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MathTrek Archives...

Averting Instant Insanity
Once called "The Great Tantalizer," the puzzle looks innocuous and sounds quite simple. It consists
of a set of four cubes with one of four colors on each of their six faces. Your goal is to arrange the
four cubes in a row so that all four colors appear on each of the row’s four long sides. The order of
the cubes doesn’t matter.

That simplicity is deceptive. There are 41,472 different ways of arranging the four cubes in a row. A
trial-and-error approach to solving the puzzle would be hopelessly impractical.

Indeed, the puzzle’s current incarnation bears the trade name "Instant Insanity." Marketed under
various aliases, this tantalizer has been around for nearly a century.

Here are the layout plans for the four cubes, colored red (R), green (G), blue (B), and yellow (Y).
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It turns out that representing the colored faces of the cubes in terms of a mathematical construct
called a graph allows you to solve the puzzle quite efficiently.

In general, a graph consists of an array of points, or nodes, joined by line segments, which are often
called edges. Such an array can be very useful for visualizing relationships among various objects and
attributes of those objects.
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You can start by representing each cube by a graph of the colors that appear on opposite pairs of
faces. Four nodes stand for the four colors of the puzzle, and edges link nodes corresponding to two
colors on opposite faces. If a pair of opposite sides has the same color, you draw a loop connecting
the node to itself.

Because a cube has three pairs of opposite faces, the graph representation for each cube has three
edges linking the four nodes, one for each color. Each edge has a numerical tag corresponding to the
number of the cube on which that pair of colors resides.

In the first cube, for example, one edge would link G and Y, another edge would link G and B, and a
third edge would be a loop beginning and ending at R. Each edge would be labeled 1.

The four graphs can then be combined into one representation, which shows the color relationship of
the 12 pairs of opposite faces of the puzzle’s four cubes. Because the puzzle’s solution requires that
the cubes be arranged in a row, eight of the 12 numbered edges give you the colors of each of the
row’s four sides.

To solve the puzzle, you need to find in this combined graph two separate subgraphs that each use
all four nodes just once and each of four edges, numbered from 1 to 4. Moreover, each node would
have only two edges (or the two ends of a loop) emanating from it. One subgraph would represent
the four front-back pairings, and the other would represent the four top-bottom configurations.

It turns out that there is only one way of selecting two such systems without using any edge twice. (A
given edge cannot represent both front-back and top-bottom at the same time.)

Look at the combined graph. Suppose you pick as your starting point the loop tagged 1, which is at
R. You then need to pick edges tagged 2, 3, and 4 linking nodes Y, G, and B. That can’t be done
without violating the requirements.

If, instead, you start with the edge tagged 1 and joining B and G, you end up having to select edge 4
between R and B, edge 2 between R and Y, and edge 3 between G and Y. As required, all four
colors and all four cubes are represented in the subgraph. It’s easy then to work out the second
subgraph.
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Those subgraphs can then be used to arrange the cubes and solve the puzzle. Wei Zhang explains
the details of how to do that in an entertaining book called Exploring Math Through Puzzles (Key
Curriculum Press, 1996). It’s largely a matter of following the edges in the right order along a
particular circuit of the subgraph.

All this may look somewhat cumbersome, but the graph approach is surely more efficient than trying
thousands of combinations with no guarantee of success. Those familiar with graph theory can
typically work out the solution in minutes. Indeed, the puzzle serves as a neat lesson in logical
thinking.

"Puzzles are problems done for fun. They are a form of entertainment, but also a form of exercise—a
way to get your mind into shape," puzzle collector Stanley Isaacs of Palo Alto, Calif., writes in the
preface of Exploring Math Through Puzzles. In the classroom, "they can excite students, stimulate
thought, point to research, and involve students in their own educational process."
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Some comments about solving Instant Insanity can be found at
http://www.math.niu.edu/~rusin/uses-math/games/other/insanity.

Directions and templates for assembling your own Instant Insanity cubes are available at
http://www.cs.uidaho.edu/~casey931/puzzle/insane/insane.html.

Comments are welcome. Please send messages to Ivars Peterson at ivars@msri.org.

Ivars Peterson is the mathematics/computer writer and online editor at Science News
(http://www.sciencenews.org). He is the author of The Mathematical Tourist, Islands of Truth,



11/22/2006 08:13 PMScience News Online (8/7/99): Ivars Peterson's MathTrek: Averting Instant Insanity

Page 4 of 4http://www.sciencenews.org/pages/sn_arc99/8_7_99/mathland.htm

Newton's Clock, Fatal Defect, and The Jungles of Randomness. He and his wife, Nancy Henderson,
have just completed Math Trek: Adventures in the MathZone, a book for children of middle-school
age to be published in the fall by Wiley.

Ivars Peterson is presently serving as journalist in residence at the Mathematical
Sciences Research Institute in Berkeley, Calif.
(http://www.msri.org/people/members/ivars).

MATHEMUSEMENTS: Look for math-related articles by Ivars Peterson every month in
the children's general-interest magazine Muse (http://www.musemag.com) from the
publishers of Cricket and Smithsonian magazine.

 


