Prim's Minimum Weight Spanning Tree Algorithm

Definition:
Suppose weights are associated with each edge of a connected undirected graph G of n vertices and m edges (since G is connected, $m \geq n-1$).

The \textit{weight} of a spanning tree T for G is the sum of the weights of its edges. T is a \textit{minimum spanning tree} for G if there is no other spanning tree for G of lower weight.

Prim's Algorithm:

$T :=$ an arbitrary vertex of G

\textbf{while} T has less than $n-1$ edges \textbf{do}

\hspace{1em} Add to T the lowest cost edge (v,w) such that v is in T and w is not in T.
Proof of Correctness of Prim's Algorithm

Lemma: Let e be a minimum cost edge that connects T to a vertex not in T. If there exists a minimum spanning tree that contains T, then there exists a minimum spanning tree that contains both T and e.

Proof: Suppose the contrary; that is, that there exists a minimum spanning tree U that contains T but there does not exist a minimum spanning tree that contains both T and e:

- The edges of T are in U (since U contains T), and hence there is an edge f in U that connects T to the remainder of U (i.e. to a vertex not in T).
- By definition of e, $\text{cost}(e) \leq \text{cost}(f)$, and we can replace f by e in U to obtain a new spanning tree V.
- We now have a contradiction: Either V is minimal (and it contains both F and e) or it is not, and U is not either (since $\text{cost}(e) \leq \text{cost}(f)$ implies $\text{cost}(V) \leq \text{cost}(U)$).

Correctness now follows by induction on the number of iterations of the *while* loop (the current number of edges i in the spanning tree being built):

- For $i=0$, T is a single vertex and is contained by any minimal weight spanning tree.
- For $0 < i \leq m$, assume the $i-1$ edges are contained by a minimal weight spanning tree. Then so must the i edges, since the edge added by the i^{th} iteration satisfies the lemma.
(minimum weight spanning trees continued)

Implementation of Prim's Algorithm

\[T := \text{an arbitrary vertex} \ r \text{ of} \ G \]
\[S := \{r\} \]
\[H := \text{a heap containing all edges incident to} \ r \]

while \(S \) contains less than \(n \) vertices and \(H \) is not empty **do begin**

\((u,v) := \text{DELETEMIN}(H) \)

Assume \(u \) is in \(S \) (otherwise exchange the names of \(u \) and \(v \)).

if \(v \) is not in \(S \) **then begin**

Add \((u,v) \) to \(T \).

Add \(v \) to \(S \).

for each edge \((v,w) \) such that \(w \) is not in \(S \) **do** \(\text{INSERT}((v,w),H) \)

end

end

if \(S \) contains less than \(n \) vertices **then** ERROR — \(G \) is not connected

Output \(T \).
(implementation of Prim's algorithm continued)

Time: $O(m \log(n))$

- A standard LCHILD-RSIB representation can be used for T (so edges can be added in $O(1)$ time).
- S can be represented with a bit-vector $S[1]...S[n]$ where $S[i]$ is 1 if the i^{th} vertex is in S and 0 otherwise.
- So that the *while* loop can easily test if S contains n vertices, a counter can be initialized to 1 and then incremented each time a vertex is added to S.
- If we exclude the time spent to insert items into H, $O(\log(m))$ time is used by each iteration of the *while* loop to perform a DELETEMIN and $O(1)$ additional work, for a total of $O(m \log(m))$ time.
- H can be implemented as a balanced tree (e.g., a self-adjusting BST) and initialized in $O(m \log(m))$ time by simply inserting the items one at a time (or H could use a standard heap data structure and initialized in $O(m)$ time).
- The total time spent by all executions of the *for* loop is $O(m \log(m))$, since each edge can be inserted into H at most two times (an edge (v,w) appears once on the adjacency list for v and once on the adjacency list for w).
- Since $\log(m) \leq \log(n^2) = 2\log(n) = O(\log(n))$ the time is $O(m \log(n))$.
Space: $O(m)$

S uses $O(n)$ space, T uses $O(m)$ space, and H uses $O(m)$ space, for a total of $O(n+m)$ space, which is $O(m)$ if the graph is connected.