escaped/}"

(read-time-conditional-plusp obj)
(read-time-conditional-test obj)
(read-time-conditional-form obj))))

52 THE WALKER CLWEB §160

160. The walker. Our last major task is to produce an index of every interesting symbol that occurs in
a web (we’ll define what makes a symbol ‘interesting’ later). We would like separate entries for each kind of
object that a given symbol names: e.g., local or global function, lexical or special variable, &c. And finally,
we should note whether a given occurrence of a symbol is a definition/binding or just a use.

In order to accomplish this, we need to walk the tangled code of the entire program, since the meaning
of a symbol in Common Lisp depends, in general, on its lexical environment, which can only be determined
by code walking. For reasons that will be explained later, we’ll actually be walking a special sort of munged
code that isn’t exactly Common Lisp. And because of this, none of the available code walkers will quite do
what we want. So we’ll roll our own.

161. We’ll pass around instances of a walker class during our code walk to provide a hook (via subclassing)
for overriding walker methods.
(defclass walker () ())

162. The walker protocol consists of a handful of generic functions, which we’ll describe as we come to
them.
〈Walker generic functions 168 〉

163. We’ll use the environments api defined in cltl-2, since even though it’s not part of the Common
Lisp standard, it’s widely supported, and does everything we need it to do.

Allegro Common Lisp has an additional function, ensure-portable-walking-environment, that needs to be
called on any environment object that a portable walker uses; we’ll provide a trivial definition for other
Lisps.
(unless (fboundp ’ensure-portable-walking-environment)

(defun ensure-portable-walking-environment (env) env))

164. Allegro doesn’t define parse-macro or enclose, so we’ll need to provide our own definitions. In fact,
we’ll use our own version of enclose on all implementations (note that it’s shadowed in the package definition
at the beginning of the program). Thanks to Duane Rettig of Franz, Inc. for the idea behind this trivial
implementation (post to comp.lang.lisp of 18 Oct, 2004, message-id 〈4is97u4vv.fsf@franz.com〉).
(defun enclose (lambda-expression &optional env (walker (make-instance ’walker)))

(coerce (walk-form walker lambda-expression env) ’function))

165. The following code for parse-macro is obviously extremely implementation-specific; a portable version
would be much more complex.
(eval-when (:compile-toplevel :load-toplevel :execute)

(unless (fboundp ’parse-macro)
(defun parse-macro (name lambda-list body &optional env)

(declare (ignorable name lambda-list body env))
#+:allegro (excl::defmacro-expander ‘(,name ,lambda-list ,@body) env)
#–:allegro (error ”PARSE-MACRO not implemented”))))

§166 CLWEB THE WALKER 53

166. The good people at Franz also decided that they needed an extra value returned from both variable-
information and function-information. But instead of doing the sensible thing and adding that extra value at
the end of the list of returned values, they changed the order from the one specified by cltl-2, so that their
new value is the second value returned, and what should be second is now fourth. Thanks, Franz!
(defmacro reorder-env-information (fn orig)

‘(defun ,fn (&rest args)
(multiple-value-bind (type locative declarations local) (apply ,orig args)

(declare (ignore locative))
(values type local declarations))))

#+:allegro (reorder-env-information variable-information #’sys:variable-information)
#+:allegro (reorder-env-information function-information #’sys:function-information)

167. The main entry point for the walker is walk-form. The walk ordinarily stops after encountering an
atomic or special form; otherwise, we macro expand and try again. If a walker method wants to decline to
walk, however, it may throw the given form, and the walk will continue with macro expansion.
(defmethod walk-form ((walker walker) form &optional env &aux

(env (ensure-portable-walking-environment env))
(expanded t))

(flet ((symbol-macro-p (form env)
(and (symbolp form)

(eql (variable-information form env) :symbol-macro))))
(loop

(catch form
(cond ((symbol-macro-p form env)) ; wait for macro expansion

((atom form)
(return (walk-atomic-form walker form env)))

((not (symbolp (car form)))
(return (walk-list walker form env)))

((or (not expanded)
(walk-as-special-form-p walker (car form) form env))

(return (walk-compound-form walker (car form) form env)))))
(multiple-value-setq (form expanded)

(macroexpand-for-walk walker form env)))))

168. 〈Walker generic functions 168 〉 ≡
(defgeneric walk-form (walker form &optional env))

See also sections 170, 172, 174, 178, and 186.

This code is used in section 162.

169. The walker will treat a form as a special form if and only if walk-as-special-form-p returns true of
that form.
(defmethod walk-as-special-form-p (walker operator form env)

(declare (ignore walker operator form env))
nil)

170. 〈Walker generic functions 168 〉 +≡
(defgeneric walk-as-special-form-p (walker operator form env))

54 THE WALKER CLWEB §171

171. Macroexpansion and environment augmentation both get wrapped in generic functions to allow
subclasses to override the usual behavior. The default methods just call down to the normal Lisp functions.
(defmethod macroexpand-for-walk ((walker walker) form env)

(macroexpand-1 form env))

(defmethod augment-walker-environment ((walker walker) env &rest args)
(apply #’augment-environment env args))

172. 〈Walker generic functions 168 〉 +≡
(defgeneric macroexpand-for-walk (walker form env))
(defgeneric augment-walker-environment (walker env &rest args))

173. Here’s a utility function we’ll use often in walker methods: it walks each element of the supplied list
and returns a new list of the results of those walks.
(defun walk-list (walker list env)

(do ((form list (cdr form))
(newform () (cons (walk-form walker (car form) env) newform)))

((atom form) (nreconc newform form))))

174. The functions walk-atomic-form and walk-compound-form are the real work-horses of the walker. The
former takes a walker instance, an (atomic) form, an environment, and a flag indicating whether or not
the form occurs in an evaluated position. Compound forms don’t need such a flag, but we do provide
an additional operator argument so that we can use eql specializers. The operator of a form passed to
walk-compound-form will always be a symbol.
〈Walker generic functions 168 〉 +≡
(defgeneric walk-atomic-form (walker form env &optional evalp))
(defgeneric walk-compound-form (walker operator form env))

175. The default method for walk-atomic-form simply returns the form. Note that this function won’t be
called for symbol macros; those are expanded in walk-form.
(defmethod walk-atomic-form ((walker walker) form env &optional (evalp t))

(declare (ignore env evalp))
form)

176. The default method for walk-compound-form is used for all funcall-like forms; it leaves its car
unevaluated and walks its cdr .
(defmethod walk-compound-form ((walker walker) operator form env)

(declare (ignore operator))
‘(,(walk-atomic-form walker (car form) env nil)

,@(walk-list walker (cdr form) env)))

177. Common Lisp defines a function name as “[a] symbol or a list (setf symbol).” Since they’re not
necessarily atomic, we define a special walker function just for function names.
(deftype setf-function-name () ’(cons (eql setf) (cons symbol null)))

(defmethod walk-function-name ((walker walker) function-name env &key)
(typecase function-name

(symbol (walk-atomic-form walker function-name env nil))
(setf-function-name ‘(setf ,(walk-atomic-form walker (cadr function-name) env nil)))
(t (cerror "Use the function name anyway." ’invalid-function-name :name function-name)

function-name)))

§178 CLWEB THE WALKER 55

178. 〈Walker generic functions 168 〉 +≡
(defgeneric walk-function-name (walker function-name env &key &allow-other-keys))

179. 〈Condition classes 27 〉 +≡
(define-condition invalid-function-name (parse-error)

((name :initarg :name :reader invalid-function-name))
(:report (λ (error stream)

(format stream "~@<Invalid function name ~A.~:@>"

(invalid-function-name error)))))

180. Many of the special forms defined in Common Lisp can be walked using the default method for walk-
compound-form just defined, since their syntax is the same as an ordinary function call. But it’s important
to override walk-as-special-form-p for these operators, because “[a]n implementation is free to implement a
Common Lisp special operator as a macro.” (ansi Common Lisp, section 3.1.2.1.2.2)
(macrolet ((walk-as-special-form (operator)

‘(defmethod walk-as-special-form-p ((walker walker) (operator (eql ’,operator)) form env)
(declare (ignore form env))
t)))

(walk-as-special-form catch)
(walk-as-special-form if)
(walk-as-special-form load-time-value)
(walk-as-special-form multiple-value-call)
(walk-as-special-form multiple-value-prog1)
(walk-as-special-form progn)
(walk-as-special-form progv)
(walk-as-special-form setq)
(walk-as-special-form tagbody)
(walk-as-special-form throw)
(walk-as-special-form unwind-protect))

181. The rest of the special form walkers we define will need specialized methods for both walk-as-special-
form-p and walk-compound-form. The following macro makes sure that these are consistently defined.
(defmacro define-special-form-walker (operator (walker form env &rest rest) &body body &aux

(oparg ‘(,(gensym) (eql ’,operator))))
(flet ((arg-name (arg) (if (consp arg) (car arg) arg)))

‘(progn
(defmethod walk-as-special-form-p (,walker ,oparg ,form ,env)

(declare (ignorable ,@(mapcar #’arg-name ‘(,walker ,form ,env))))
t)

