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Chapter 1

Introduction

These notes provide an introduction to RayTracing for use by the CS155: Com-
puter Graphics course at Brandeis University, taught during the Fall 2007
semester.

1.1 Ray Tracing

Ray Tracing is a method of generating realistic 3D images from a mathematical
description of a scene. The basic idea is that one creates a 3d scene consisting
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6 CHAPTER 1. INTRODUCTION

of a camera, lights, and various 3d objects, such as sphere, planes, cylinders,
or polyhedra. Next one generates a 2d image on the screen that represents the
view of that 3d scene from the camera by associating to each pixel in the screen
window a ray that starts at the camera and moves out in a straight line into
the scene. Using simple (and fast) mathematical tests, one determines the first
object that the ray intersects and then determines the color of that pixel by
using the properties of the lights and materials. One can obtain more realistic
images by letting the ray reflect off of the partly mirrored object and refract
through the partly transparent objects. The reflected and refracted light must
then be combined in a weighted average with the already computed material
color.

In these notes we will describe the mathematics and algorithms behind ray
tracing and in the process develop a simple ray tracer in Java. The image below
is an example of our ray tracer can produce:

We begin the notes with some preliminaries about points and rays in 3d
space.



Chapter 2

Points and Rays

2.1 3D coordindates

Any point a in 3d space can be uniquely described by giving its 3d coordinates
a = (ax, ay, az) which describe the distance to a in each of the three directions
corresponding to the x, y, and z axes.

Figure 2.1: 3d coordinates

Each point a uniquely defines a directed line segment from the origin (0, 0, 0)
to a. We call such directed line segments vectors and we will often switch back
and forth between these two interpretations of a.

For example, the distance d of a point a from the origin (0, 0, 0) is also
the length of the vector a which we denote |a| and which is computed using a
generalized pythagorean theorem:

|a| =
√

a2
x + a2

y + a2
z (2.1)

7



8 CHAPTER 2. POINTS AND RAYS

2.1.1 Proof of the Pythagorean Theorem

Lets prove the generalize pythagorean theorem (Eq 2.1) by starting with a simple
geometric proof of the 2 dimensional Pythagorean theorm. Remember, this
states that if a right triangle has sides of length A, B, and C with c being the
hypotenuse, then A2 + B2 = C2.

This can be easily demonstrated using the diagram in Figure 2.2.

Figure 2.2: Pythagorean Theorem

Observe that A2+B2 is the area of the two squares abcd and defg. The clever
idea here is to cut out two right triangles 4ahb and 4gfh with sides A,B, C
from these two squares and to move them to 4efi and 4ib respectively. Moving
these two triangles changes the shape from the union of two squares (abcd and
defg) into the single quadrilateral bhfi whose sides are all of length C. If we
can prove that this quadilateral is a square, then its area will be C2 and we will
have shown that A2 +B2 = C2 for a right triangle of sides A,B and hypotenuse
C. So we need to prove that each of the four angles of the quadrilateral are
right angles, but this follows easily from the fact that the sum of the angles of
a triangle is 180 degrees and hence the sum of the two non-right angles in 90
degrees. For example,

6 fib = 6 fic + 6 cib = 6 ibc + 6 cib = 90◦

and we leave the other three angles as geometry exercises. Q.E.D.

2.1.2 Proof of the Generalized Pythagorean Theorem

We can prove the 3 dimensional pythagorean theorem by applying the 2d version
twice. Indeed, consider the figure below. We let p = (px, py, pz) be an arbitrary
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3d point and let q = (px, 0, pz) be its projection into the xz plane. Observe
that the line segment from the origin to q is the hypotenuse of a right triangle
in the xz-plane whose sides have lengths px and pz. Thus we can apply the 2d
pythagorean theorem to determine the length h1 of the vector q:

h1 = p2
x + p2

z

Now consider the three points p, q, and the origin o. These three points uniquely
determine a plane and its clear that then angle 6 oqp is a right angle (since the
y-axis is perpendicular to the xz plane). Thus, we can again apply the 2d
pythagorean theorem and we obtain the length h2 of the vector p

h2 = h2
1 + p2

y = p2
x + p2

z + p2
y = p2

x + p2
y + p2

z

Figure 2.3: Length of a vector in 3d

A similar proof would work in dimensions 4 and more by inductively pro-
jecting down 1 dimension, applying the n−1 dimensional pythagorean theorem
and then completing the induction step using the 2d pythagorean theorem in
the 2d plane consisting of the origin, the point, and its projection into an n− 1
dimensional subspace.

2.2 Dot products, norms, and vector lengths

Given two vectors p = (px, py, pz) and q = (qx, qy, qz). Their dot-product is
denoted p · q and is defined by

p · q = (px ∗ qx + py ∗ qy + pz ∗ qz)

The norm of a vector is defined to be its dot product with itself:

‖p‖ = p · p = (p2
x + p2

y + p2
z)
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As we have seen above, the norm has the property that its square root is the
length of p and we often use single bars to denote the length of the vector:

|p| =
√
‖p‖

A vector whose length is 1 is called “normalized” Any vector v can be normalized
by dividing by its length:

v
|v|

2.2.1 Geometric Interpretation of the Dot Product

In this section, we show that if u and v are two vectors, then

u · v = cos(θ)|u||v| (2.2)

where θ is the angle between u and v.
We can get a geometric interpretation of this property by considering the

figure below. Let u and v be two vectors and assume that u is normalized (i.e.
|u| = 1). Then as the figure shows the projection of v onto u is a vector of
length cos(θ)|v|.

Figure 2.4: |v| cos(θ) is the projection of v on u

To prove the property of the dot product in Eqn 2.2, we need to first recall
and prove the Law of Cosines which is a generalization of the pythagorean
theorem for general triangles.

