Indexing a Binary Search Tree

Given that an in-order traversal of a binary search tree T produces the elements in sorted order, it is natural to ask for an element's index in this sorted list. Define:

INDEX(d,v,T): Return the index of d in the sorted list of data items stored the subtree of T rooted at v (where 1 is the index of the first element), or 0 if d is not in this subtree.

Example:

```
            horse
           /   \
        cat    zebra
       /   \
    ant    dog
       /   \
      goat
```

sorted order: ant, cat, dog, goat, horse, zebra
index: 1, 2, 3, 4, 5, 6

Idea:

- \(\text{COUNT}(w) \) stores the number of vertices in the subtree rooted at \(w \) (including \(w \)).

- If \(d < \text{DATA}(v) \) then the index of \(d \) in the subtree rooted at \(v \) is the same as the index of \(d \) in the subtree rooted at \(\text{LCHILD}(v) \).

- If \(d = \text{DATA}(v) \) then it is \(\text{COUNT}(\text{LCHILD}(v)) + 1 \), otherwise compute the index of \(d \) in the right subtree of \(v \) and add that to \(\text{COUNT}(\text{LCHILD}(v)) + 1 \).
Recursive Algorithm

Note: Define $COUNT(nil)=0$.

function INDEX(d,v)
 if $v=nil$ then return 0
 else if $d<DATA(v)$ then return INDEX($d,LCHILD(v)$)
 else if $d=DATA(v)$ then return COUNT(LCHILD(v))+1
 else begin
 $i:=\text{INDEX}(d,RCHILD(v))$
 if $i=0$ then return 0 else return COUNT(LCHILD(v))+1+i
 end
end
(indexing a BST continued)

Non-recursive algorithm: Move down from v, keeping a total of counts added thus far in the variable i; return the index of d when it is found, or return 0 if the while loop falls out the bottom of the tree.

function INDEX(d,v)
 $i := 0$

 while $v \neq \text{nil}$ do begin
 if $d < \text{DATA}(v)$ then $v := \text{LCHILD}(v)$
 else begin
 $i := i + \text{COUNT(LCHILD}(v)) + 1$
 if $d = \text{DATA}(v)$ then return i else $v := \text{RCHILD}(v)$
 end
 end

 return 0
end

Maintaining the COUNT fields: INSERT and DELETE can be augmented to increment or decrement the counts along the corresponding root-to-leaf path; operations like JOIN and SPLIT can also be adapted (see the exercises).