(defmethod walk-compound-form (,walker ,oparg ,form ,env ,@rest)
(declare (ignorable ,@(mapcar #’arg-name ‘(,walker ,form ,env))))
,@body))))

56 THE WALKER CLWEB §182

182. Block-like special forms have a cdr that begins with a single unevaluated form, followed by zero or
more evaluated forms.
(macrolet ((define-block-like-walker (operator)

‘(define-special-form-walker ,operator ((walker walker) form env)
‘(,(car form)

,(walk-atomic-form walker (cadr form) env nil)
,@(walk-list walker (cddr form) env)))))

(define-block-like-walker block)
(define-block-like-walker eval-when)
(define-block-like-walker return-from)
(define-block-like-walker the))

183. Quote-like special forms are entirely unevaluated.
(macrolet ((define-quote-like-walker (operator)

‘(define-special-form-walker ,operator ((walker walker) form env)
(declare (ignore walker env))
form)))

(define-quote-like-walker quote)
(define-quote-like-walker go))

184. The function special form takes either a valid function name or a λ expression.
(define-special-form-walker function ((walker walker) form env)

‘(,(car form)
,(if (and (consp (cadr form))

(eql (caadr form) ’λ))
(walk-lambda-expression walker (cadr form) env)
(walk-function-name walker (cadr form) env))))

185. Next, we’ll work our way up to parsing λ expressions and other function-defining forms.
Given a sequence of declarations and possibly a documentation string followed by other forms (as occurs in

the bodies of defun, defmacro, &c.), parse-body returns (values forms decls doc), where decls is the declaration
specifiers found in each declare expression, doc holds a doc string (or nil if there is none), and forms holds the
other forms. See ansi Common Lisp section 3.4.11 for the rules on the syntactic interaction of doc strings
and declarations.

If doc-string-allowed is nil (the default), then no forms will be treated as documentation strings.
(defun parse-body (body &key doc-string-allowed walker env &aux doc)

(flet ((doc-string-p (x remaining-forms)
(and (stringp x) doc-string-allowed remaining-forms (null doc)))

(declaration-p (x)
(and (listp x) (eql (car x) ’declare))))

(loop for forms = body then (cdr forms)
as x = (car forms)
while forms
if (doc-string-p x (cdr forms)) do (setq doc x)
else if (declaration-p x) append (cdr x) into decls

else do (loop-finish)
finally (return (values forms

(if walker
(walk-declaration-specifiers walker decls env)
decls)

doc)))))

§186 CLWEB THE WALKER 57

186. Declaration forms aren’t evaluated in Common Lisp, but we’ll want to be able to walk the specifiers.
〈Walker generic functions 168 〉 +≡
(defgeneric walk-declaration-specifiers (walker decls env))

187.
(defmethod walk-declaration-specifiers ((walker walker) decls env)

(declare (ignore env))
decls)

188. The syntax of λ-lists is given in section 3.4 of the ansi standard. We accept the syntax of macro
λ-lists, since they are the most general, and appear to be a superset of every other type of λ-list.

This function returns two values: the walked λ-list and a new environment object containing bindings for
all of the parameters found therein.
(defun walk-lambda-list (walker lambda-list decls env &aux

new-lambda-list (state :reqvars))
(labels ((augment-env (&rest vars &aux (vars (remove-if #’null vars)))

(setq env (augment-walker-environment walker env :variable vars :declare decls)))
(walk-var (var)

(walk-atomic-form walker var env nil))
(update-state (keyword)

(setq state (ecase keyword
((nil) state)
(&optional :optvars)
((&rest &body) :restvar)
(&key :keyvars)
(&aux :auxvars)
(&environment :envvar))))

(maybe-destructure (var/pattern)
(if (consp var/pattern)

(walk-lambda-list walker var/pattern decls env)
(values (walk-var var/pattern)

(augment-env var/pattern)))))
〈Check for &whole and &environment vars, and augment the lexical environment with them if found 189 〉
(do∗ ((lambda-list lambda-list (cdr lambda-list))

(arg (car lambda-list) (car lambda-list)))
((null lambda-list) (values (nreverse new-lambda-list) env))

(ecase state
(:envvar 〈Process arg as an environment parameter 190 〉)
((:reqvars :restvar) ; required and rest parameters have the same syntax
〈Process arg as a required parameter 191 〉)

(:optvars 〈Process arg as an optional parameter 192 〉)
(:keyvars 〈Process arg as a keyword parameter 193 〉)
(:auxvars 〈Process arg as an auxiliary variable 194 〉))

(when (or (atom lambda-list)
(and (cdr lambda-list)

(atom (cdr lambda-list))))
〈Process dotted rest var 196 〉))))

58 THE WALKER CLWEB §189

189. A &whole variable must come first in a λ-list, and an &environment variable, although it may
appear anywhere in the list, must be bound along with &whole . We’ll pop a &whole variable off the front
of lambda-list, but we’ll leave any &environment variable to be picked up later.
〈Check for &whole and &environment vars, and augment the lexical environment with them if found 189 〉 ≡
(let ((wholevar (and (consp lambda-list)

(eql (car lambda-list) ’&whole)
(push (pop lambda-list) new-lambda-list)
(car (push (walk-var (pop lambda-list)) new-lambda-list))))

(envvar (do ((lambda-list lambda-list (cdr lambda-list)))
((atom lambda-list) nil)

(when (eql (car lambda-list) ’&environment)
(return (cadr lambda-list))))))

(augment-env wholevar envvar))

This code is used in section 188.

190. We’ve already added the environment variable to our lexical environment, so we just push it onto
the new λ-list and prepare for the next parameter.
〈Process arg as an environment parameter 190 〉 ≡
(push (walk-var (pop lambda-list)) new-lambda-list)
(when (consp lambda-list)

(update-state (car lambda-list)))

This code is used in section 188.

191. 〈Process arg as a required parameter 191 〉 ≡
(etypecase arg

(symbol 〈Process the symbol in arg as a parameter 195 〉)
(cons
(multiple-value-bind (pattern new-env)

(walk-lambda-list walker arg decls env)
(setq env new-env)
(push pattern new-lambda-list))))

This code is used in section 188.

192. Watch the order here: in the non-simple-var case, both the init form and the pattern (if any) need
to be walked in an environment unaugmented with any supplied-p-parameter.
〈Process arg as an optional parameter 192 〉 ≡
(etypecase arg

(symbol 〈Process the symbol in arg as a parameter 195 〉)
(cons
(destructuring-bind (var/pattern &optional init-form supplied-p-parameter) arg

(when init-form
(setq init-form (walk-form walker init-form env)))

(multiple-value-setq (var/pattern env)
(maybe-destructure var/pattern))

(when supplied-p-parameter
(augment-env supplied-p-parameter))

(push (nconc (list var/pattern)
(and init-form (list init-form))
(and supplied-p-parameter (list supplied-p-parameter)))

new-lambda-list))))

This code is used in section 188.

§193 CLWEB THE WALKER 59

193. 〈Process arg as a keyword parameter 193 〉 ≡
(cond ((eql arg ’&allow-other-keys)

(push (pop lambda-list) new-lambda-list)
(update-state (car lambda-list)))

(t
(etypecase arg

(symbol 〈Process the symbol in arg as a parameter 195 〉)
(cons
(destructuring-bind (var/kv &optional init-form supplied-p-parameter) arg

(when init-form
(setq init-form (walk-form walker init-form env)))

(cond ((consp var/kv)
(destructuring-bind (keyword-name var/pattern) var/kv

(multiple-value-setq (var/pattern env)
(maybe-destructure var/pattern))

(setq var/kv (list (walk-var keyword-name) var/pattern))))
(t (setq var/kv (walk-var var/kv))

(augment-env var/kv)))
(when supplied-p-parameter

(setq supplied-p-parameter (walk-var supplied-p-parameter))
(augment-env supplied-p-parameter))

(push (nconc (list var/kv)
(and init-form (list init-form))
(and supplied-p-parameter (list supplied-p-parameter)))

new-lambda-list))))))

This code is used in section 188.

194. 〈Process arg as an auxiliary variable 194 〉 ≡
(etypecase arg

(symbol 〈Process the symbol in arg as a parameter 195 〉)
(cons
(destructuring-bind (var &optional init-form) arg

(setq var (walk-var var)
init-form (and init-form (walk-form walker init-form env)))

(augment-env var)
(push (nconc (list var)

(and init-form (list init-form)))
new-lambda-list))))

This code is used in section 188.

195. 〈Process the symbol in arg as a parameter 195 〉 ≡
(cond ((member arg lambda-list-keywords)

(push arg new-lambda-list)
(update-state arg))

(t (setq arg (walk-var arg))
(augment-env arg)
(push arg new-lambda-list)))

This code is used in sections 191, 192, 193, and 194.

60 THE WALKER CLWEB §196

196. We normalize a dotted rest parameter into a proper &rest parameter to avoid having to worry about
reversing an improper new-lambda-list.
〈Process dotted rest var 196 〉 ≡
(let ((var (walk-var (if (consp lambda-list) (cdr lambda-list) lambda-list))))

(augment-env var)
(push ’&rest new-lambda-list)
(push var new-lambda-list))

(setq lambda-list nil)

This code is used in section 188.