Figure 2.5: Law of Cosines: C2 = A2 + B2 − 2AB cos(θ)
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Let 4abc be a general triangle as in Figure 2.5 and let θ be the angle 6 abc.
Let A,B,C be the the lengths of the edges opposite the sides a, b, c respectively,
as shown in the following figure:

The Law of Cosines states that the following relationship holds for any such
triangle:

C2 = A2 + B2 − 2AB cos(θ)

To prove this relation, we decompose the triangle 4abc into two right triangles
4adb and 4cdb and let h be the length of the common side bd and B1 and
B2 the lengths cd and da respectively. Then, by the definition of the cosine we
know that

B1 = A ∗ cos(θ)

and from the Pythagorean Theorem we know that

A2 = B2
1 + h2

C2 = B2
2 + h2

and since B = B1 + B2 we see that

B2 = (B1 + B2)2

= B2
1 + 2B1B2 + B2

2

So

C2 − (A2 + B2) = B2
2 + h2 − (B2

1 + h2 + B2
1 + 2B1B2 + B2

2)
= B2

2 + h2 −B2
1 − h2 −B2

1 − 2B1B2 −B2
2)

= −2B2
1 − 2B1B2)

= −2B1(B1 + B2)
= −2B1B

= −2(A cos(θ))B
= −2AB cos(θ)

and so
C2 = A2 + B2 − 2AB cos(θ)

To apply the law of cosines to the dot product, observe that if u and v are
two vectors then the three points u, v, and the origin o all lie in a plane and
form a triangle in that plane. We can let A be the length of u and B be the
length of v and let C be the length of the third side w = v−u and let θ be the
angle between u and v.

By the Law of Cosines we know that:

C2 = A2 + B2 − 2AB cos(θ)

and since A2 = u · u, B2 = v · v, C2 = w ·w we have

w ·w = u · u + v · v − 2AB cos(θ)
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Substituting in w = v−u and using the distributive property of the dot product
we find that

u · u + v · v − 2AB cos(θ) = w ·w
= (v − u) · (v − u)
= v · v − u · v − v · u + u · u

and so

−2AB cos(θ) = −2u · v

from which the dot product property follows immediately from A = |u| and
B = |v|:

u · v = |u| |v| cos(θ)

2.2.2 Dot Product as Matrix Multiplication

If we think of p and q as being column matrices

p =

 px

py

pz

 q =

 qx

qy

qz


then we can also write the dot product as a matrix multiplication of a (1x3)
and a (3x1) matrix to get a 1x1 matrix:

p · q = pT ∗ q = (pxpypz) ∗

 qx

qy

qz

 = pxqx + pyqy + pzqz

and where MT denotes the transpose of the matrix M , that is the matrix whose
rows and columns are reversed:

MT
i,j = Mj,i

2.3 The Cross Product

The cross product is a very useful operation which allows one to take any two
vectors u and v and to generate a new vector u × v called the cross product
of u and v which has the property that it is perpendicular to both u and v.
Equivalently, if u and v are not multiples of each other, then they define a 2d
plane in 3d space, and w will be perpendicular to that plane.

The cross product is relatively easy to compute using the following formula:

u× v = (uyvz − uzvy, uzvx − uxvz, uxvy − uzvx)

and it satisfies the following properties:

(u× v) · u = 0 (u× v) · v = 0
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2.3.1 Proof that the cross product u× v is perpendicular
to u and v

To prove this we need some linear algebra. Lets assume that u and v do not lie
on the same line in 3d space, then they must be linearly independent and hence
they uniquely define a 2d plane P . Recall that if w is any vector, then w lies
in the plane defined by u and v if and only if the determinant with rows u, v,
and w is zero, that is

ux uy uz

vx vy vz

wx wy wz

= 0

We can compute the determinant by expanding the minors along the bottom
row to get

ux uy uz

vx vy vz

wx wy wz

= wx(uyvz − uzvy)− wy(uxvz − uzvx) + wz(uxvy − uyvx)

= (wx, wy, wz) · (uyvz − uzvy,−(uxvz − uzvx), uxvy − uyvx)
= w · (u× v)

Thus, we see that w · (u× v) is zero if and only if w is in the same plane P as
u and v, and so we conclude that

u · (u× v) = 0 v · (u× v) = 0

2.3.2 The Matrix representation of cross product

The cross product u × v can also be represented using matrix multiplication.
Indeed, let u[ denote the following matrix constructed from a vector u:

u[ =

 0 −uz uy

uz 0 −ux

−uy ux 0


and observe that (u× v) = u[ ∗ v

2.4 Representing Points in Java

In this section we provide Java classes that represent points and rays in 3D space.
The Point3D class represents 3d points and vectors while Ray3D represents rays
(as pairs of Point3D objects). The code is in Figures 2.6 and 2.7 and it is a fairly
straightforward encoding of the operations we have introduced in the previous
chapters (adding and scaling points, dot product, cross product, length, norm).

