Equivalence of Red-Black and 2-3 Trees

Theorem:
1. Every red-black tree of black height h and n black vertices can be converted to an equivalent 2-3 tree of height $h-1$ and n vertices.
2. Every 2-3 tree of height h and n vertices can be converted to an equivalent red-black tree of black height $h+1$ and n black vertices.

Proof of part 1: Merge each red vertex with its black parent to form a single vertex with two data items (leaf with 0 children or non-leaf with 3 children).

Proof of Part 2:
- Color all vertices black.
- For each leaf with two items, remove the smaller one and put it in a left child colored red.
- For each non-leaf vertex v that contains two items (and has three subtrees), remove the smaller of the two items, create a new red vertex w with this item, remove the left and middle subtrees of v and make them the left and right subtrees of w, and make w the left child of v.

Note: Construction is not unique; left/right and smaller/larger can be exchanged.
Example: The figure below shows a 2-3 tree on the bottom and three equivalent red-black trees above it.