197. While we’re in the mood to deal with λ-lists, here’s a routine that can walk the ‘specialized’ λ-lists
used in defmethod forms. We can’t use the same function as the one used to parse macro λ-lists, since the
syntax would be ambiguous: there would be no way to distinguish between a specialized required parameter
and a destructuring pattern. What we can do, however, is peel off just the required parameters from a
specialized λ-list, and feed the rest to walk-lambda-list.

This function returns the same kind of values as walk-lambda-list; viz., the walked specialized λ-list and
an environment augmented with the parameters found therein.
(deftype class-specializer () ’(cons symbol (cons symbol null)))
(deftype compound-specializer (&optional (operator ’eql))

‘(cons symbol (cons (cons (eql ,operator) ∗) null)))

(defun walk-specialized-lambda-list (walker lambda-list decls env)
(let ((req-params 〈Extract the required parameters from lambda-list 198 〉))

(multiple-value-bind (other-params env) (walk-lambda-list walker lambda-list decls env)
(values (nconc req-params other-params) env))))

198. 〈Extract the required parameters from lambda-list 198 〉 ≡
(flet ((augment-env (var)

(setq env (augment-walker-environment walker env :variable (list var) :declare decls)))
(walk-var (spec)

(etypecase spec
(symbol (walk-atomic-form walker spec env nil))
(class-specializer
(list (walk-atomic-form walker (car spec) nil)

(walk-atomic-form walker (cadr spec) nil)))
((compound-specializer eql)
(list (walk-atomic-form walker (car spec) nil)

‘(eql ,(walk-form walker (cadadr spec))))))))
(loop until (or (null lambda-list)

(member (car lambda-list) lambda-list-keywords))
as var = (walk-var (pop lambda-list))
do (augment-env (if (consp var) (car var) var))
collect var))

This code is used in section 197.

§199 CLWEB THE WALKER 61

199. Having built up the necessary machinery, walking a λ expression is now straightforward. The slight
generality of walking the car of the form using walk-function-name is because this function will also be used
to walk the bindings in flet, macrolet, and labels special forms. Also note that this function passes all of its
extra arguments down to walk-function-name; this will be used later to aid in the indexing process.
(defun walk-lambda-expression (walker form env &rest args &aux

(lambda-list (cadr form)) (body (cddr form)))
(multiple-value-bind (forms decls doc) (parse-body body :walker walker :env env :doc-string-allowed t)

(multiple-value-bind (lambda-list env) (walk-lambda-list walker lambda-list decls env)
‘(,(apply #’walk-function-name walker (car form) env args)

,lambda-list
,@(if doc ‘(,doc))
,@(if decls ‘((declare ,@decls)))
,@(walk-list walker forms env)))))

200. ‘lambda’ is not a special operator in Common Lisp, but we’ll treat λ expressions as special forms.
(define-special-form-walker λ ((walker walker) form env)

(walk-lambda-expression walker form env))

201. We come now to the binding special forms. The six binding special forms in Common Lisp (let,
let∗, flet, labels, macrolet, and symbol-macrolet) all have essentially the same syntax; only the scope and
namespace of the bindings differ.

We’ll start with a little utility routine that walks a variable-like binding form (e.g., the cadr of a let/let∗
or symbol-macrolet form). It normalizes atomic binding forms to conses in order to avoid special cases in the
actual walker methods.

The function-like binding forms will use walk-lambda-expression for the same purpose.
(defun walk-variable-binding (walker p env &aux (binding (if (consp p) p (list p))))

(list (walk-atomic-form walker (car binding) env nil)
(and (cdr binding)

(walk-form walker (cadr binding) env))))

202. let, flet, macrolet, and symbol-macrolet are all ‘parallel’ binding forms: they walk their bindings in
an unaugmented environment, then execute their body forms in an environment that contains all of the new
bindings.
(define-special-form-walker let

((walker walker) form env &aux
(bindings (mapcar (λ (p) (walk-variable-binding walker p env)) (cadr form)))
(body (cddr form)))

(multiple-value-bind (forms decls) (parse-body body :walker walker :env env)
‘(,(car form)

,bindings
,@(if decls ‘((declare ,@decls)))
,@(walk-list walker forms

(augment-walker-environment walker env
:variable (mapcar #’car bindings)
:declare decls)))))

62 THE WALKER CLWEB §203

203.
(define-special-form-walker flet

((walker walker) form env &aux
(bindings (mapcar (λ (p) (walk-lambda-expression walker p env :operator ’flet :local t :def t))

(cadr form)))
(body (cddr form)))

(multiple-value-bind (forms decls) (parse-body body :walker walker :env env)
‘(,(car form)

,bindings
,@(if decls ‘((declare ,@decls)))
,@(walk-list walker forms

(augment-walker-environment walker env
:function (mapcar #’car bindings)
:declare decls)))))

204. The bindings established by macrolet and symbol-macrolet are different from those established by
the other binding forms in that they include definitions as well as names. We’ll use a little helper function,
make-macro-definitions, for building the expander functions in the former case.
(defun make-macro-definitions (walker defs env)

(mapcar (λ (def &aux (name (walk-atomic-form walker (car def) env nil)))
(list name (enclose (parse-macro name (cadr def) (cddr def) env) env walker)))

defs))

(define-special-form-walker macrolet
((walker walker) form env &aux
(bindings (mapcar (λ (p) (walk-lambda-expression walker p env :operator ’macrolet :local t :def t))

(cadr form)))
(body (cddr form)))

(multiple-value-bind (forms decls) (parse-body body :walker walker :env env)
‘(,(car form)

,bindings
,@(if decls ‘((declare ,@decls)))
,@(walk-list walker forms

(augment-walker-environment walker env
:macro (make-macro-definitions walker bindings env)
:declare decls)))))

205. Walking symbol-macrolet is simpler, since the definitions are given in the bindings themselves.
(define-special-form-walker symbol-macrolet

((walker walker) form env &aux
(bindings (mapcar (λ (p) (walk-variable-binding walker p env)) (cadr form)))
(body (cddr form)))

(multiple-value-bind (forms decls) (parse-body body :walker walker :env env)
‘(,(car form)

,bindings
,@(if decls ‘((declare ,@decls)))
,@(walk-list walker forms

(augment-walker-environment walker env
:symbol-macro bindings
:declare decls)))))

§206 CLWEB THE WALKER 63

206. The two outliers are let∗, which augments its environment sequentially, and labels, which does so
before walking any of its bindings.
(define-special-form-walker let∗

((walker walker) form env &aux
(bindings (cadr form))
(body (cddr form)))

(multiple-value-bind (forms decls) (parse-body body :walker walker :env env)
‘(,(car form)

,(mapcar (λ (p &aux
(walked-binding (walk-variable-binding walker p env))
(variable (list (car walked-binding))))
(setq env (augment-walker-environment walker env

:variable variable
:declare decls))

walked-binding)
bindings)

,@(if decls ‘((declare ,@decls)))
,@(walk-list walker forms env))))

207.
(define-special-form-walker labels

((walker walker) form env &aux
(bindings (cadr form))
(body (cddr form)))

(multiple-value-bind (forms decls) (parse-body body :walker walker :env env)
(let∗ ((function-names (mapcar (λ (p)

(walk-function-name walker (car p) env
:operator ’labels
:local t
:def t))

bindings))
(env (augment-walker-environment walker env

:function function-names
:declare decls)))

‘(,(car form)
,(mapcar (λ (p) (walk-lambda-expression walker p env)) bindings)
,@(if decls ‘((declare ,@decls)))
,@(walk-list walker forms env)))))

208. The last special form we need a specialized walker for is locally , which simply executes its body in
a lexical environment augmented by a set of declarations.
(define-special-form-walker locally ((walker walker) form env)

(multiple-value-bind (forms decls) (parse-body (cdr form) :walker walker :env env)
‘(,(car form)

,@(if decls ‘((declare ,@decls)))
,@(walk-list walker forms

(augment-walker-environment walker env :declare decls)))))

64 INDEXING CLWEB §209

209. Indexing. Having constructed our code walker, we can now use it to produce an index of the
symbols in a web. We’ll say a symbol is interesting if it is interned in one of the packages listed in ∗index-
packages∗. The user should add packages to this list using the @x control code, which calls the following
function. It takes a designator for a list of package designators, and adds each package to ∗index-packages∗.
(defun index-package (packages &aux (packages (ensure-list packages)))

"Inform the weaver that it should index the symbols in PACKAGES."
(dolist (package packages)

(pushnew (find-package package) ∗index-packages∗)))

210. 〈Global variables 12 〉 +≡
(defvar ∗index-packages∗ nil)

211. 〈 Initialize global variables 13 〉 +≡
(setq ∗index-packages∗ nil)

212. Before we proceed, let’s establish some terminology. Formally, an index is an ordered collection of
entries, each of which is a (〈heading〉, 〈locator〉) pair: the locator indicates where the object referred to by
the heading may be found. A list of entries with the same heading is called an entry list, or sometimes just
an entry ; the latter is an abuse of terminology, but useful and usually clear in context.