We represent the coordinates of a Point3D object by three public fields x, y, z
of doubles. There is also an additional field w which we will need later when we
introduce transforms. Observer for now that it is not used by any of the methods
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package cs155.jray;
/** A Point3D is a triple of doubles that can represent a point or a vector.
**/
public class Point3D
{ public double x=0.0, y=0.0, z=0.0, w=1.0;

public Point3D(double x, double y, double z) {
this.x = x; this.y = y; this.z = z;}

public Point3D(Point3D m){ this(m.x,m.y,m.z); }
public String toString() { return "point3d("+x+","+y+","+z+")"; }
public Point3D subtract(Point3D q) { return new Point3D(x-q.x, y-q.y,z-q.z); }
public Point3D add(Point3D q) {

return new Point3D(x+q.x, y+q.y,z+q.z); }
public Point3D scale(double a) {return new Point3D(x*a, y*a, z*a); }
public Point3D translate(double x_dist, double y_dist, double z_dist) {

return new Point3D (x + x_dist, y + y_dist, z + z_dist); }
public double norm(Point3D q) { return q.dot(q); }
public double length(Point3D q) { return Math.sqrt(q.dot(q)); }
public double dot(Point3D q){ return x*q.x+y*q.y+z*q.z; }
public Point3D cross(Point3D q){

return new Point3D(y*q.z - q.y*z, q.x*z - x*q.z, x*q.y - q.x*y); }
public Point3D normalize() { return this.scale(1/this.length()); }
public double length() { return Math.sqrt((x*x) + (y*y) + (z*z)); }

}

Figure 2.6: Point3D.java

in this class. We will use the w parameter for now to indicate whether a Point3D
object represents a point in space (w=1) or a direction (w=0). This is just a
convention for now, but will play a critical role when we add transformations
to the ray tracer.

2.5 Representing rays

A ray is represented by an origin vector p = (px, py, pz) and a direction vector
d = (dx, dy, dz). The parametric form of a ray is shown below.

r(t) = p + t ∗ d
|d|

It is a function of a single variable t and can be thought of as returning the
position r(t) of a point that starts at the origin p and moves in direction d
at a constant rate of |d| units per time unit. We will usually assume that the
direction d of a ray has length 1 so we don’t have to normalize it in the formula
for r(t) as above.
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package cs155.jray;
/** A Ray3D consists of a point and a (normalized) direction. **/
public class Ray3D
{ public Point3D p,d;
/**
This represents a 3D ray with a specified origin point p and direction d.
The direction of a ray is a normalized vector.

**/
public Ray3D(Point3D p, Point3D d) {
this.p = p; this.d = d.normalize(); this.d.w=0; }

/** This returns the point along the ray t units from its origin p **/
public Point3D atTime(double t){
return new Point3D((p.x+t*d.x), p.y + t*d.y, p.z+t*d.z); }

}

Figure 2.7: Ray3D.java

Equivalently, we can compute the component functions for r (assuming d
has length 1).

r(t) = (rx(t), ry(t), rz(t))

rx(t) = px + t ∗ dx

ry(t) = py + t ∗ dy

rz(t) = pz + t ∗ dz

A ray is represented in our Ray3D class by two points p and d, where p is
the origin of the ray and d is the direction of the ray. This is a very simple class
which allows one to construct a ray from a point and a direction.

When tracing rays, we think of light particles moving out along the ray until
they hit an object (which is of course the reverse of what actually happens!).
The method r.atTime(t) returns the point on the ray whose distance from the
origin is given by t. If we think of the light moving along the ray at a speed of
1 unit per second, then r.atTime(t) returns the location after t seconds.

2.6 Exercises

Consider the following three points

a = (1, 2, 2)
b = (7,−2, 4)
c = (0, 4,−2)
d = (1, 1, 1)
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Let u be the vector from b to a, and let v be the vector from b to c. Let P be
the plane that passes through d and is normal to a.

1. How long is the vector u?

2. Is the angle between u and v less than 90 degrees, equal to 90 degrees, or
greater than 90 degrees? How do you know?

3. Calculate the normalization of the vector a, i.e. the unit vector pointing
in the same directions as a.

4. How far away is the point b from the plane P?

5. Find the point p which is the projection of b onto the plane P .

6. Use the cross product to find a vector w which is perpendicular to u and
v.

7. Find the point e that you get by rotating the point c around the x axis
by 90 degrees.



Chapter 3

Basic Ray Tracing

In this chapter we develop the fundamental ray tracing algorithms and provide
a Java implementation for the corresponding objects.

3.1 Objects, Object Groups and RayHits

We represent an object by an abstract class which a method for intersecting
that object with a ray. The class also provides an inner and outer material
for the object (so its insides and outsides can be rendered with different colors,
textures, and other material properties like shininess, reflectivity, refractivity).

For the moment we will provide a very simple representation for Material
which specifies the color of the material and provides a “hardness” value that
represents the shininess of the material and which we will discuss in more length
in a later chapter when we cover the lighting model.

Objects also can be intersected with a ray and the result is a RayHit object.
The code for Object3D is in Figure 3.1. We will show how to extend this class

package cs155.jray;
public abstract class Object3D {

public static final double epsilon = 0.00001;
public Material insideMat = Material.defaultMat,

outsideMat= Material.defaultMat;

/** rayIntersect(r) returns the intersection
of the object with a ray as a RayHit object,

**/
public abstract RayHit rayIntersect (Ray3D ray);

}

Figure 3.1: Object3D.java

17
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package cs155.jray;
public class Material {

public static Material defaultMat = new Material();
double hardness = 70d;
Color3D color = Color3D.WHITE;

}

Figure 3.2: Material.java

package cs155.jray;
/** Record properties of intersection of a ray and an object **/
public class RayHit {

public static RayHit NO_HIT = new RayHit(Double.POSITIVE_INFINITY,null, null);

public double distance; // distance along ray to the first intersection
public Point3D normal; // normal of the object at the intersection point
public Object3D obj; // innermost primitive object that this ray hits...

public RayHit(double distance,Point3D normal, Object3D obj) {
this.distance=d; this.normal=n;this.obj = obj); }

public String toString() {
return "rayhit("+distance+","+normal+","+obj+")"; }
}

Figure 3.3: RayHit.java

for Spheres, Cylinders, and Planes as we develop the ray intersection algorithms
for these objects. The Object3D class contains a parameter epsilon which is
used to deal with roundoff error as we will see later.

