Complexity of Hashing

For simplicity, consider a sequence of n INSERT operations followed by n MEMBER operations, one for each of the items inserted into a hash table of size $m \geq n$.

Assumptions:

- The elements to be inserted are chosen at random from the set of all possible elements.
- The hash function is an "ideal" one where for any i in the range of $0 \leq i < m$, if x is randomly chosen, then the probability that $h(x) = i$ is $1/m$.
 (Equivalently, if x and y are randomly chosen, then the probability that $h(x) = h(y)$ is $1/m$.)
(complexity of n INSERTS followed by n MEMBERS continued)

Space: $O(m+n)$

The array uses $O(m)$ space and the total space used by linked list vertices is $O(n)$.

Worst case time: $O(n^2)$

All elements could hash to the same position.

For each value of $1 \leq i \leq n$, one of the member instructions will examine i linked list buckets, and hence the total number of comparisons is given by:

$$1 + 2 + 3 + \cdots + n = \frac{1}{2} n^2 + \frac{1}{2} n = \Omega\left(n^2\right)$$
Expected time:

INSERT:
Since a new item can be inserted at the front of a bucket, each INSERT is $O(1)$ in the worst case.

MEMBER:
Since each INSERT is equally likely to hash to any of the m buckets and $n \leq m$ elements are inserted, then on inserting the i^{th} element, the expected length of the list on which it is placed is $(i−1)/m < 1$.

Hence the expected bucket size is $O(1)$, and the expected time for each MEMBER operation is $O(1)$.
Facts About Hash Tables

If \(n \) items are inserted into an initially empty hash table of size \(n \) (using an ideal hash function):

- The expected number of empty buckets is \(n/e \), where the constant \(e = 2.7182... \) is the natural logarithm base.

- The expected size of the largest bucket is \(O(\log(n)/\log\log(n)) \).

Note: If \(n\log(n) \) items are inserted, the expected size of the largest bucket is \(O(\log(n)) \). That is, overcrowding the hash table results in a "flattening" of the distribution of bucket sizes so that the expected size of the largest bucket is on the same order as the average size of a bucket.