Headings may in general be multi-leveled, and are sorted lexicographically. In this program, headings are
represented by (designators for) lists of objects that have a specialized heading-name method, which method
should return a string designator.
(defun entry-heading-lessp (h1 h2 &aux (h1 (ensure-list h1)) (h2 (ensure-list h2)))

(or (and (null h1) h2)
(string-lessp (heading-name (car h1)) (heading-name (car h2)))
(and (string-equal (heading-name (car h1)) (heading-name (car h2)))

(cdr h2)
(entry-heading-lessp (cdr h1) (cdr h2)))))

(defun entry-heading-equalp (h1 h2 &aux (h1 (ensure-list h1)) (h2 (ensure-list h2)))
(and (= (length h1) (length h2))

(every #’string-equal
(mapcar #’heading-name h1)
(mapcar #’heading-name h2))))

213. Generally, those objects will be instances of the class heading or one of its sub-classes, but we’ll allow
a few other types of objects, too. The two sub-classes defined here are, respectively, for headings that should
be printed in typewriter type, and ones that should be printed under the control of the TEX macro ‘\9’,
which the user can define as desired.
(defclass heading ()

((name :initarg :name)))

(defclass tt-heading (heading) ())
(defclass custom-heading (heading) ())

214. To simplify some of the logic concerning heading names, we’ll use a custom method combination for
heading-name.
(defun concatenate-string (&rest args) (apply #’concatenate ’string args))
(define-method-combination concatenate-string :identity-with-one-argument t)

§215 CLWEB INDEXING 65

215. The default heading-name method for heading instances is the obvious one. Symbols and strings are
valid headings, too.
(defgeneric heading-name (heading)

(:method-combination concatenate-string)
(:method concatenate-string ((heading heading)) (slot-value heading ’name))
(:method concatenate-string ((heading symbol)) heading)
(:method concatenate-string ((heading string)) heading))

216. The following heading classes are all used as sub-headings, and represent the namespace in which
the object referred to by the primary heading is located.
(defclass global/local-heading (heading)

((local :initarg :local))
(:default-initargs :local nil))

(defclass function-heading (global/local-heading)
((generic :initarg :generic))
(:default-initargs :name "function" :generic nil))

(defclass setf-function-heading (function-heading) ()
(:default-initargs :name "setf function"))

(defclass macro-heading (global/local-heading) ()
(:default-initargs :name "macro"))

(defclass symbol-macro-heading (global/local-heading) ()
(:default-initargs :name "symbol macro"))

(defclass method-heading (heading)
((qualifiers :reader method-heading-qualifiers :initarg :qualifiers))
(:default-initargs :name "method" :qualifiers nil))

(defclass setf-method-heading (method-heading) ()
(:default-initargs :name "setf method"))

(defclass variable-heading (heading)
((special :initarg :special)
(constant :initarg :constant))

(:default-initargs :name "variable" :special nil :constant nil))

(defclass class-heading (heading) ()
(:default-initargs :name "class"))

(defclass condition-class-heading (heading) ()
(:default-initargs :name "condition class"))

66 INDEXING CLWEB §217

217. Several of the heading classes have slots whose names should be prepended to the corresponding
heading names if the value stored there is true; e.g., if a function sub-heading is marked as local, then its
name should be “local function”.
(defmacro define-heading-name-prefix (class &rest slot-names)

(let ((∗print-case∗ :downcase)
(∗print-escape∗ nil)
(∗print-pretty∗ nil))

‘(defmethod heading-name concatenate-string ((heading ,class))
(with-slots ,slot-names heading

(cond ,@(loop for slot-name in slot-names
collect ‘(,slot-name ,(format nil "~A " slot-name))))))))

(define-heading-name-prefix global/local-heading local)
(define-heading-name-prefix function-heading generic)
(define-heading-name-prefix variable-heading constant special)

218. For method headings, we’ll prepend the list of qualifiers if present; otherwise we’ll call them ‘primary’.
(defmethod heading-name concatenate-string ((heading method-heading))

(format nil "~:[primary~;~:*~{~A~^ ~}~] " (method-heading-qualifiers heading)))

219. The sub-heading classes above are usually constructed by the following function during indexing.
The keyword arguments are passed down from the various walker functions, and this function passes them
down to the initializers for the various (sub-)heading classes, but peeks at a few of them to figure out what
kind of heading class to instantiate.
(defun make-sub-heading (operator &rest args &key function-name qualifiers &allow-other-keys)

(apply #’make-instance
(ecase operator

((nil defgeneric) ’function-heading)
((defmethod) 〈Choose an appropriate heading class for a method 220 〉)
((defun flet labels) (typecase function-name

(symbol ’function-heading)
(setf-function-name ’setf-function-heading)))

((defmacro macrolet) ’macro-heading)
((defvar defparameter defconstant) ’variable-heading)
((defclass) ’class-heading)
((define-condition) ’condition-class-heading))

:allow-other-keys t
args))

220. Non-setf primary methods (i.e., methods with empty qualifier lists) are indexed as functions so that
they’ll appear as definitions of the generic function they’re methods of; only methods with qualifiers and setf
methods get independent entries. This helps keep the index compact without significantly affecting usability.
〈Choose an appropriate heading class for a method 220 〉 ≡
(typecase function-name

(symbol (if qualifiers ’method-heading ’function-heading))
(setf-function-name ’setf-method-heading))

This code is used in section 219.

§221 CLWEB INDEXING 67

221. Now let’s turn our attention to the other half of index entries. In this program, a locator is either a
pointer to a section (the usual case) or a cross-reference to another index entry. We’ll represent locators as
instances of a locator class, and use a single generic function, location, to dereference them.

Section locators have an additional slot for a definition flag, which when true indicates that the object
referred to by the associated heading is defined in the section represented by that locator, not just used.
Such locators will be given a bit of typographic emphasis by the weaver when it prints the containing entry.
(defclass locator () ())

(defclass section-locator (locator)
((section :accessor location :initarg :section)
(def :accessor locator-definition-p :initarg :def)))

(defclass xref-locator (locator)
((heading :accessor location :initarg :heading)))

(defclass see-locator (xref-locator) ())
(defclass see-also-locator (xref-locator) ())

222. Here’s a constructor for the various kinds of locators.
(defun make-locator (&key section def see see-also)

(assert (if (or see see-also) (and (not section) (not def)) t)
(section def see see-also)
"Can’t use :SECTION or :DEF with :SEE or :SEE−ALSO.")

(assert (if def section t) (section def) "Can’t use :DEF without :SECTION.")
(assert (not (and see see-also)) (see see-also) "Can’t use both :SEE and :SEE−ALSO.")
(cond (section (make-instance ’section-locator :section section :def def))

(see (make-instance ’see-locator :heading see))
(see-also (make-instance ’see-locator :heading see-also))))

223. Since we’ll eventually want the index sorted by heading, we’ll store the entries in a binary search
tree. To simplify processing, what we’ll actually store is entry lists, which are collections of entries with
identical headings, but we’ll overload the term in what seems to be a fairly traditional manner and call them
entries, too.
(defclass index-entry (binary-search-tree)

((key :accessor entry-heading)
(locators :accessor entry-locators :initarg :locators :initform ’())))

(defmethod find-or-insert (item (root index-entry) &key
(predicate #’entry-heading-lessp)
(test #’entry-heading-equalp)
(insert-if-not-found t))

(call-next-method item root
:predicate predicate
:test test
:insert-if-not-found insert-if-not-found))

224. The entry trees get stored in index objects, for which we define a few protocol functions: make-index
creates a new index; add-index-entry adds an entry to it, and find-index-entries returns the list of locators
with the given heading.
(defclass index ()

((entries :accessor index-entries :initform nil)))

(defun make-index () (make-instance ’index))
(defgeneric add-index-entry (index heading locator &key))
(defgeneric find-index-entries (index heading))

68 INDEXING CLWEB §225

225. We’ll keep a global index around so that we can add ‘manual’ entries (i.e., entries not automatically
generated via the code walk) during reading.
〈Global variables 12 〉 +≡
(defvar ∗index∗ nil)

226. 〈 Initialize global variables 13 〉 +≡
(setq ∗index∗ (make-index))

227. This method adds an index entry for heading with location section. A new locator is constructed only
when necessary, and duplicate locators are automatically suppressed. Definitional locators are also made to
supersede ordinary ones.
(define-modify-macro orf (&rest args) or)

(defmethod add-index-entry ((index index) heading (section section) &key def &aux
(heading (ensure-list heading)))

(flet ((make-locator ()
(make-locator :section section :def def)))

(if (null (index-entries index))
(setf (index-entries index)

(make-instance ’index-entry :key heading :locators (list (make-locator))))
(let∗ ((entry (find-or-insert heading (index-entries index)))

(old-locator (find section (entry-locators entry) :key #’location)))
(if old-locator

(orf (locator-definition-p old-locator) def)
(push (make-locator) (entry-locators entry)))))))