The RayHit object (in Figure 3.3 stores several bits of information about
the intersection:

• the distance along the ray at which the intersection takes place (and
Double.POSITIVE INFINITY if there is no intersection of the ray and the
object.

• the normal vector at the intersection point

• the object that the ray intersects (which is useful when you intersect a ray
with a group of objects).

We also define a class Group3D (in Figure 3.4) which represents a group of
Object3D objects and is itself an extension of the Object3D class. This class
implements the rayIntersect(r) method by looping through all objects in
the group, finding the intersection points, and keeping the closest one. The
class also provide helper methods that allow one to add objects to the group
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package cs155.jray;
import java.util.ArrayList;
/** This class represents a group of Objects. **/
public class Group3D extends Object3D {

private ArrayList<Object3D> objs = new ArrayList<Object3D>();
public Group3D() {; }
public Group3D(Object3D[] objs) {this.add(objs); }
public void clear() {objs = new ArrayList<Object3D>(); }
public void add(Object3D obj) {objs.add(obj); }
public void add(Object3D[] obj) {

for(int i=0; i<obj.length; i++) objs.add(obj[i]); }
public RayHit rayIntersect (Ray3D ray){

RayHit closestHit = RayHit.NO_HIT;
for(int i=0; i<objs.size(); i++) {

Object3D obj = objs.get(i);
RayHit hit = obj.rayIntersect(ray);
if (hit.distance < closestHit.distance) {

closestHit = hit; }}
return closestHit; }
}

Figure 3.4: Group3D.java

and to clear the group. We currently implement a Group3D object using a
java.util.ArrayList of Object3D elements.

3.2 Finding the intersection of a ray and a sphere

In this section, we show how to compute the interesection of a ray and a sphere
using the 3d coordinates directly. In the next section, we provide a simpler
approach using vector algebra, and this will be the approach we use with all
later objects.

3.2.1 Representing spheres

A sphere consists of all 3D points which are a constant distance r from the
center of the sphere c = (cx, cy, cz). The equation that determines whether a
point (x, y, z) is on the sphere of radius r and center c is

(x− cx)2 + (y − cy)2 + (z − cz)2 = r2

This is an implicit representation of the sphere and can be thought of as a test
of whether a point is on the sphere.
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3.2.2 Intersecting a ray with a sphere

To determine the intersection of a ray rp,d with a sphere Sc,r.

r2 = (rx(t)− cx)2 + (ry(t)− cy)2 + (rz(t)− cz)2

= (dxt + px − cx)2 + (dyt + py − cy)2 + (dzt + pz − cz)2

= d2
xt2 + 2dx(px − cx) + (px − cx)2

+d2
yt2 + 2dy(py − cy) + (py − cy)2

+d2
zt

2 + 2dz(pz − cz) + (pz − cz)2

So, grouping the terms by powers of t we find that r(t) is on the sphere if and
only if

At2 + Bt + c = 0

where

A = d2
x + d2

y + d2
z

B = 2(dx(px − cx) + dy(py − cy) + dz(pz − cz))
C = (px − cx)2 + (py − cy)2 + (pz − cz)2 − r2 = 0

and we can solve this using the quadratic equation. We do this by first evaluating
the discriminant D = B2 − 4AC.

If D < 0 then there are no solutions, so the ray does not intersect the Sphere.
If D = 0, then there is one solution T = −B/(2A) and if this is positive,

then the ray intersects the sphere with a glancing blow at exactly one point and
does not pierce the interior of the sphere

If D > 0 then there are two solutions t1 < t2

t1 = (−B − sqrt(D))/(2A)
t2 = (−B + sqrt(D))/(2A)

If both are negative, then the ray does not intersect the sphere. If one is negative
and one is positive, the ray is inside the Sphere and it intersect the sphere at
time t2. If both are positive, then it is outside the sphere and intersects it at
time t1.

3.2.3 Corner cases

We’ve left a few tricky cases out of the analysis above. For example, suppose
the discriminant D is positive, so there are two solutions. What does it mean
if one of them is zero? Also, what does it mean of the two intersection points
t1 and t2 are very close (say less than 0.000000001 units apart?) We will need
to deal with these “corner cases” in any practical ray tracer we write.
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3.2.4 Finding the intersection point

Once we have found the “time” t0 of the earliest intersection of the ray with the
sphere, we can find the intersection point by evaluating r at that time.

r(t0) = (rx(t0), ry(t0), rz(t0))
= (px + t0 ∗ dx, py + t0 ∗ dy, pz + t0 ∗ dz)

3.3 RayTracing a sphere using vector notation

Now we reproduce the same derivations as in the previous section, but using
vector algebra instead. You will see that the calculations are considerably sim-
pler.

A sphere consists of all 3D points which are a constant distance r from the
center of the sphere c = (cx, cy, cz). The equation that determines whether a
point v is on the sphere of radius r and center c is

‖v − c‖ = r2

This is an implicit representation of the sphere and can be thought of as a test
of whether a point is on the sphere.

