Rubik's Clock Solution

This page explains how to solve Rubik's Clock (or 'The Rubix Clock', as some people insist) — Rubik's Cube's less angular sibling. Although it seems complicated, with the solution shown below it never takes more than 24 turns to solve it, and it can be done one side at a time.

Side one

In the solution diagrams below, circles of the same colour represent clocks showing the same time — uncoloured circles represent clocks whose time doesn’t matter at the moment.

Rotate the four clocks in the top right so that the top-left and top clocks show the same time.
Rotate the four clocks in the bottom left so that the left clock now shows the same time as the top-left and top clocks.

Rotate the four clocks in the bottom right so that the four clocks in the top left show the same time.

Rotate the clock in the top right corner so that it shows the same time as the clock below it.

Rotate the four clocks in the top left so that the top six clocks show the same time.

Rotate the top six clocks so that they and the bottom clock show the same time.

Rotate the clock in the bottom left corner so it shows the same time as the others.
Rubik's Clock Solution

Rubik's Clock Solution

Rotate the clock in the bottom right corner so all clocks show the same time

Having done all this, rotate the whole side so all the clocks point to twelve.

Side two

The trick to solving the second side is to realise that with the right combination of turns, you can affect some clocks on this side without affecting the other side. All the corners are already pointing at twelve, so all you need to do is turn the edges and centre.

Rotating an edge clock

Suppose you need to rotate an edge clock (shown in grey below) by x hours to make it show twelve.

This article is in:
Safalra’s Website
Other Pages
edge clock is now in the correct place, but others have moved

Rotate the four clocks in the other corner containing the edge clock by x hours — the edge clock is now x hours wrong on the other side of twelve

Rotate the six clocks containing this edge back by x hours — the edge clock now says twelve, and all of the other clocks (except the one in the centre) show the same time as before

Rotating the centre clock

All you now need is to rotate the centre clock to have solved the puzzle. Suppose you need to rotate it by x hours to make it show twelve.
Rotate the four clocks in one corner by \(x \) hours — the centre clock is now in the correct place, but others have moved.

Rotate the four clocks in the opposite corner by \(x \) hours — the centre clock is now \(x \) hours wrong on the other side of twelve.

Now for the tricky bit: rotate the seven clocks excluding the other two corners back by \(x \) hours — you have now solved Rubik's Clock.