228. And here’s the main index entry retrieval method. In fact, this function isn’t actually used in this
program (although the test suite uses it), since all we do with the index is add entries to it and then traverse
the whole thing and print them all out.
(defmethod find-index-entries ((index index) heading)

(let ((entries (index-entries index)))
(when entries

(multiple-value-bind (entry present-p) (find-or-insert heading entries :insert-if-not-found nil)
(when present-p

(entry-locators entry))))))

229. In order to index them properly, the walker needs to know whether a given function name refers to
an ordinary or generic function.
(defun generic-function-p (function-name)

(or (typep function-name ’generic-function)
(and (fboundp function-name)

(typep (fdefinition function-name) ’generic-function))))

§230 CLWEB INDEXING 69

230. Here are a couple of indexing routines that we’ll use in the walker below for indexing function and
variable uses. They look up the given variable or function in a lexical environment object and add an
appropriate index entry. (We can’t use this routine for definitions because the name being indexed might
not be in the environment yet.) We don’t currently index lexical variables, as that would probably just bulk
up the index to no particular advantage.
(defun index-variable (index variable section env)

(multiple-value-bind (type local) (variable-information variable env)
(when (member type ’(:special :symbol-macro :constant))

(add-index-entry
index
(list variable

(ecase type
(:special (make-instance ’variable-heading :special t))
(:constant (make-instance ’variable-heading :constant t))
(:symbol-macro (make-instance ’symbol-macro-heading :local local))))

section))))

(defun index-funcall (index function-name section env)
(multiple-value-bind (type local) (function-information function-name env)

(when (member type ’(:function :macro))
(add-index-entry
index
(list function-name

(ecase type
(:function (make-instance ’function-heading

:local local
:generic (generic-function-p function-name)))

(:macro (make-instance ’macro-heading :local local))))
section))))

70 INDEXING CLWEB §231

231. To index definitions, we’ll need more information from the walker about the context in which the
variable or function name occurred. In particular, we’ll get the car of the defining form as the operator
argument, which is then passed down to make-sub-heading .
(defun index-defvar (index variable section &key operator special)

(add-index-entry
index
(list variable (make-sub-heading operator

:special special
:constant (eql operator ’defconstant)))

section
:def t))

(defun index-defun (index function-name section &key operator local generic qualifiers)
(add-index-entry
index
(list (typecase function-name

(symbol function-name)
(setf-function-name (cadr function-name)))

(make-sub-heading operator
:function-name function-name
:local local
:generic (or generic (generic-function-p function-name))
:qualifiers qualifiers))

section
:def t))

§232 CLWEB INDEXING 71

232. We’ll perform the indexing by walking over the code of each section and noting each of the interesting
symbols that we find there according to its semantic role. In theory, this should be a straightforward task
for any Common Lisp code walker. What makes it tricky is that references to named sections can occur
anywhere in a form, which might break the syntax of macros and special forms unless we tangle the form
first. But once we tangle a form, we lose the provenance of the sub-forms that came from named sections,
and so our index would be wrong.

The trick that we use to overcome this problem is to tangle the forms in a special way where instead of
just splicing the named section code into place, we make a special kind of copy of each form, and splice that
into place. These copies will have each interesting symbol replaced with an uninterned symbol whose value
cell contains the symbol it replaced and whose section property contains the section in which the original
symbol occurred. We’ll these uninterned symbols referring symbols.

First, we’ll need a routine that does the substitution just described. The substitution is done blindly and
without regard to the syntax or semantics of Common Lisp, since we can’t walk pre-tangled code.
(defun substitute-symbols (form section &aux symbols)

(labels ((get-symbols (form)
(cond ((and (symbolp form)

(member (symbol-package form) ∗index-packages∗))
(pushnew form symbols))

((atom form) nil)
(t (get-symbols (car form))

(get-symbols (cdr form))))))
(get-symbols form)
(sublis (map ’list

(λ (sym)
(let ((refsym (make-symbol (symbol-name sym))))

(setf (symbol-value refsym) sym)
(setf (get refsym ’section) section)
(cons sym refsym)))

symbols)
form)))

233. This next function goes the other way: given a symbol, it determines whether it is a referring symbol,
and if so, it returns the symbol referred to and the section it came from. Otherwise, it just returns the given
symbol. This interface makes it convenient to use in a multiple-value-bind form without having to apply a
predicate first.
(defun symbol-provenance (symbol)

(let ((section (get symbol ’section)))
(if (and (null (symbol-package symbol))

(boundp symbol)
section)

(values (symbol-value symbol) section)
symbol)))

72 INDEXING CLWEB §234

234. To get referring symbols in the tangled code, we’ll use an :around method on section-code that
conditions on a special variable, ∗indexing∗, that we’ll bind to true while we’re tangling for the purposes of
indexing.

We can’t feed the raw section code to substitute-symbols, since it’s not really Lisp code: it’s full of markers
and such. So we’ll abuse the tangler infrastructure and use it to do marker replacement, but not named-
section expansion.
(defmethod section-code :around ((section section))

(let ((code (call-next-method)))
(if ∗indexing∗

(substitute-symbols (tangle code :expand-named-sections nil) section)
code)))

235. 〈Global variables 12 〉 +≡
(defvar ∗indexing∗ nil)

236. The top-level indexing routine will use this function to obtain the completely tangled code with
referring symbols, and that’s what we’ll walk.
(defun tangle-code-for-indexing (sections)

(let ((∗indexing∗ t))
(tangle (unnamed-section-code-parts sections))))

237. Now we’re ready to define a specialized walker that does the actual indexing.
(defclass indexing-walker (walker)

((index :accessor walker-index :initarg :index :initform (make-index))))

§238 CLWEB INDEXING 73

238. We have to override the walker’s macro expansion function, since the forms that we’re considering
might be or contain referring symbols, which won’t have macro definitions. There are two important cases
here: (1) a form that is a referring symbol whose referent is a symbol macro in the current environment; and
(2) a compound form, the operator of which is a referring symbol whose referent is a macro in the current
environment. In both cases, we’ll index the use of the (symbol) macro, then hand control off to the next
method for the actual expansion.
(defmethod macroexpand-for-walk ((walker indexing-walker) form env)

(typecase form
(symbol
(multiple-value-bind (symbol section) (symbol-provenance form)

(cond (section
(case (variable-information symbol env)

(:symbol-macro
(index-variable (walker-index walker) symbol section env)
(call-next-method walker (cons symbol (cdr form)) env))

(t form)))
(t (call-next-method)))))

(cons
(multiple-value-bind (symbol section) (symbol-provenance (car form))

(cond (section
(case (function-information symbol env)

(:macro
(index-funcall (walker-index walker) symbol section env)
(call-next-method walker (cons symbol (cdr form)) env))

(t form)))
(t (call-next-method)))))

(t form)))

239. The only atoms we care about indexing are referring symbols. We’ll return the referents; this is
where the reverse-substitution of referring symbols takes place.
(defmethod walk-atomic-form ((walker indexing-walker) form env &optional evalp)

(declare (ignore evalp))
(if (symbolp form)

(multiple-value-bind (symbol section) (symbol-provenance form)
(when section

(index-variable (walker-index walker) symbol section env))
symbol)

form))

240. We’ll index all function-call-like forms whose operator is a referring symbol.
(defmethod walk-compound-form :before ((walker indexing-walker) operator form env)

(declare (ignore form))
(multiple-value-bind (symbol section) (symbol-provenance operator)

(when section
(index-funcall (walker-index walker) symbol section env))))

74 INDEXING CLWEB §241

241. The walker methods for all of the function-defining and binding forms call down to this function,
passing keyword arguments that describe the context.
(defmethod walk-function-name :before ((walker indexing-walker) function-name env &rest args &key def)

(let ((index (walker-index walker)))
(typecase function-name

(symbol
(multiple-value-bind (symbol section) (symbol-provenance function-name)

(when section
(if def

(apply #’index-defun index symbol section :allow-other-keys t args)
(index-funcall index symbol section env)))))

(setf-function-name
(multiple-value-bind (symbol section) (symbol-provenance (cadr function-name))

(when section
(if def

(apply #’index-defun index ‘(setf ,symbol) section :allow-other-keys t args)
(index-funcall index symbol section env))))))))

242. We’ll treat defun and defmacro as special forms, since otherwise they will get macro-expanded before
we get a chance to walk the function name. In fact, we won’t even bother expanding them at all, since we
don’t care about the implementation-specific expansions, and we get everything we need from this simple
walk.

Note in particular that we don’t record the macro definition when we walk a defmacro form. For the macro
definition to be available during the walk, the defining form must have been previously evaluated.