3.3.1 Intersecting a ray with a sphere in vector notation

To determine the intersection of a ray rp,d with a sphere Sc,r. We look for
points v on the Sphere which are also on the ray, and hence have the form:
p + td

r2 = ‖v − c‖
= (v − c) · (v − c)
= (td + p− c) · (td + p− c)
= ‖d‖t2 + 2d · (p− c)t + ‖p− c‖

So, grouping the terms by powers of t we find that r(t) is on the sphere if and
only if

At2 + Bt + C = 0

where

A = ‖d‖
B = 2d · (p− c)
C = ‖p− c‖

and we can solve this using the quadratic equation as before:
We do this by first evaluating the discriminant D = B2 − 4AC.
If D < 0 then there are no solutions, so the ray does not intersect the Sphere.
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If D = 0, then there is one solution T = −B/(2A) and if this is positive,
then the ray intersects the sphere with a glancing blow at exactly one point and
does not pierce the interior of the sphere

If D > 0 then there are two solutions t1 < t2

t1 = (−B − sqrt(D))/(2A)
t2 = (−B + sqrt(D))/(2A)

If both are negative, then the ray does not intersect the sphere. If one is negative
and one is positive, the ray is inside the Sphere and it intersect the sphere at
time t2. If both are positive, then it is outside the sphere and intersects it at
time t1.

3.4 The Sphere3D class

We can encapsulate the algorithms of the previous section into the Sphere3D
class, which represents a sphere and provides methods for intersecting a ray
with a sphere (and in the process finding the distance from the origin of the ray
to the sphere and the normal to the sphere at the intersection point). The code
is in Figure ??.
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package cs155.jray;
import java.awt.Color;
/** class represents a 3D sphere **/
public class Sphere3D extends Object3D
{

public Point3D center;
public double radius=0.0;

public Sphere3D (Point3D center, double radius, Material m) {
super(); this.center = center; this.radius = radius;
this.insideMat = this.outsideMat = m; }

public RayHit rayIntersect(Ray3D r) {
Point3D P = r.p, D=r.d;
Point3D PC = P.subtract(center);
double t0=-1, A= D.dot(D), B= 2*D.dot(PC),

C= PC.dot(PC) - radius*radius;
double Discr = (B*B-4*A*C);
boolean has_solution = (Discr>=0);
if (!(has_solution)) return RayHit.NO_HIT;

double SqrtDisc = Math.sqrt(Discr);
double t1=(-B-SqrtDisc)/(2 *A), t2=(-B+SqrtDisc)/(2*A);
// note t1<=t2 always
if (t1>= epsilon) t0=t1; // ray hits the outside of the sphere
else if (t2 >= epsilon) t0=t2; // ray starts inside the sphere
else return RayHit.NO_HIT; // sphere is behind the ray!

Point3D p0 = r.atTime(t0);
Point3D n0 = p0.subtract(center).normalize();
return new RayHit(t0,n0,this);
}

}

Figure 3.5: Sphere3D.java
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Chapter 4

More Objects

4.1 Adding planes to the ray tracer

4.1.1 Constraint for a point to be in a plane

A plane P can be specified by a point q and a normal m to that plane. A point
v is in the plane if the vector v − q is perpendicular to m. That is if

(v − q) ·m = 0

4.1.2 Intersecting a ray with a plane in vector notation

‘ To determine the intersection of a ray rp,d with a plane passing through q and
with normal m, we look for points v on the plane which are also on the ray,
and hence have the form: p + td

0 = (v − q) ·m
= (td + p− q) ·m
= td ·m + (p− q) ·m

So, solving for t we get

t =
(q− p) ·m

d ·m
provided d ·m 6= 0. If t > 0, then the ray interesects the plane.

4.2 Adding cylinders to the ray tracer

In this section, we specify a cylinder by two vectors and two positive numbers.

• a point q at the center of the base of the cylinder

25



26 CHAPTER 4. MORE OBJECTS

package cs155.jray;
/** class represents a 3D plane */
public class Plane3D extends Object3D
{

public Point3D center,normal;

public Plane3D (Point3D center, Point3D normal, Material m) {
super();

this.center=center;
this.normal=normal.normalize();
this.insideMat = this.outsideMat = m; }

private Point3D project(Point3D q) {
return q.subtract(normal.scale(normal.dot(q))); }

public RayHit rayIntersect(Ray3D r) {
Point3D P = r.p, D=r.d;
Point3D PC = P.subtract(center);
double dn = normal.dot(D),

cpn = normal.dot(PC),
t;

if (dn==0.0) return RayHit.NO_HIT;
double t0 = -cpn/dn;
if (t0 < epsilon)

return RayHit.NO_HIT;
else {

Point3D q = r.atTime(t0);
Point3D q0 = project(q);

return new RayHit(t0,normal,this);
}}

}

Figure 4.1: Plane3D.java
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• a vector n that defines the central axis of the cylinder

• the radius r of the cylinder, and

• the height h of the cylinder

We first find a formula for testing whether a point v is on the cylinder. The
idea is to project the point v onto a the plane P through q with normal m. This
gives a point v2 on the plane P . If the distance between v2 and q is r then the
point is on the infinite tube containing the cylinder in question:

v1 = v − q

v2 = v1 − (v1 ·m)m
‖v2‖ = r2

To see if it is on the cylinder we must do two more tests using v1:

v1 ·m ≥ 0
v1 ·m ≤ h

4.2.1 Intersecting the cylinder with a ray

We now plug in v = td+p into the cylinder test above and solve for t. This will
give a quadratic equation that we can solve for two roots t1 and t2. Then we
find the smallest of these two roots whose corresponding point v also satisfies
the two dot product constraints.

v = td + p

w = p− q

v1 = td + w

v1 ·m = t(d ·m) + w ·m
v2 = v1 − (v1 ·m)m

= td + w − (td ·m + w ·m)m
= t(d− (d ·m)m) + w − (w ·m)m
= tα + β

where

α = d− (d ·m)m
β = w − (w ·m)m

so the point v is on the cylinder if and only if

r2 = ‖v2‖
= t2‖α‖+ t2α · β + ‖β‖
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which is a quadratic in the variable t

A2 + Bt + C = 0

This quadratic has a solution iff the discriminant D = B2−4AC is non-negative
where

A = ‖α‖
B = 2α · β
C = ‖β‖ − r2

The quadratic formula gives two solutions t1 and t2 which corresponds to two
points u1 = t1d + p and u2 = t2d + p. We look for the smallest ti which is
positive and for which (ui − q) ·m ≥ 0 and (ui − q) ·m ≤ h. If there are no
such ti then the ray does not intersect the cylinder; otherwise the selected ui is
the intersection point.

