Gray code fundamentals

The Gray Code

R W Doran
Department of Computer Science
The University of Auckland

Abstract

This report is a self-contained summary of properties and algorithms concerning the Gray code. Descriptions are given of the Gray code definition, algorithms and circuits for generating the code and for conversion between binary and Gray code, for incrementing, counting, and adding Gray code words. Some interesting applications of the code are also treated.

1. Introduction

What we now call Gray code was invented by Frank Gray. It was described in a patent that was awarded in 1953, however, the work was performed much earlier, the patent being applied for in 1947. Gray was a researcher at Bell Telephone Laboratories; during the 1930s and 1940s he was awarded numerous patents for work related to television. According to Heath [Hea72] the code was first, in fact, used by Baudot for telegraphy in the 1870s, though it is only since the advent computers that the code has become widely known.

The term Gray code is sometimes used to refer to any single-distance code, that is, one in which adjacent code words (perhaps representing integers differing by 1) differ by 1 in one digit position only. Gray introduced what we would now call the canonical binary single-distance code, though he mentioned that other binary single-distance codes could be obtained by permuting the columns and rotating the rows of the code table. The codes of Gray, and natural extensions to bases other than binary, are only a very small subset of all single-distance codes. In this report we will use the term "the Gray code" to refer to the code of Gray and "single-distance" to refer to the more general case; we will be concerned mainly with properties of the Gray code.

The original purpose of this report was to consider algorithms for parallel arithmetic using Gray codes (the Gray representation is particularly suited to serial arithmetic; more ingenuity is required to operate in parallel). In surveying the literature it became clear that there had been much discovered and written about the Gray code; it is associated with many elegant algorithms and circuits. However, this wealth of technical material had never been gathered together and treated in a consistent form, hence, a self-contained survey of the codes properties, algorithms and circuits, has become the main topic, though parallel operations are included.

2. Definition of the Gray Code

Origin of the code

The Gray code arises naturally in many situations. Grays interest in the code was related to what we would now call analog to digital conversion. The goal was to convert an integer value, represented as a voltage, into a series of pulses representing the same number in digital form. The technique, as described in Grays patent, was to use the voltage being converted to displace vertically an electron beam that is being swept horizontally across the screen of a cathode ray tube. The screen has a mask etched on it that only allows the passage of the beam in certain places; a current is generated only when the beam passes through the mask. The passage of the beam will then give rise to a series of on/off conditions corresponding to the pattern of mask holes that it passes.

The original scheme was to use a mask representing a standard binary encoding. However, this has the problem that, if the beam is close to the boundary between two values, a slight distortion in the beam can give an output that is neither of the two adjacent values but a combination of each (in the example below, in the transition from 011011 (27) to 011100 (28), the device could produce these

The manner in which the primary reflected binary number system is built up will now be explained.

First: write down the first two numbers in the 1-digit orthodox number system, thus:

<table>
<thead>
<tr>
<th>Zero</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>One</td>
<td>1</td>
</tr>
</tbody>
</table>
Note that the symbols differ in only one digit.

Second: below this array write its reflection in a transverse axis:

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Zero</td>
<td>0</td>
</tr>
<tr>
<td>One</td>
<td>1</td>
</tr>
</tbody>
</table>

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Zero</td>
<td>1</td>
</tr>
<tr>
<td>One</td>
<td>0</td>
</tr>
</tbody>
</table>

The symbols still differ in not more than one digit. However, the first is identical with the fourth and the second with the third.

Third: to remove this ambiguity, add a second digit to the left of each symbol, 0 for the first two symbols and 1 for the last two, thus:

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Zero</td>
<td>00</td>
<td></td>
</tr>
<tr>
<td>One</td>
<td>01</td>
<td></td>
</tr>
<tr>
<td>Two</td>
<td>11</td>
<td></td>
</tr>
<tr>
<td>Three</td>
<td>10</td>
<td></td>
</tr>
</tbody>
</table>

and identify the last two symbols with the numbers two and three. Each symbol is now unique and differs from those above and below in not more than one digit. The array is a representation of the first four numbers in the primary 2-digit reflected binary number system.