The indexing proper happens in the walk-function-name method we just defined, by way of walk-lambda-
expression.
(macrolet ((define-defun-like-walker (operator)

‘(define-special-form-walker ,operator ((walker indexing-walker) form env)
‘(,(car form)

,@(walk-lambda-expression walker (cdr form) env
:operator (car form)
:def t)))))

(define-defun-like-walker defun)
(define-defun-like-walker defmacro))

243. The special-variable-defining forms must also be walked as if they were special forms. Once again,
we’ll just skip the macro expansions.
(macrolet ((define-indexing-defvar-walker (operator)

‘(define-special-form-walker ,operator ((walker indexing-walker) form env)
‘(,(car form)

,(multiple-value-bind (symbol section) (symbol-provenance (cadr form))
(when section

(index-defvar (walker-index walker) symbol section
:operator (car form)
:special t))

symbol)
,@(walk-list walker (cddr form) env)))))

(define-indexing-defvar-walker defvar)
(define-indexing-defvar-walker defparameter)
(define-indexing-defvar-walker defconstant))

§244 CLWEB INDEXING 75

244. The default method for walk-declaration-specifiers just returns the given specifiers. That’s not
sufficient for our purposes here, though, because we need to replace referring symbols with their referents;
otherwise, the declarations would apply to the wrong symbols.

Walking general declaration expressions is difficult, mostly because of the shorthand notation for type
declarations. Fortunately, we only need to care about special declarations, so we just throw everything else
away.
(defmethod walk-declaration-specifiers ((walker indexing-walker) decls env)

(loop for (identifier . data) in decls
if (eql identifier ’special)

collect ‘(special ,@(walk-list walker data env))))

245. Now we’ll turn to the various clos forms. We’ll start with a little macro to pull off method qualifiers
from a defgeneric form or a method description. Syntactically, the qualifiers are any non-list objects preceding
the specialized λ-list.
(defmacro pop-qualifiers (place)

‘(loop until (listp (car ,place)) collect (pop ,place)))

246. For defgeneric forms, we’re interested in the name of the generic function being defined and any
methods that may be specified as method descriptions.
(define-special-form-walker defgeneric ((walker indexing-walker) form env)

(destructuring-bind (operator function-name lambda-list &rest options) form
‘(,operator

,(walk-function-name walker function-name env :operator ’defgeneric
:generic t
:def t)

,(walk-lambda-list walker lambda-list nil env)
,@(loop for form in options

collect (case (car form)
(:method 〈Walk the method description in form 248 〉)
(t (walk-list walker form env)))))))

247. Method descriptions are very much like defmethod forms with an implicit function name; this routine
walks both. The function name (if non-null) and qualifiers (if any) should have been walked already; we’ll
walk the specialized λ-list and body forms here.
(defun walk-method-definition (walker operator function-name qualifiers

lambda-list body env)
(multiple-value-bind (body-forms decls doc) (parse-body body :walker walker :env env)

(multiple-value-bind (lambda-list env) (walk-specialized-lambda-list walker lambda-list decls env)
‘(,operator

,@(when function-name ‘(,function-name))
,@qualifiers
,lambda-list
,@(if doc ‘(,doc))
,@(if decls ‘((declare ,@decls)))
,@(walk-list walker body-forms env)))))

76 INDEXING CLWEB §248

248. 〈Walk the method description in form 248 〉 ≡
(let∗ ((operator (pop form))

(qualifiers (mapcar (λ (q) (walk-atomic-form walker q env nil))
(pop-qualifiers form)))

(lambda-list (pop form))
(body form))

;; This is purely for its side-effect on the index.
(walk-function-name walker function-name env

:operator ’defmethod
:generic t
:qualifiers qualifiers
:def t)

(walk-method-definition walker operator nil qualifiers lambda-list body env))

This code is used in section 246.

249. Walking a defmethod form is almost, but not quite, the same as walking a method description.
(define-special-form-walker defmethod

((walker indexing-walker) form env &aux
(operator (pop form))
(function-name (pop form)) ; don’t walk yet: wait for the qualifiers
(qualifiers (mapcar (λ (q) (walk-atomic-form walker q env nil))

(pop-qualifiers form)))
(lambda-list (pop form))
(body form))

(walk-method-definition walker operator
(walk-function-name walker function-name env

:operator ’defmethod
:generic t
:qualifiers qualifiers
:def t)

qualifiers lambda-list body env))

§250 CLWEB INDEXING 77

250. We’ll walk defclass and define-condition forms in order to index the class names, super-classes,
and accessor methods.
(macrolet ((define-defclass-walker (operator)

‘(define-special-form-walker ,operator ((walker indexing-walker) form env)
(destructuring-bind (operator name supers slot-specs &rest options) form

(multiple-value-bind (symbol section) (symbol-provenance name)
(when section

(add-index-entry (walker-index walker)
(list symbol (make-sub-heading operator))
section
:def t))

‘(,operator
,(walk-atomic-form walker symbol env nil)
,(mapcar (λ (super)

〈 Index the use of the superclass super 251 〉)
supers)

,(mapcar (λ (spec) (walk-slot-specifier walker spec env)) slot-specs)
,@(walk-list walker options env)))))))

(define-defclass-walker defclass)
(define-defclass-walker define-condition))

251. 〈 Index the use of the superclass super 251 〉 ≡
(multiple-value-bind (symbol section) (symbol-provenance super)

(when section
(add-index-entry (walker-index walker)

(list symbol (make-sub-heading operator))
section))

(walk-atomic-form walker symbol env nil))

This code is used in section 250.

252. The only slot options we care about are :reader , :writer , and :accessor . We index the methods
implicitly created by those options.
(defun walk-slot-specifier (walker spec env)

(etypecase spec
(symbol (walk-atomic-form walker spec env nil))
(cons (destructuring-bind (name &rest options) spec

(loop for (opt-name opt-value) on options by #’cddr
if (member opt-name ’(:reader :writer :accessor))

do 〈 Index opt-value as a slot access method 253 〉)
‘(,(walk-atomic-form walker name env nil)

,@(walk-list walker options env))))))

253. 〈 Index opt-value as a slot access method 253 〉 ≡
(multiple-value-bind (symbol section) (symbol-provenance opt-value)

(when section
(index-defun (walker-index walker) symbol section :operator ’defmethod :generic t)
(when (eql opt-name :accessor)

(index-defun (walker-index walker) ‘(setf ,symbol) section :operator ’defmethod :generic t))))

This code is used in section 252.

78 INDEXING CLWEB §254

254. And here, finally, is the top-level indexing routine: it walks the tangled, symbol-replaced code of the
given sections and returns an index of all of the interesting symbols so encountered.
(defun index-sections (sections &key

(index ∗index∗)
(walker (make-instance ’indexing-walker :index index)))

(let ((∗evaluating∗ t))
(dolist (form (tangle-code-for-indexing sections) (walker-index walker))

(walk-form walker form))))

255. All that remains now is to write the index entries out to the index file.
(set-weave-dispatch ’index

(λ (stream index)
(maptree (λ (entry) (write entry :stream stream))

(index-entries index))))

(set-weave-dispatch ’index-entry
(λ (stream entry)

(format stream "\\I~/clweb::print−entry−heading/~{, ~W~}.~%"
(entry-heading entry)
(sort (copy-list (entry-locators entry)) #’<

:key (λ (loc) (section-number (location loc)))))))

(set-weave-dispatch ’section-locator
(λ (stream loc)

(format stream "~:[~D~;\\[~D]~]"

(locator-definition-p loc)
(section-number (location loc)))))

(defun print-entry-heading (stream heading &rest args)
(declare (ignore args))
(pprint-logical-block (stream heading)

(pprint-exit-if-list-exhausted)
(loop

(let ((heading (pprint-pop)))
(cond ((symbolp heading) (format stream "\\(~W\\)" heading))

(t (format stream "~[\\.~;\\9~]{~/clweb::print−TeX/}"

(position (type-of heading) ’(tt-heading custom-heading))
(read-tex-from-string (heading-name heading))))))

(pprint-exit-if-list-exhausted)
(write-char #\ stream))))

§256 CLWEB INDEX 79

256. Index.

charpos-streams special variable: 49, 50, 51.
consing-dot special variable: 62, 66.
current-section special variable: 10, 12, 13,

14, 98, 103.
empty-list special variable: 62, 64.
end-control-text special variable: 97.
eof special variable: 39, 40, 88, 107, 109,

110, 132.
evaluating special variable: 59, 82, 87, 110,

118, 121, 254.
index special variable: 103, 225, 226, 254.
index-packages special variable: 209, 210,

211, 232.
indexing special variable: 234, 235, 236.
modes special variable: 35, 91.
named-sections special variable: 29, 30, 33,

124, 129.
par special variable: 104, 113.
print-escape-list special variable: 138, 139, 140.
print-marker special variable: 57, 58, 72, 75,

82, 85, 87, 121.
radix-prefix-alist special variable: 83.
re-reading special variable: 72, 73, 75.
readtables special variable: 35, 36.
sections special variable: 12, 13, 14, 17, 121, 125.
tab-width special variable: 45, 46.
test-sections special variable: 15, 16, 17, 18,

121, 125.
weave-pprint-dispatch special variable: 128,

129, 130.
weave-print special variable: 125, 127, 129.
weave-verbose special variable: 125, 127, 129.
whitespace special variable: 31, 32, 114.
add-index-entry generic function: 103, 224, 227,

230, 231, 250, 251.
Ambiguous prefix...: 27.
ambiguous-prefix generic function: 27.
ambiguous-prefix-alt-match generic function: 27.
ambiguous-prefix-error condition class: 27.
ambiguous-prefix-first-match generic function: 27.
analyze-indentation function: 144, 146.
arg-name local function: 181.
augment-env local function: 188, 189, 192, 193,

194, 195, 196, 198.
augment-walker-environment generic function: 171,

172, 188, 198, 202, 203, 204, 205, 206, 207, 208.
backq-form generic function: 72, 153.
backquote-marker class: 72.
backquote-reader function: 72.
binary-search-tree class: 19, 23, 223.
bit-vector-marker class: 80.