4.2.2 Finding the normal to a cylinder at a point

To find the normal n at a point v on a cylinder, we just project it into the plane
perpendicular to the central axis m of the cylinder.

v1 = v − q

n = v1− (v1 ·m)m
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package cs155.jray;
/** this class represents a 3D cylinder with open ends */

public class Cylinder3D extends Object3D
{

public Point3D center;
public Point3D direction;

public double radius=0.0;
public double height=0.0;

public Cylinder3D (Point3D c, Point3D d, double r, double h, Material m)
{ center = c; direction = d.normalize();
radius = r; height = h; insideMat = outsideMat = m; }

public RayHit rayIntersect(Ray3D r) {
Point3D P = r.p, D=r.d;
Point3D PC = P.subtract(center);
Point3D a = D.subtract(direction.scale(direction.dot(D)));
Point3D b = PC.subtract(direction.scale(direction.dot(PC)));
double A= a.dot(a), B= 2*a.dot(b), C= b.dot(b) - radius*radius;
double Discr = (B*B-4*A*C);
boolean has_solution = (Discr>=0);
if (!(has_solution)) return RayHit.NO_HIT;
double SqrtDisc = Math.sqrt(Discr);
double t1=(-B-SqrtDisc)/(2 *A), t2=(-B+SqrtDisc)/(2*A);
// note t1<=t2 always
Point3D p,V2;
double h;
if (t1>= epsilon) {

p = r.atTime(t1); V2 = p.subtract(center); h = direction.dot(V2);
if ((h>= 0) && (h <= height)) return new RayHit(t1,normal(p),this); }

if (t2 >= epsilon) {
p = r.atTime(t2); V2 = p.subtract(center); h = direction.dot(V2);

if ((h>= 0) && (h <= height)) return new RayHit(t2,normal(p),this); }
return RayHit.NO_HIT;

}

private Point3D normal(Point3D p) {
Point3D p1 = p.subtract(center);
return p1.subtract(direction.scale(direction.dot(p1))).normalize();}
}

Figure 4.2: Cylinder3D.java
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Chapter 5

Lighting Models

In the previous two chapters we developed several classes representing 3d ob-
jects. In this chapter we add lights to the program and introduce the three
main lighting effects used in 3d graphics engines: ambient, diffuse, and specular
illumination.

5.1 Ambient illumination

The ambient lighting model assigns a fixed intensity of light to any visible part
of an object. This ambient intensity does not depend on the presence of any
lights in the scene. It models the general light that bounces off the walls of a
room and fills the space uniformly with a low level of light. Ambient light is
handled in two places. First, it is a parameter of the scene and provides a light
level that is used to illuminate all objects in the scene. Second, each light has
an ambient parameter, which provides a low level of light for any objects that
are visible to the light.

5.2 Diffuse illumination

Diffuse illumination models light that hits a rough surface and is scattered
equally in all directions. The intensity of the light depends on the angle at
which the light hits the surface. Thus light directly overhead will maximize the
diffuse illumination whereas light coming from a point just over the horizon will
be very weak.

To compute the diffuse illumination at a point p on a Sphere with center c.
We first compute the normal N = p− c and then the vector which points from
the point ot the light L which is L−p. Then we normalize both and take their
dot product

(p− c) · (L− p)
(|p− c| |L− p|)

31
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Figure 5.1: Diffuse illumination is the dot product of two normalized vectors

Figure 5.2: Diffuse illumination is smaller when one unit of light is spread over
a larger region

5.3 Specular illumination

Specular illumination models the shininess of objects and is responsible for the
bright spot on a shiny apple or the glint off the chrome bumper of a car. It is
largest when the light bouncing off of the surface (assuming it was mirrored)
would bounce directly into the camera and it falls off rapidly as the camera
moves away from that point of maximum specular intensity. The rate at which
it falls of is called the hardness. Lets now look at one way to model specular
illumination.

Let v be a point on an object with normal n and let u be the unit vector
that points to ward a light L and e the unit vector that points from v to the
camera. Let P be the plane passing through v and with normal n.

The Phong model of specular illumination is computed by taking the cosine
of the angle between e and the reflection u′ of in P . To compute u′ we first
project u onto n to get un and also into a vector uP lying in P :

u1 = (u · n)n
uP = u− (u1)
u′ = u− 2uP

= 2(u · n)n− u

The specular reflection, s, is then computed by calcuting cos(α)n where α is the
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angle between u′ and e and h is the “hardness” of the material:

s = (u′ · e)h

The value h is typically between 0 and 128.