The process is next repeated giving -

First:

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Zero</td>
<td>00</td>
<td></td>
</tr>
<tr>
<td>One</td>
<td>01</td>
<td></td>
</tr>
<tr>
<td>Two</td>
<td>11</td>
<td></td>
</tr>
<tr>
<td>Three</td>
<td>10</td>
<td></td>
</tr>
</tbody>
</table>

Second:

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Zero</td>
<td>00</td>
<td></td>
</tr>
<tr>
<td>One</td>
<td>01</td>
<td></td>
</tr>
<tr>
<td>Two</td>
<td>11</td>
<td></td>
</tr>
<tr>
<td>Three</td>
<td>10</td>
<td></td>
</tr>
</tbody>
</table>

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Zero</td>
<td>10</td>
</tr>
<tr>
<td>One</td>
<td>11</td>
</tr>
<tr>
<td>Three</td>
<td>01</td>
</tr>
<tr>
<td></td>
<td>00</td>
</tr>
</tbody>
</table>

Third:

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Zero</td>
<td>000</td>
<td></td>
</tr>
<tr>
<td>One</td>
<td>001</td>
<td></td>
</tr>
<tr>
<td>Two</td>
<td>011</td>
<td></td>
</tr>
<tr>
<td>Three</td>
<td>010</td>
<td></td>
</tr>
</tbody>
</table>

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Four</td>
<td>110</td>
</tr>
<tr>
<td>Five</td>
<td>111</td>
</tr>
<tr>
<td>Six</td>
<td>101</td>
</tr>
<tr>
<td>Seven</td>
<td>100</td>
</tr>
</tbody>
</table>

Figure 2. Grays Definition of his Reflected Binary Code

two values but also 011111 (31) or 011000 (24) and others. To deal with this problem Gray proposed using a mask corresponding to a code in which adjacent code words differed in one bit position only. In that case, a slight beam displacement would give only a small change to the encoding. Figure 1 is an adaptation of the figure in the patent.

Grays definition of the Code

Figure 2 is a word-for-word reproduction of the definition given by Gray in the patent [Gra53] - it has never been explained better.

Grays definition is a procedure for generating, what we now call, the Gray code of width n. As well as discussing the process, he has shown, by construction that:

Property P1: Adjacent words in the Gray code sequence differ in one bit position only.

Direct application of the code

Because, apart from the leading bit, the second half of the code is the same as the first, but reversed, it follows that the first and last words of the code sequence differ in only the leading b In other words:

Property P2: The Gray code is cyclic.

These first two properties underly the most common practical use found for the code which was for locating the rotational position of a shaft (see, for example, [Fos54]). A pattern representing the Gray code was printed on a shaft, or on a disk, and the pattern sensed by an optical or electric detector (see figure 3). Note that the least significant end of the code has fewer transitions than does normal binary so the Gray code has another apparent advantage that the pattern may be printed to another bit of precision with the same printing resolution [Wal70]. Note that the read-
out of the shaft's rotational position is a completely parallel operation.

Generation of the code sequence by means related to its definition
Let us say that going through the Gray code sequence normally, is going up, or ascending and the opposite direction down, or descending. Generating a sequence going down is the same as reflecting it, in Grays sense. The sequence of width n comprises, by definition:

- 0 preceding each member of the width n-1 sequence
- 1 preceding each member of the width n-1 sequence reflected

To generate going down, this is reflected to give:

Figure 3. Gray code as used on a shaft encode for determining angle of rotation
- 1 preceding each member of the width n-1 sequence reflected reflected
- 0 preceding each member of the width n-1 sequence reflected

But reflecting a sequence twice gives back the original sequence, so the width n sequence reflected is:

- 1 preceding each member of the width n-1 sequence
- 0 preceding each member of the width n-1 sequence reflected

This gives us the property:

Property P3: A descending Gray code sequence of width n is the same as an ascending sequence except that the leading bit is inverted.

For example, the width 3 sequence:

<table>
<thead>
<tr>
<th>Up</th>
<th>Down</th>
</tr>
</thead>
<tbody>
<tr>
<td>000</td>
<td>100</td>
</tr>
<tr>
<td>001</td>
<td>101</td>
</tr>
<tr>
<td>011</td>
<td>111</td>
</tr>
<tr>
<td>010</td>
<td>110</td>
</tr>
<tr>
<td>110</td>
<td>010</td>
</tr>
<tr>
<td>111</td>
<td>011</td>
</tr>
<tr>
<td>101</td>
<td>001</td>
</tr>
<tr>
<td>100</td>
<td>000</td>
</tr>
</tbody>
</table>

Let's use the following notation. The Gray code word G, of width n, is a vector of n bits, \((G_{n-1},G_{n-2},...,G_0)\) and represents a number G. Likewise, a number B has the standard representation B, as a vector of n bits, \((B_{n-1},B_{n-2},...,B_0)\). We will most usually be interested in the situation when \(B=G\).