Bug, known: 32.
call-reader-macro-function function: 42, 43.
Can’t define a named section...: 99.
Can’t start a section...: 112.
Can’t use a section...: 99.
charpos generic function: 45, 51.
charpos-input-stream class: 47.
charpos-output-stream class: 48.
charpos-proxy-stream generic function: 44, 47,

48, 50, 51.
charpos-proxy-stream primary setf method: 44.
charpos-stream class: 44, 47, 48.
cited-by generic function: 23, 98, 134, 137.
cited-by primary setf method: 23.
class-heading class: 216.
comma-form generic function: 75, 153.
comma-marker class: 75.
comma-modifier generic function: 75, 153.
comma-reader function: 75.
comment-marker class: 69.
comment-reader function: 70.
comment-text generic function: 69, 152.
concatenate-string function: 214.
condition-class-heading class: 216.
consing-dot-marker class: 62.
custom-heading class: 213.
declaration-p local function: 185.
define-block-like-walker local macro: 182.
define-defclass-walker local macro: 250.
define-defun-like-walker local macro: 242.
define-heading-name-prefix macro: 217.
define-indexing-defvar-walker local macro: 243.
define-quote-like-walker local macro: 183.
define-special-form-walker macro: 181, 182, 183,

184, 200, 202, 203, 204, 205, 206, 207, 208,
242, 243, 246, 249, 250.

doc-string-p local function: 185.
empty-list-marker class: 62.
enclose function: 164, 204.
ensure-list function: 6, 88, 91, 209, 212, 227.
entry-heading generic function: 223, 255.
entry-heading primary setf method: 223.
entry-heading-equalp function: 212, 223.
entry-heading-lessp function: 212, 223.
entry-locators generic function: 223, 227, 228, 255.
entry-locators primary setf method: 223.
eof-p function: 40, 88, 132.
evaluated-form-marker class: 96.
expand local function: 116.
featurep function: 86, 87.
find-index-entries generic function: 224, 228.

80 INDEX CLWEB §256

find-next-newline local function: 144, 145.
find-or-insert generic function: 20, 26, 33, 223,

227, 228.
find-section function: 33, 98, 100, 101, 106, 134.
finish-section local function: 106, 108.
function-heading class: 216.
function-information function: 166, 230, 238.
function-marker class: 78.
generic-function-p function: 229, 230, 231.
get-charpos-stream-buffer generic function: 45,

47, 48.
get-control-code function: 91.
get-symbols local function: 232.
global/local-heading class: 216.
heading class: 213, 216.
heading-name concatenate-string method: 215,

218.
heading-name generic function: 212, 215, 255.
indentation generic function: 60, 145, 147.
indentation primary setf method: 60.
index class: 224.
index-defun function: 231, 241, 253.
index-defvar function: 231, 243.
index-entries generic function: 224, 227, 228, 255.
index-entries primary setf method: 224.
index-entry class: 223.
index-entry-reader function: 103.
index-funcall function: 230, 238, 240, 241.
index-package function: 102, 209.
index-package-reader function: 102.
index-sections function: 129, 254.
index-variable function: 230, 238, 239.
indexing-walker class: 237.
Invalid function name...: 179.
invalid-function-name condition class: 179.
invalid-function-name generic function: 179.
left-child generic function: 19, 20, 21, 22, 28.
left-child primary setf method: 19.
lessp local function: 20, 21.
limbo-section class: 11.
list-marker class: 62.
list-marker-charpos generic function: 62, 144.
list-marker-charpos primary setf method: 62.
list-marker-length generic function: 62.
list-marker-length primary setf method: 62.
list-marker-list generic function: 62, 144.
list-marker-list primary setf method: 62.
list-marker-p function: 62, 134.
list-reader function: 65.
load-sections-from-temp-file function: 119.
load-web function: 118.
load-web-from-stream function: 118, 119.

location generic function: 221, 227, 255.
location primary setf method: 221.
locator class: 221.
locator-definition-p generic function: 221, 227, 255.
locator-definition-p primary setf method: 221.
logical-block-list function: 147.
macro-heading class: 216.
macroexpand-for-walk generic function: 167, 171,

172, 238.
make-charpos-input-stream function: 52.
make-charpos-output-stream function: 52.
make-index function: 224, 226, 237.
make-list-reader function: 64, 65.
make-locator function: 222, 227.
make-locator local function: 227.
make-logical-block function: 143, 145.
make-macro-definitions function: 204.
make-section-name-reader function: 98.
make-sub-heading function: 219, 231, 250, 251.
manual index entries: 103.
mapappend function: 7, 23, 117.
maptree generic function: 22, 124, 129, 255.
marker class: 56, 60, 62, 68, 69, 72, 75, 79, 82,

83, 85, 87, 95, 96.
marker-boundp generic function: 56, 58, 62, 63,

68, 72, 75, 79, 82, 85, 87, 115.
marker-value generic function: 56, 58, 62, 68, 72,

75, 79, 82, 85, 87, 110, 115, 157.
markerp function: 56, 62, 63.
maybe-destructure local function: 188, 192, 193.
maybe-push macro: 105, 107, 109.
method-heading class: 216.
method-heading-qualifiers generic function: 216,

218.
named-section class: 23.
named-section generic function: 137.
named-section primary setf method: 137.
named-section-sections :around method: 23.
named-section-sections generic function: 23, 106,

134, 136.
named-section-sections primary setf method: 23.
newline-marker class: 60, 104.
newlinep function: 60, 96, 113, 114, 134, 144,

145, 147.
next-logical-block local function: 144, 145.
node-key generic function: 19, 20, 28.
node-key primary setf method: 19.
note-unused-section local function: 124.
orf macro: 227.
par-marker class: 104.
parse-body function: 185, 199, 202, 203, 204, 205,

206, 207, 208, 247.

§256 CLWEB INDEX 81

parse-macro function: 165, 204.
pop-qualifiers macro: 245, 248, 249.
pprint-comma function: 76.
pprint-list function: 76.
print-char function: 140.
print-entry-heading function: 255.
print-escaped function: 138, 141.
print-limbo function: 133.
print-list function: 146.
print-logical-block function: 147.
print-section function: 134.
print-section-name function: 134, 136, 137.
print-string function: 139.
print-symbol function: 141.
print-tex function: 131, 133, 134.
print-xrefs function: 134, 135, 137.
push-section :after method: 18.
push-section generic function: 14, 17.
quote-marker class: 68, 78.
quote-marker-quote generic function: 68.
quoted-form generic function: 68, 151, 154.
radix-marker class: 83.
radix-marker-base generic function: 83, 157.
radix-reader function: 83.
read-control-text function: 97, 98, 103.
read-evaluated-form function: 96.
read-inner-lisp function: 89.
read-maybe-nothing function: 42, 67.
read-maybe-nothing-internal function: 42.
read-maybe-nothing-preserving-whitespace

function: 42, 107, 109, 110.
read-sections function: 106, 118, 121, 125.
read-tex-from-string function: 132, 136, 152, 255.
read-time-conditional class: 87.
read-time-conditional-form generic function: 87,

159.
read-time-conditional-marker class: 87.
read-time-conditional-plusp generic function: 87,

159.
read-time-conditional-reader function: 87.
read-time-conditional-test generic function: 87, 159.
read-time-eval class: 82.
read-time-eval-form generic function: 82, 156.
read-time-eval-marker class: 82.
read-with-echo macro: 55, 80, 87.
readtable-for-mode function: 36, 60, 64, 65, 68,

70, 72, 75, 78, 79, 80, 82, 83, 84, 85, 87,
89, 90, 91, 110.

release-charpos-stream function: 51.
reorder-env-information macro: 166.
rewind local function: 66.
right-child generic function: 19, 20, 21, 22, 28.

right-child primary setf method: 19.
samep local function: 20.
section class: 8, 9, 10, 11.
section-code :around method: 234.
section-code generic function: 8, 23, 106, 115,

117, 134.
section-code primary setf method: 8.
section-commentary generic function: 8, 106,

133, 134.
section-commentary primary setf method: 8.
section-lacks-commentary condition class: 112.
section-lacks-commentary-stream generic

function: 112.
section-locator class: 221.
section-name generic function: 8, 23, 34, 74, 95,

99, 106, 109, 117, 124, 134, 136.
section-name primary setf method: 8, 23.
section-name-context-error condition class: 99.
section-name-definition-error condition class: 99.
section-name-equal function: 25, 26.
section-name-index-entry class: 137.
section-name-lessp function: 25, 26.
section-name-prefix-p function: 24, 25, 34.
section-name-use-error condition class: 99.
section-number generic function: 8, 14, 23, 124,

129, 134, 135, 136, 255.
section-number primary setf method: 8.
see-also-locator class: 221.
see-locator class: 221.
set-control-code function: 91, 92, 93, 94, 95, 96,

97, 98, 102, 103.
set-weave-dispatch function: 130, 133, 134, 136,

137, 139, 140, 141, 142, 146, 147, 149, 150, 151,
152, 153, 154, 155, 156, 157, 158, 159, 255.

setf-function-heading class: 216.
setf-method-heading class: 216.
sharpsign-dot-reader function: 82.
sharpsign-quote-reader function: 78.
simple-bit-vector-reader function: 80.
simple-reader-error condition class: 38.
simple-reader-error function: 38, 66, 79, 82.
simple-vector-marker class: 79, 80.
simple-vector-reader function: 79.
single-quote-reader function: 68.
snarf-until-control-char function: 88, 97, 107,

109, 132.
squeeze function: 31, 33.
starred-section class: 9, 10.
starred-test-section class: 10.
Start a new unnamed...: 111.
start-code-marker class: 95.
start-code-reader function: 95.

