COSCI 21a, Assignment W1

Directions: To receive full credit:

• Place your name at the top of each page.
• Start each problem on a new page.

1. Prove each by applying directly the definitions given in class of O, Ω, and Θ:
 A. $83n$ is $\Theta(n)$
 B. n^2 is $\Omega(22n)$
 C. $n^3/1000$ is $\Omega(1000n)$
 D. $2n^4 - 3n^2 + 32n\sqrt{n} - 5n + 60$ is $\Theta(n^4)$
 E. $2n^2 \sqrt{n}$ is not $\Omega(n^3)$

2. Using the definitions given in class of O and Ω, prove that:
 A. $f(n)$ is $O(g(n))$ and $g(n)$ is $O(h(n))$ implies $f(n)$ is $O(h(n))$
 B. $f(n)$ is $\Omega(g(n))$ and $g(n)$ is $\Omega(h(n))$ does not imply $f(n)$ is $\Omega(h(n))$

3. Let $n > 1$ be an integer:
 A. Prove that $\lceil \log_2(n) \rceil + 1$ is the number of bits required to represent n in binary.
 B. Describe in English and give pseudo-code to compute $\lceil \log_2(\lceil \log_2(n) \rceil) \rceil$.

4. Binary search worked by dividing the problem in half. Given and array $A[1] ... A[n]$ of distinct integers that is sorted (i.e., $A[i] < A[i+1]$) and an integer x, describe in English and give pseudo-code for ternary search that works as a generalization of binary search algorithm presented in class to find the position of x in A (or determines that x is not in A) by dividing the problem into three parts (that is, it works by making at most two comparisons and then narrows the range to size $n/3$).