Hash Functions for Data Items with Many Bits

Idea:

• Since any data item can be represented as a sequence of bits, it can be viewed as a non-negative integer, and the standard MOD hash function can be used.

• It is convenient to work with integers that fit into a single machine word.

• To convert a data item into an index into the hash table:
 1. Choose a large prime q that can be represented and manipulated with the word size on the machine you are using.
 2. Use arithmetic operations to combine pieces of the data item into a single large number, doing a MOD q as necessary to prevent arithmetic overflow.
 3. MOD the result by m to get a hash table index between 0 and $m−1$.
Modeling data items as strings:

- For some $k \geq 1$, to partition the bits of each data item into k blocks of $b \geq 1$ bits (if a data item has fewer than kb bits, pad to the left with 0's).
- For example, $b=8$ corresponds to partitioning into bytes.
- Thus, all data items can be viewed as strings of k characters over the alphabet 0 to $b-1$.
- We assume that both b and k are constants $\leq m$.
Example, the polynomial hash function:

For an integer p, compute the polynomial $h(s) = s[k-1]p^{k-1} + \cdots + s[1]p + s[0]$. As h is computed, do operations MOD q to prevent arithmetic overflow:

```
function h(s)
    z := 0
    for $i := k-1$ downto 0 do $z := (pz+s[i]) \text{ MOD } q$
    $z := z \text{ MOD } m$
    return $z$
end
```

The value of p does not have to be prime. Choosing $p = b$ corresponds to shifting bits by blocks. For example, if each block was an ASCII character encoded by 7 bits, choosing $p = 128$ corresponds to shifting by one character.

Note: There is no point in choosing p larger than b, but p should be large enough so that for the number of blocks being hashed, values get larger than m. In any case, chose p and q so integer overflow cannot occur; that is, values of size on the order of pq must fit into the variables being used.
Example, the weighted hash function:

- Choose a large prime q.
- Choose a sequence of weights $W[0]...W[k-1]$, each a prime.
- To hash a string $s = s[0]...s[k-1]$, add up the characters of s times the corresponding weight, and MOD the result by m to get a valid index into the hash table.

\[function \ h(s) \]
\[\quad z := 0 \]
\[\quad for \ i := 0 \ to \ k-1 \ do \ z := (z+s[i]W[i]) \ MOD \ q \]
\[\quad z := z \ MOD \ m \]
\[\quad return \ z \]
\[end \]

Note: Again, one must be careful to choose values for q and the weights that cannot cause an integer overflow.
Note:

For data items represented by long strings, computation of the hash function can dominate the total running time.

For some applications a trie data structure (trees that represent a set of strings by labels on root-to-leaf paths) can be a practical alternative.