Hashing

Application: Maintain a set of items and support the three operations of **INSERT**, **MEMBER**, and **DELETE**.

Idea: Use a *hash function* \(h \) to map a data item \(d \) into a hash table array \(A[0]...A[m−1] \). Each position is called a *bucket*, and has a pointer to a linked list of all items that have hashed to that position.
Notation:

$A = \text{The hash table};$ each location of the array $A[0] \ldots A[m–1]$ (called a "bucket") contains a pointer to a linked list of all items stored there.

$h = \text{A function that maps a data item } d \text{ to an integer } 0 \leq h(d) < m.$

Basic operations:

MEMBER(d): Search the bucket at $A[h(d)]$.

INSERT(d): Do MEMBER(d) and if d is not present, add d to the bucket at $A[h(d)]$.

DELETE(d): Do MEMBER(d) and if d is present, remove d from the bucket at $A[h(d)]$.
The MOD hash function:

\[a \text{ MOD } b \] denotes the remainder when \(a \) is divided by \(b \):

\[
(a \text{ MOD } b) = a - \left\lfloor \frac{a}{b} \right\rfloor b
\]

It is always an integer in the range 0 to \(b-1 \) when \(a \) and \(b \) are positive integers.

When \(d \) is an integer, the standard MOD hash function computes:

\[h(d) = d \text{ MOD } m \]

To avoid patterns when \(d \) and \(m \) have factors in common, \(m \) should be a prime number. Alternately, for a large prime \(q>m \), compute:

\[h(d) = (d \text{ MOD } q) \text{ MOD } m \]