Figure 5.3: Calculating the reflection of u relative to the normal

The Blinn-Phong model is Another way to calculate the specular reflection.
In this approach we find the vector w halfway between u and e and then to use
the angle β between w and the normal n rather than α. This gives as value s′

which is another type of specular illumination:

w =
u + e
|u + e|

s′ = (w · n)h

Figure 5.4: Specular illumination

5.4 Lights

The lights in this version of the ray tracer are specified by giving their positions
and intensities. They also have methods to compute the diffuse and specular
lighting intensities. The diffuse intensity depends on the normal to the object
and the vector from the intersection point to the light. The specular intensity
also needs to vector from the intersection point to the camera and the harndess
coefficient of the material.
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package cs155.jray;
import java.awt.*;
import javax.swing.*;
/** This represents simple 3D lights with location and intensity **/

public class Light3D {
public Point3D location = new Point3D(0d,0d,0d);
public double intensity = 1.0;

public Light3D( Point3D new_location ){ this(new_location,1d); }
public Light3D( Point3D new_location, double intensity ){

location= new Point3D(new_location); this.intensity = intensity;}

/** calculate the specular intensity of the light **/
public double specular(Point3D lightVec, Point3D normal,

Point3D eyeVec, int hardness) {
Point3D u = lightVec.normalize();
Point3D e = eyeVec.normalize();
Point3D w = u.add(e).normalize();
if (u.dot(normal) > 0)

return Math.pow(w.dot(normal), hardness);
else return 0.0; }

/** calculate the diffuse intensity **/
public double diffuse (Point3D lightVec, Point3D normal){
double cosA = normal.dot(lightVec);
if (cosA < 0) return 0.0; else return (cosA); }

}

Figure 5.5: Light3D.java
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Implementing a Basic Ray
Tracer

In this chapter we show how to implement a simple ray tracer based on the
concepts presented in the previous chapters. This raytracer will allow us to
generate images of sphere, cylinders, and planes with diffuse illumination pro-
viding depth cues. In later chapters we will add color and textures which greatly
add to the realism. We will also, introduce transforms to that the lights and
camera can easily be positioned about the scene and the objects can be trans-
formed in various ways. Our first raytracer will consist of the following classes,
several of which we have described in previous chapters.

Point3D.java - a point or vector in 3D space
Ray3D.java - a ray consisting of an origin point and a direction vector
Camera3D.java - a camera that converts pixel coordinates into rays
Light3D.java - a light with a specified position
Object3D.java - this is an abstract class for all objects
Group3D.java - a group of objects
Scene3D.java - a scene consisting of a camera, several lights, and a group of objects
Sphere3D.java - the Sphere subtype of Object3D
Cylinder3D.java - the Cylinder subtype of Object3D
Plane3D.java - the Plane subtype of Object3D
Material3D.java - material properties (color, reflectivity, etc.)
RayTracer3D.java - the main class raytracing class

In this chapter we will present and describe the code for these classes..

6.1 Cameras

The camera in this version of the program simply points down the z-axis from
the origin and is used to generate rays corresponding to virtual screen positions.
Indeed, the method generateRay(u,v) is given two doubles u,v and returns

35
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package cs155.jray;
/** This class represents a camera at (0,0,0) facing toward (0,0,-1). **/
public class Camera3D {

private Point3D origin = new Point3D(0d,0d,0d);
public double screenDist = -2d;

public Camera3D () {;}

/** Convert screen coordinates (represented as two doubles) into a ray **/
public Ray3D generateRay(double u, double v) {
return new Ray3D(origin, new Point3D(u,v,screenDist)); }

}

Figure 6.1: Camera3D.java

the ray centered at the origin and passing through the point (u,v,-D) where
D is the distance of the virtual screen from the camera eye, and is intially 2.
Increasing D will zoom the camera in, while moving it toward zero produces a
fisheye effect.

6.2 The Scene class

The Scene3D class represents a scene as consisting of three components:

• a group objs of objects represented by a Group3D element

• an array of lights

• a camera

It also encapsulates several parameters describing the scene:

• a background color, for rays that do not intersect any objects

• an oversampling parameter, OSI, which is used for antialiasing

• an ambient color, representing the general “directionless” light in the scene
that is not produced by any positioned light

This class also provides methods for adding cameras, objects, and lights to the
scene and for clearing the scene of all elements.

6.3 The Canvas3D class

Once we have defined a scene, we need a place to draw the 2d projection of
the scene. This role will be filled by any object that implements the Canvas3D
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package cs155.jray;
/** A 3d scene that can be drawn on a Canvas3D object. **/
public class Scene3D {

/** Here we create the scene elements as instance variables **/
public Group3D objs = new Group3D();
public int numObj = 0;
public Light3D light[] =new Light3D[100];
public int numLights=0;
public Color3D ambient = new Color3D(0.1,0.1,0.1);
public Color3D backgroundColor = new Color3D(0d,0d,0.4d);
public Camera3D camera = new Camera3D();
public int OSI = 1;
public Scene3D() {; }
public void add(Camera3D x) {camera = x; }
public void add(Object3D x) {ojs.add(x); }
public void add(Light3D x) {light[numLights++]=x; }
public void clear() {objs.clear(); numLights=0; }

}

Figure 6.2: Scene3D.java

interface in Figure 6.3. In the appendix we provide an implementation of this
interface, NewRayCanvas3D, but since its implementation has little to do with
3D graphics we do not go into those details here.

The Canvas3D interface provides methods for finding the height and width
of the canvas, for drawing a color on a particular pixel, and for refreshing the
canvas which makes all changes to the canvas appear on the screen.

6.4 The RayTracer3D class

The RayTracer3D class is where everything comes together. It provides a
method for drawing a 2D projection of a 3D scene on a Canvas3D object. In

package cs155.jray;
/** a canvas is any Java object one can draw Pixels on **/
public interface Canvas3D {

public int height();
public int width();
public void drawPixel(int i, int j, java.awt.Color c);
public void refresh();

}

Figure 6.3: Canvas3D.java
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our implementation we decompose it into a few methods as shown in the figures
below.

6.5 A Simple GUI

Briefly describe the NewRayCanvas class and show how it can be embedded in
a frame.

