A Sequential and Parallel Interval-Based Constraint Language: Analyses and Implementations

A Dissertation

Presented to
The Faculty of the Graduate School of Arts and Sciences
Brandeis University
Department of Computer Science
Jacques Cohen, Advisor

In Partial Fulfillment
of the Requirements for the Degree
Doctor of Philosophy

by
Suresh Kalathur
May, 1999
This dissertation, directed and approved by Suresh Kalathur’s Committee, has been accepted and approved by the Graduate Faculty of Brandeis University in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

Dean of Arts and Sciences

Dissertation Committee

Prof. Jacques Cohen, Chair

Prof. Timothy J. Hickey

Prof. Jordan Pollack

Prof. Panagiotis Takis Metaxas, Wellesley College
Copyright © by
Suresh Kalathur
1999
Acknowledgements

First and foremost, I would like to thank my advisor, Prof. Jacques Cohen. He gave me the opportunity to come to Brandeis and provided constant encouragement and support in completing this dissertation. I am grateful to Prof. Tim Hickey for providing valuable insights about intervals. I am grateful to my colleagues at Cognition Corporation for their support through the latter stages of the dissertation.

This work would not have been possible but for the constant love and support from my wife, Santhi, and my son, Saketh. I am thankful to all our family members. They provided support in a lot of ways. I must express particular gratitude to my parents who made the right decision to make me select the Computer Science program early in my career.

Last, but not least, I would like to dedicate this work to all my teachers. Learning is such a wonderful experience, and it never stops.
ABSTRACT

A Sequential and Parallel Interval-Based Constraint Language: Analyses and Implementations

A dissertation presented to the Faculty of the Graduate School of Arts and Sciences of Brandeis University, Waltham, Massachusetts
by Suresh Kalathur

Abstract

This thesis presents the design and implementation of a non-deterministic constraint programming language. The proposed language combines the features of logic programming and imperative programming paradigms. It is posited that the desirable features required in such a language are: assignment, non-determinism, constraints, and intervals. The significant number of problems described in this dissertation and that have been solved using the language reinforce that proposition. Non-determinism enables the succinct description of multiple choices thus facilitating space searches. Constraints summarize the equations and relations that have to be satisfied to obtain an answer for the problem being considered. Finally, intervals enable the en masse processing of a range of values instead of a single value.

The main original contributions of this work can be summarized as follows: 1) design and development of a concise but general programming language based on non-determinism, constraints and intervals. That design includes a GUI that is available for download through the Web; 2) presentation of a varied corpus of examples that are representative of the breadth of problems that may be solved using the proposed language; 3) in-depth study of data parallelism and shared memory parallelism in the language implementation. This has been carried out using actual parallel computers; 4) estimates through actual benchmarks of the attainable speed-ups in both kinds of parallelisms. In addition, formal models of speed-up analyses were investigated using
context-free grammars for shared memory implementation, and Markovian models for data parallel implementation; and 5) demonstration of the feasibility of developing useful preprocessors that transform annotated specialized programs into programs in the proposed language. They include CSP, partial evaluation, and scheduling problems.

The ultimate test of a language is its acceptance by a larger number of practitioners. This dissertation provides the groundwork for making that acceptance a reality. It is hoped that the simplicity and broad scope of the language will attract followers interested in solving combinatorial problems involving interval constraints.