1. Using the notation for an array implementation of a stack used in class, give pseudo code to reverse a stack S of n items in linear time and space. Note that you may use additional data structures, but it must be that S becomes reversed and not that some other stack is returned.

Using the notation for stack and queue operations given in class, we can pop everything from the stack onto a queue and then push it all back onto the stack:

- Initialize an empty queue Q.
- \textbf{while} S not empty \textbf{do} ENQUEUE(POP(S),Q)
- \textbf{while} Q not empty \textbf{do} PUSH(DEQUEUE(Q),S)

Time: $O(1)$ time for each iteration of the two while loops, for a total of $O(n)$ time.

Space: At any given time, there are only n elements used between S and Q, but both are arrays of n elements, for a total of $2n = O(n)$ space. Note that we could have eliminated the space used by Q by reversing S in place in a way similar to the next problem.
2. Using the notation for an array implementation of a queue used in class (including accessing the elements of the queue array directly), give pseudo-code to reverse a circular queue \(Q \) of \(n \) elements using \(O(n) \) time and only \(O(1) \) space in addition to the space used for \(Q \). Explain why your algorithm works correctly and analyze the asymptotic time and space used.

Using the notation from class for queue parameters and operations:

\[
x = \text{front} \\
y = \text{rear} \\
z = \text{size}
\]

while \(z > 1 \) do begin
 Exchange the elements in positions \(x \) and \(y \).
 \[
 x = (x + 1) \mod n \\
y = (y - 1) \mod n \\
z = z - 2
 \]
end

Correctness: If the items of \(Q \) do not wrap around the array, then each iteration reverses two additional items, and the algorithm terminates either with \(z=1 \) for an odd length list or \(z=0 \) for an even length list. Wrap around is taken care of by using modular arithmetic.

Time: \(O(1) \) time for each iteration of the while loop.

Space: In addition to the space to store \(Q \), \(O(1) \) space for the variables \(x \), \(y \), and \(z \).
3. Using the basic list operations presented in class (CREATE, FIRST, LAST, SIZE, NEXT, PREV, INSERT, DELETE, DATA, etc.), give pseudo-code to determine a maximum value in the a list L of n integers (i.e., return an integer equal to the maximum of any value stored in the list and leave the list unchanged). Analyze the asymptotic time and space used.

\[
p := \text{FIRST}(L)
\]
\[
m := 0
\]
\[\text{while } p \neq \text{nil do begin}
\]
\[
\quad m := \text{MAX}\{m, \text{DATA}(p)\}
\]
\[
\quad p := \text{NEXT}(p)
\]
\[\text{end}
\]

Time: $O(1)$ time for each element visited, for a total of $O(n)$ time.

Space: $O(1)$ space in addition to the space to store L.
4. Using the basic list operations presented in class (CREATE, FIRST, LAST, SIZE, NEXT, PREV, INSERT, DELETE, DATA, etc.), give pseudo code to remove every other element of a list L of n integers and place these elements in a new list M (that is, M gets the 1st, 3rd, 5th, etc. elements of L). The elements that remain in L should stay in the same relative order and the elements of M should be in the same relative order as they were in L. For example, if the input is $L = 1 \ 2 \ 3 \ 4 \ 5$, then after completion of the algorithm, $M = 1 \ 3 \ 5$ and $L = 2 \ 4$. Analyze the asymptotic time and space used.

One method is to proceed thorough L two vertices at a time, deleting one and putting the other in a new list M. Another way, shown here, is to keep a variable $parity$ to keep track of whether the current node should be moved to M or not:

\[
\begin{align*}
M & = \text{CREATE} \\
p & = \text{FIRST}(L) \\
parity & = 0 \\
\textbf{while} & \ p \neq \text{nil} \ \textbf{do} \begin{align*}
q & = p \\
p & = \text{NEXT}(p,L) \\
\textbf{if} & \ (parity = 0) \ \textbf{then} \ \text{INSERT(DELETE}(q,L),\text{LAST}(M),M) \\
parity & = 1 - parity \\
\textbf{end}
\end{align*}
\]

Time: $O(1)$ time for each element visited, for a total of $O(n)$ time.

Space: $O(1)$ space in addition to the space to store L.