In expressing algorithms we will use a data type bit that is the union of Boolean and integer, and also word that is an array of bits.

Grays definition of his code sequence of width n is captured by the following algorithm:

```pseudocode
procedure generate (n:integer, d:bit);
{generate width-n sequence in d(irection) up = 0, down = 1}
  var G:word;
  procedure generatel (m:integer; d:bit);
  begin
    if d = 0 then begin
      G[m-1] := 0; generatel(m-1,0);{up}
      G[m-1] := 1; generatel(m-1,1);{down}
    end;
    if d = 1 then begin
      G[m-1] := 1; generatel(m-1,0);{up}
      G[m-1] := 0; generatel(m-1,1);{down}
    end;
  end;
  begin
    generatel(n,0);
  end;
end;
```

Dealing with the termination of recursion, and simplifying, we end up with the elegantly simple algorithm:

```pseudocode
{ALGORITHM A1: GENERATE WIDTH N GRAY CODE SEQUENCE}
procedure generate (n:integer, d:bit);
{d(irection) up = 0, down = 1}
  var G:word;
  procedure generatel (m:integer; d:bit);
  begin
    if m = 0 then display(G) else begin
      G[m-1] := d; generatel(m-1,0);{up}
      G[m-1] := not d; generatel(m-1,1);{down}
    end;
  end;
end;
```
3. Relationship between binary code and Gray code

Generating the Gray code from binary

The above algorithm, with two calls per recursion, has a binary tree of possible procedure calls. We can label the nodes of the tree, and thus give each Gray code word a binary equivalent, by setting a bit prior to each recursive call. Let's concentrate on the ascending sequence:

```
procedure generate (n:integer);
{direction up}
var B,G:word;
procedure generate1 (m:integer; d:bit);
begin
if m = 0 then display(B,G) else
begin
G[m-1] := d; B[m-1] := 0; generate1(m-1,0);{up}
G[m-1] := not d; B[m-1] := 1; generate1(m-1,1);{down}
end;
begin
generate1(n,0);
end;
```

The algorithm will now generate the integers B along with the associated Gray codes. The inner compound statement is equivalent to:

```
begin
G[m-1] := d; B[m-1] := 0; generate1(m-1,B[m-1]);{up}
G[m-1] := not d; B[m-1] := 1; generate1(m-1,B[m-1]);{down}
end;
```

i.e. (if we set B[n] appropriately):

```
begin
G[m-1] := B[m];
G[m-1] := not B[m];
end;
```

i.e.

```
begin
B[m-1] := 0;G[m-1] := B[m]Å B[m-1]; generate1(m-1);
B[m-1] := 1;G[m-1] := B[m]Å B[m-1]; generate1(m-1);
end;
```

i.e.

```
for B[m-1] := 0 to 1 do begin
G[m-1] := B[m]Å B[m-1]; generate1(m-1);
end;
```

Now, as G is not used except in "display", the generation of its elements may be done in any order following the generation of the necessary bits of B - it can thus be generated at "display time". Giving:

```
{ALGORITHM A2: GENERATE WIDTH N GRAY CODE SEQUENCE FROM BINARY SEQUENCE}

procedure generate (n:integer); {generate width-n sequence}
var G,word; i:integer;
procedure generate1 (m:integer; d:bit);
{direction} up = 0, down = 1
begin
if m>0 then for B[m-1] := 0 to 1 do generate1(m-1)
else begin
for i := n-1 downto 0 do G[i-1] := B[i]Å B[i-1];
display(B,G);
end
begin
B[n] := 0;
generate1(n);
end;
```

Conversion from binary to Gray

The above generation algorithm gives us immediately the property (specified by Gray):

Property P4: (Gi-1 = BiÅ Bi-1), i = n 0, where Bn is taken as 0

This gives a parallel algorithm or circuit for generating G from B, because the expressions are
Gray Code Document

Although conventional this approach is not as simple as the other direction. We have from property P4:
"
\[i = (B_i A G_i - i = B_i A B_i A - i = 0, \text{ i.e.} \]

Property P6: Bi-1 = BiÅ A Bi-1, i = n 0, where Bn is taken as 0

but unfortunately these are not independent and individual equations. They do give rise naturally to a nice sequential algorithm but the parallel version involves a prefix accumulation of xor:

Property P7: Bi-1 = Gn-1 Å Gn-2 Å ... Å Gi-1
This can be generated by a parallel prefix circuit as in Figure 4.