82 INDEX CLWEB §256

start-section-reader function: 93.
start-test-section-reader function: 94.
stream-charpos function: 51, 65.
structure-marker class: 85.
structure-marker-form generic function: 85, 158.
structure-reader function: 85.
substitute-symbols function: 232, 234.
symbol-macro-heading class: 216.
symbol-macro-p local function: 167.
symbol-provenance function: 233, 238, 239, 240,

241, 243, 250, 251, 253.
tangle function: 110, 116, 118, 121, 234, 236.
tangle-1 function: 115, 116.
tangle-1 local function: 115.
tangle-code-for-indexing function: 236, 254.
tangle-file function: 121.
test-for-section generic function: 10, 134.
test-for-section primary setf method: 10.
test-section class: 10.
tests-file-pathname function: 120, 122, 126.
token-delimiter-p function: 41, 66.
tt-heading class: 213.
unnamed-section-code-parts function: 117, 118,

121, 236.
unused-named-section-warning condition class: 123.
update-state local function: 188, 190, 193, 195.
used-by generic function: 23, 98, 124, 134, 137.
used-by primary setf method: 23.
variable-heading class: 216.
variable-information function: 166, 167, 230, 238.
walk-as-special-form local macro: 180.
walk-as-special-form-p generic function: 167,

169, 170, 180.
walk-atomic-form generic function: 167, 174, 175,

176, 177, 182, 188, 198, 201, 204, 239, 248,
249, 250, 251, 252.

walk-compound-form :before method: 240.
walk-compound-form generic function: 167, 174,

176.
walk-declaration-specifiers generic function: 185,

186, 187, 244.
walk-form generic function: 164, 167, 168, 173,

192, 193, 194, 198, 201, 254.
walk-function-name :before method: 241.
walk-function-name generic function: 177, 178,

184, 199, 207, 246, 248, 249.
walk-lambda-expression function: 184, 199, 200,

203, 204, 207, 242.
walk-lambda-list function: 188, 191, 197, 199, 246.
walk-list function: 167, 173, 176, 182, 199, 202,

203, 204, 205, 206, 207, 208, 243, 244, 246,
247, 250, 252.

walk-method-definition function: 247, 248, 249.
walk-slot-specifier function: 250, 252.
walk-specialized-lambda-list function: 197, 247.
walk-var local function: 188, 189, 190, 193, 194,

195, 196, 198.
walk-variable-binding function: 201, 202, 205, 206.
walker class: 161, 237.
walker-index generic function: 237, 238, 239, 240,

241, 243, 250, 251, 253, 254.
walker-index primary setf method: 237.
weave function: 125.
weave local function: 129.
weave-sections function: 125, 129.
whitespacep function: 31, 41.
with-charpos-input-stream macro: 53, 106.
with-charpos-output-stream macro: 53.
with-mode macro: 37, 89, 97, 107, 109, 110, 132.
with-output-file local macro: 129.
with-read-buffer macro: 43.
with-rewind-stream macro: 54, 66.
write-forms local function: 121.
xref-locator class: 221.

CLWEB NAMES OF THE SECTIONS 83

〈Accumulate limbo text in commentary 107 〉 Used in section 106.

〈Accumulate Lisp-mode material in code 110 〉 Used in section 106. Cited in section 114.

〈Accumulate TEX-mode material in commentary 109 〉 Used in section 106.

〈Build a bit vector from the characters in bits 81 〉 Used in section 80.

〈Build a logical block from list 145 〉 Used in section 144.

〈Call the standard reader macro function for #〈sub-char〉 84 〉 Used in section 83.

〈Check for an ambiguous match, and raise an error in that case 28 〉 Used in section 26.

〈Check for &whole and &environment vars, and augment the lexical environment with them if found 189 〉
Used in section 188.

〈Choose an appropriate heading class for a method 220 〉 Used in section 219.

〈Complain about any unused named sections 124 〉 Used in section 121.

〈Complain about starting a section without a commentary part 111 〉 Used in section 110.

〈Condition classes 27, 38, 99, 112, 123, 179 〉 Used in section 5.

〈Extract the required parameters from lambda-list 198 〉 Used in section 197.

〈Find the tail of the list marker 63 〉 Used in section 62.

〈Finish the last section and initialize section variables 108 〉 Used in sections 106 and 111.

〈Global variables 12, 15, 29, 32, 35, 39, 46, 49, 57, 59, 73, 127, 128, 210, 225, 235 〉 Used in section 5.

〈 Index the use of the superclass super 251 〉 Used in section 250. Cited in section 256.

〈 Index opt-value as a slot access method 253 〉 Used in section 252.

〈 Initialize global variables 13, 16, 30, 211, 226 〉 Used in sections 118, 121, and 125.

〈 Insert a new node with key item and return it 21 〉 Used in section 20.

〈Maybe push the newline marker 113 〉 Used in section 110.

〈Merge defaults for tangler file names 122 〉 Used in section 121.

〈Merge defaults for weaver file names 126 〉 Used in section 125.

〈Process dotted rest var 196 〉 Used in section 188.

〈Process the symbol in arg as a parameter 195 〉 Used in sections 191, 192, 193, and 194.

〈Process arg as a keyword parameter 193 〉 Used in section 188.

〈Process arg as a required parameter 191 〉 Used in section 188.

〈Process arg as an auxiliary variable 194 〉 Used in section 188.

〈Process arg as an environment parameter 190 〉 Used in section 188.

〈Process arg as an optional parameter 192 〉 Used in section 188.

〈Read characters up to, but not including, the next newline 71 〉 Used in section 70.

〈Read the next object from stream and push it onto list 67 〉 Used in sections 65 and 66.

〈Read the next token from stream, which might be a consing dot 66 〉 Used in section 65.

〈Signal an error about section definition in Lisp mode 100 〉 Used in section 98.

〈Signal an error about section name use in TEX mode 101 〉 Used in section 98.

〈Trim whitespace and reverse commentary and code 114 〉 Used in section 106.

〈Update the section name if the new one is better 34 〉 Used in section 33.

〈Walk the method description in form 248 〉 Used in section 246. Cited in section 256.

〈Walker generic functions 168, 170, 172, 174, 178, 186 〉 Used in section 162.

CLWEB

Section Page
Introduction . 1 1
Sections . 8 3
Reading . 35 10
The tangler . 115 35
The weaver . 125 40
The walker . 160 52
Indexing . 209 64
Index . 256 79

	Introduction
	Sections
	Reading
	The tangler
	The weaver
	The walker
	Indexing
	Index
	Names of the sections
	Accumulate limbo text in commentary
	Accumulate Lisp-mode material in code
	Accumulate TeX-mode material in commentary
	Build a bit vector from the characters in bits
	Build a logical block from list
	Call the standard reader macro function for #sub-char
	Check for an ambiguous match, and raise an error in that case
	Check for =whole and =environment vars, and augment the lexical environment with them if found
	Choose an appropriate heading class for a method
	Complain about any unused named sections
	Complain about starting a section without a commentary part
	Condition classes
	Extract the required parameters from lambda-list
	Find the tail of the list marker
	Finish the last section and initialize section variables
	Global variables
	Index the use of the superclass super
	Index opt-value as a slot access method
	Initialize global variables
	Insert a new node with key item and return it
	Maybe push the newline marker
	Merge defaults for tangler file names
	Merge defaults for weaver file names
	Process dotted rest var
	Process the symbol in arg as a parameter
	Process arg as a keyword parameter
	Process arg as a required parameter
	Process arg as an auxiliary variable
	Process arg as an environment parameter
	Process arg as an optional parameter
	Read characters up to, but not including, the next newline
	Read the next object from stream and push it onto list
	Read the next token from stream, which might be a consing dot
	Signal an error about section definition in Lisp mode
	Signal an error about section name use in TeX mode
	Trim whitespace and reverse commentary and code
	Update the section name if the new one is better
	Walk the method description in form
	Walker generic functions

