Joining and Splitting Binary Search Trees

JOIN(T_1, d, T_2): A single tree with root d is formed from T_1, d, and T_2.
 ** Always assumes that items in T_1 are $<d$ and items in T_2 are $>d$.

SPLIT(d, T): Delete d and split T into items $<d$ and items $>d$.

- For ease of presentation, we assume that d is in T.
- T_1 and T_2 are initialized to the left and right subtrees of v.
- As described on the next page, delete the vertex v that contains d and move up the path to the root to "unzip" the tree into two trees; T_1 the tree of all vertices $<d$ and T_2 the tree of all vertices $>d$.
- Each time we go up a left child edge to a vertex w, w has data that is larger than everything seen so far (and w should be merged into T_2).
- Each time we go up a right child edge to a vertex w, w has data that is smaller than everything seen so far (and w should be merged into T_1).
Example of the SPLIT Operation

Vertices 1 through 5 are shown, connected to them are subtrees of arbitrary size labeled A through F, and a SPLIT on vertex 3 is depicted. T_1 is initialized to C and T_2 to D. We then move up from 3 to the root, placing 2 and B in T_1 (by making the root of C a right child of 2), placing 4 and E in T_2 (by making the root of D a left child of 4), placing 5 and F in T_2 (by making 4 a left child of 5), and finally placing 1 and A in T_1 (by making 2 a right child of 1).
Detailed description of SPLIT

procedure SPLIT(d, T):

Binary search down to the vertex v that contains d.

$x := v.left$

$y := v.right$

while $v.parent \neq \text{nil}$ **do**

if $(v.parent).left = v$ **then begin** (*v is a left child*)

$v := v.parent$

$v.left := y$

$y.parent := v$

$y := v$

end

else begin (*v is a right child*)

$v := v.parent$

$v.right := x$

$x.parent := v$

$x := v$

end

$x.parent := \text{nil}$

$y.parent := \text{nil}$

return the two trees rooted at x and y

end
Correctness: Can be verified by showing that each iteration of the while loop preserves the fact that x and y are roots of trees that contain elements less than and greater than d respectively.

Time: Proportional to the length of the path from v to the root.

Space: Since pointer fields are simply changed to form two trees from T, only $O(1)$ space is used in addition to the space used to store T.