Figure 4. Parallel Gray to Binary Conversion Circuit
Alternatively [Wan66], if a computer has a bitwise xor between words and fast parallel shifts then the binary code may be generated by a succession of xors and shifts that implement the work of figure 4, level by level:

\[B = G A (G/2); B = B A (B/4); B = B A (B/16); \text{ etc} \]

However, there are conversion techniques that are more suited to software. Lets concentrate on the bits of the Gray code word that are 1. Define for each G another vector I of length \(z \), \(I = (I_{z-1}, I_{z-2}, \ldots, I_0) \) which is the set of subscripts for which the Gray code is not zero. Recalling property P5 that the Gray code word is a record of the transitions within the corresponding binary word, \(I_{z-1} \) is the position of the first 1 in the binary code and \(I_{z-2} \) is the next 0, etc. Now, we have:

\[B = Bn-12n-1+Bn-22n-2+... +B020 \]

Listing only the bits of B that are non-zero:

\[B = [2Iz-1+... +2(Iz-2+1)] + [2Iz-3+... +2(Iz-4+1)] + ... \]

Applying a Booth recoding:

\[B = [2(Iz-1+1) - 2(Iz-2+1)] + [2(Iz-3+1) - 2(Iz-4+1)] + ... \]

(-1 if the number of 1 bits in G is odd)

Let's write \(P(X,a,b) \) for the parity of \((X_a ... X_b) \), which can be defined as \(X_a \bar{A} ... \bar{A}X_b \), or \((X_a+...+X_b) \text{mod} 2 \), or whether the number of bits 1 in \((X_a ... X_b) \) is odd (1) or even (0). Also write \(P(X,i) \) for \(P(X,n-1,i) \) and \(P(X) \) for \(P(X,n-1,0) \).

We may write the above:

Property P7: \(B = (-1)P(G,I_{z-1}).2(Iz-1+1) + ... + (-1)P(G,0).2(I0+1) - P(G) \);

This property may be used to convert from Gray to binary by adding the shifted bits of the Gray code with appropriate sign.

Example:

| Binary word | 0011100111 |
| Gray code word | 0010010100 |
| B = 0100000000 - 0000100000 + 0000010000 - 0000000001 |

This property also explains the origin of difficulty with doing arithmetic on Gray code words. In a conventional binary word, if bit i is one it means \(2^i \), but bit i in a Gray code word could represent \(+2^i \) or \(-2^i \) – the sense can only be resolved if the parity of the leading part of the word up to bit is determined. In a sense, Gray code is a signed-bit ternary representation [Wal70], where each bit can be 1, 0, or -1 (but with the restriction that non-zero bits must alternate in sign).

Although the property P7 could be used to convert from Gray to Binary, it is not a good approach,
because the subtractions involve propagation of carry. A better approach, (Irs87), also noted by
Gray himself, is to replace each power 2l in the above by (2l-1)+1. We get:

\[B = (-1)P(G,I_{z-1}) + [2(I_{z-1}+1)+] + \ldots + (-1)P(G,I_{0}) + (2I_{0}+1) \]

The second line is zero. So we have:

Property P8: \[B = (-1)P(G,I_{z-1}) + [2(I_{z-1}+1)-1] + \ldots + (-1)P(G,I_{0}) \]

The reason that this is useful is that the successive additions and subtractions can now be
performed to construct the binary equivalent with no carry being required at any stage (in fact,
addition and subtraction may be replaced by xor).

Example:

<table>
<thead>
<tr>
<th>Binary word</th>
<th>0011110110</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gray code word</td>
<td>0100010101</td>
</tr>
</tbody>
</table>

B = 0011111111 - 0000011111 + 0000011111 - 0000000001
= 0111000000 + 0000000110

Parity of Gray code word
property P8 shows that knowledge of the parity of a Gray code word can useful. We will see other
examples of its use later.

Recall that in going up from B to B+1 exactly one bit of G changes. It follows that exactly two bits
change in going from B to B+2 . Thus the number of bits that are 1 remains the same or changes by
2, i.e. the parity remains the same. This gives us:

Property P9: The parity of a Gray code word is 0 if it represents an even number, i.e. P(G,n-1) = B0

One of the drawbacks of the conventional binary representation is that the parity of the result of an
arithmetic operation is not easy to predict from the parities of its operands. However, the sum or
difference of two numbers is even if, and only if, the inputs are both even or both odd, and the
product is even if either operand is even. This allows the parity of Gray-code results to be predicted:

Property P10: If the parities of two gray code operands are Pa and Pb, then the parity of the
Gray code result is:
+ Pa â€¢ Pb
* Pa and Pb

Gray codes arising in binary counters
In [Bur70] it was noted that Gray codes arise naturally if one constructs a binary counter from
master-slave (i.e. race-free or edge triggered) toggle flip-flops. In a master-slave flip-flop the
Oseend6 flip-flops, represent the value. However, if we concentrate on the 0first0 flip-flops they
are seen to be following a different pattern.

Figure 5. Binary counter with master/ slave flip-flops

<table>
<thead>
<tr>
<th>S4</th>
<th>F3</th>
<th>S3</th>
<th>F2</th>
<th>S2</th>
<th>F1</th>
<th>S1</th>
<th>F0</th>
<th>S0</th>
<th>S</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

......

So, as the input and second flip-flops run through the ordinary binary integers, the first flip-flop
run through the Gray code. The behaviour of Fi and Si+1 are entirely governed by the changes that
occur in Si. Assuming that the counter is initially cleared, the following sequence of events will
repeat itself:

<table>
<thead>
<tr>
<th>Si+1</th>
<th>Fi</th>
<th>Si</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>
It can be seen that at all times \(F_i = Si+1 \ \& Si \), so that \(F \) indeed is the Gray code. Because it is always set to \(F_i \), but delayed, we see another interesting fact:

Property P11: Column \(i \) of a listing of the Gray code is the same as column \(i+1 \) of binary, rotated up by \(2i \).

4. Properties related to the transition bit index

Generation by minimal change

The Algorithms A1 and A2 generate a full Gray Code word at each step. However, because only one bit changes it is possible to generate each word from the previous by changing just that bit. But which bit?

Follow the execution of a certain level of recursion \(i \) in Algorithm A1 that is called from level \(i+1 \) and passes control to level \(i-1 \). Successive calls to level \(i \) will be with direction:

- up \((d=0)\); down \((d=1)\); up \((d=0)\); down \((d=1)\); etc.

The action of level \(i \) is then:

\[
\begin{align*}
G[i-1] &:= 0, \quad \text{call level } i-1, \ G[i-1] := 1, \quad \text{call level } i-1; \
\text{return}; \\
G[i-1] &:= 1, \quad \text{call level } i-1, \ G[i-1] := 0, \quad \text{call level } i-1; \quad \text{return; etc}
\end{align*}
\]

Assuming that the Gray code word is initialised to 0, it can be seen that the above sequence is equivalent to:

\[
\begin{align*}
\text{call level } i-1, \ G[i-1] := 1, \quad \text{call level } i-1; \\
\text{call level } i-1, \ G[i-1] := 0, \quad \text{call level } i-1; \quad
\end{align*}
\]

That is, level \(i \) switches bit \(i-1 \) between successive calls to level \(i-1 \). So we get [Er85]:

\[
\text{Algorithm A3.1: GENERATE WIDTH N GRAY CODE SEQUENCE, BY SWITCHING}
\]

Example

```python
procedure generate (n: integer); var G: word; i: integer;
procedure generate1 (m: integer);
begin
  if m >= 0 then
    begin
      begin
        generate1(m - 1);
        G[m-1] := not G[m-1];
        display(G);
        generate1(m - 1);
      end;
    end;
  begin
    for i := n-1 downto 0 do G[i] := 0;
    display(G);
  end;
end;
```

The sequence of transition indices

The algorithm A3.1 identifies the location of each element as it is switched. It is straightforward to modify the algorithm so that it produces the sequence in which indices change:

\[
\text{Algorithm A3.2: GENERATE SEQUENCE OF GRAY CODE TRANSITION INDICES FOR WIDTH N}}
\]

Example

```python
procedure generate (n: integer); var G: word;
begin
  if n >= 0 then
    begin
      generate(n - 1);
      display(n-1);
      generate(n - 1);
    end;
end;
```

We see that the sequence of transitions has an even simpler structure than the original definition of the Gray code [BER76]:

- sequence for width \(n = \) sequence for width \(n-1, n-1, n-1, \) sequence for width \(n-1 \)
5. Gray Code Incrementers

The task of an incremenetr is, given a Gray code word, find the next in ascending order (likewise decremenetrers and descending). Incrementers are related to counters, which may save some auxiliary information to simplify the task, and to generating algorithms based on incrementing.

There are many papers, disclosures, and patents on this topic [Fis57, Maj71, CoSh69]. They all seem to have as a common concept the condition that is satisfied for a count up to occur. Consider algorithm A3.1. When the algorithm switches G[m-1] at level m, then, if m>1, level m-1 has been entered an odd number of times and level m-2, and below, an even number of times. Thus, when G[m-1] is switched, G[m-2]=1 and G[m-3] and below are all zero. Conversely, when this condition occurs then G[m-1] must be the next to be switched.

If m=1 then level 0 does not exist so we need another condition to look at. From the construction of the code we see that every second switch is of G[0]. Every switch changes the parity. thus, when counting up, G[0] will be switched next if P(G) is 0. When counting down, G[0] will be switched next if P(G) is 1.

Property P12: When counting an n-bit Gray Code in direction d (=0 for up, =1 for down), the next bit s to be switched is given by:

\[P(G) = d \quad \text{then} \quad s = 0 \]
\[P(G) = \neg d \quad \text{then} \quad s \text{ is such that } G_{s-1}=1 \text{ and } G_i=0, \quad i=s-1 \]

This converts readily into a circuit if P(G) is known. In making a free-running counter the approach taken seems to be to provide an extra flip/flop that is by driven the clock and is used to select between the two alternatives. So, if flip/flop P is the parity flip-flop then the signals to or switch the counter flip/flops are as in the example in Figure 6.

Figure 6. Gray code up counter

In terms of an algorithm for generating the code, Boothroyd [Boo64] calculates the parity and finds the last set bit by a scan from left to right.

{ALGORITHM A4: INCREMENT/DECREMENT A GRAY CODE WORD G OF WIDTH N}
procedure increment (var G: word; n: integer, d:bit);
\{d is direction, 0 up, 1 down\}
var p:bit;\{parity\}
i, last1, switch: integer;
begin
 p := 0;
 last1 := n;
 for i := n-1 downto 0 do
 if G[i] then begin
 p := not p;
 last1 := i;
 end;
 if p \& d then switch := 0
 else if last1 < n-1 then switch := last1+1
 else switch := n-1;
 G[switch] := not G[switch];
end;

Misra [Mis75] gives a generation algorithm based on the concept of incrementing. However, he keeps track of the parity separately and maintains a stack of indices of bits that are 1, which give an algorithm that is very fast. [Er85] gives a coding of Misra's algorithm and incorporates some improvements.

6. Serial Addition

We have seen that the sign of the weight assigned to a bit in a Gray code word depends on the parity of the word at that bit, starting at the high-order end. However, most serial arithmetic operations must commence with the low-order end. If we know the entire parity of the word then it possible to commence serial operation from the low-order bits, because of the following property:

Property P13:

\[P(G,n-1,k) = P(G,k-1,0) \oplus P(G) \]

We have already seen one example, the Gray code counter, where knowledge of the parity overall is maintained in an auxilliary flip-flop. In [Luc59], Harold Lucal proposed using a modified Gray Code where the parity is maintained as the least significant bit. Lucal showed how serial arithmetic could then be implemented.

It is clear that addition of Gray codes can be performed serially if we commence at the least significant end and know the parity of the two operands. We can work out the high-order parities at each bit as we go using property P12. From property P10 we can find the parity of the sum and maintain the parity of each bit, and we can propagate a carry. This is straightforward but involves
carrying a large amount of information between bits. Lucal, however, showed that addition could be performed by carrying only two bits between each stage as follows:

{ALGORITHM A5: SERIAL ADDITION OF GRAY CODE WORDS}
procedure add (n: integer; A, B:word; PA, PB: bit;
 var S: word; var PS: bit; var CE, CF: bit);
var i: integer; E, F, T: bit;
{This adds the Gray code words A and B to form the Gray code word S. The operand parities are PA and PB, the sum parity is PS. This propagates two carry bits internally, E and F, and produces two external carry bits CE and CF}
begin
 E := PA; F := PB;
 for i := 0 to n-1 do begin {in parallel, using previous inputs}
 S[i] := (E and F) \(\oplus\) A[i] \(\oplus\) B[i];
 E := (E and (not F)) \(\oplus\) A[i];
 F := ((not E) and F) \(\oplus\) B[i];
 end;
 CE := E; CF := F;
end;