6.6 Examples
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package cs155.jray;
import java.awt.*;
import javax.swing.*;

/** This consists of static methods for drawing a scene on a canvas. **/

public class RayTracer3D {
public static int recursionDepth=4;
public static RayHit intersectScene(Scene3D s, Ray3D r) {

return s.objs.rayIntersect(r); }

public static void drawScene(Scene3D s,Canvas3D canvas) {
double
h = canvas.height(), w = canvas.width();

for(int i=0;i<w; i++) {
for(int j=0; j<h; j++) {
double u,v;
u = (double)((i-w/2)/(w/2));
v = (double)((h/2-j)/(w/2));

// calculate the color of the pixel corresponding to that ray
Color3D pixelColor = Color3D.BLACK;
for (int k=0; k< s.OSI; k++) {

Ray3D r1 =
s.camera.generateRay(u+(Math.random()-0.5)/(w/2),

v+(Math.random()-0.5)/(h/2));
Color3D localColor = computeColor(r1,s,recursionDepth);
pixelColor = pixelColor.add(localColor);

}
pixelColor = pixelColor.scale(1.0/s.OSI);

canvas.drawPixel(i,j,pixelColor.toColor());
} // close for i

} // close for j
} // close drawScene

Figure 6.4: RayTracer.java
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/** Compute the color corresponding of the pixel **/
public static Color3D computeColor(Ray3D r, Scene3D s, int depth) {
// first we intersect the ray with the scene
RayHit hit = intersectScene(s,r);
Point3D n = hit.normal;
Object3D obj = hit.obj;

// if the ray hits no object, return the background color
if (hit.distance == Double.POSITIVE_INFINITY) return s.backgroundColor;
Point3D p = r.atTime(hit.distance);

// if the ray hits the outside of the object
// then switch the normal to point inward
boolean outside = (n.dot(r.d) < 0);
if (!outside) n = n.scale(-1d); // flip the normal when the ray hits on the inside
Material m = (outside?obj.outsideMat:obj.insideMat);

// calculate the initial pixel color
Color3D pixelColor = Color3D.BLACK;

for (int k = 0; k<s.numLights; k++) {
Color3D localColor = Color3D.BLACK;
Light3D light = s.light[k];
Point3D lightPos = light.location;
Point3D lightVec = lightPos.subtract(p);
double lightDist = lightVec.length(); // distance from point to the light
lightVec = lightVec.normalize(); //vector from point to the light
Ray3D LR = new Ray3D(p,lightVec);

// check for shadows
RayHit lightHit = intersectScene(s,LR);
if (lightHit.distance < lightDist-Object3D.epsilon) continue;

// calculate the local diffuse pixel color contribution
double diffuseIntensity = light.diffuse(lightVec,n);
localColor = (m.color).times(light.color).scale(diffuseIntensity);

// calculate the local specular pixel color contribution
Point3D eyeVec = r.p.subtract(p).normalize();
double specularIntensity = light.specular(lightVec,n,eyeVec,m.hardness);
Color3D specularColor =
localColor.add((m.color).times(light.color).scale(specularIntensity));

localColor = localColor.add(specularColor);
localColor = localColor.scale(light.intensity);
// finally add this local pixel contribution to the accumulated pixel color
pixelColor = pixelColor.add(localColor);

}
return pixelColor;

}
}

Figure 6.5: RayTracer.java



Chapter 7

Expanding the Lighting
Model

THIS SECTION IS UNDER CONSTRUCTION ...

7.1 Color

Discuss OpenGL color model: ambient, diffuse, specular colors for the lights
and materials. emissive colors for the materials, attenuation, spot light effects,
ambient light of the scene itself. Reference the OpenGL manual.

Show how to change the code for Material, Light3D, and RayTracer to allow
these features.
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Chapter 8

Reflection and Refraction

8.1 Reflection

To find the reflection of a ray d at a point q of a plane P with normal n. We
first project d onto the normal to get

dn = (d · n)n

This vector represent how far beneath the plane the ray would go if it passed
straight through the plane. To get the reflection we add twice dn to d and get
the reflection direction:’

d′ = d− 2dn

The reflecting ray starts at point q and goes in direction d′. Note that this

Figure 8.1: Reflection of a Ray in a Surface

formula is different than the one we obtained in the previous section when
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computing the specular reflection, because in that case we used a vector pointing
toward the light which was in the same direction as the normal. In this section
we are considering a vector pointing into the plane in the opposite direction of
the normal, if you let e = −d, and substitute into the formula in this section,
you’ll get the same formula as in the previous section.

8.2 Refraction

Light travels at different speeds in different media. The index of refraction
(IOR) of a material is a number related to the speed of light in that material.
hen light passes from one region to another with a different index of refraction
(IOR) the light ray is bent in a way that depends on the two IORs. Indeed, if we
let a1 be the angle between the entering ray and the outward facing normal N,
and let a2 be the angle between the exiting ray and the inward facing normal,
and if we let n1 and n2 be the two indices of refraction, then Snell’s Law (shown
below) describes the relationship between these quantities:

n1 sin(a1) = n2 sin(a2)

Figure 8.2: Refraction

Let d1 be the direction of the entering ray and d2 be the direction of the
exiting ray. If the IORs are equal, then d1 = d2. Otherwise, we will usually
know d1 and want to compute d2. The key to deriving this relation is by
observing that we can compute c1 = cos(a1) as a dot product between d1 and
−n. This allows us to compute s1 = sin(a1) since s2

1 + c2
1 = 1

c1 = d1 · −N
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s1 =
√

1− c2
1

Next, let s2 = sin(a2) and c2 = cos(a2) and n = n1/n2, then s2
2 + c2

2 = 1 and
from Snell’s Law we know that s2 = ns1, so we can calculate s2 and c2 as

s2 = ns1

c2 =
√

1− s2
2

=
√

1− n2(1− c2
1)

=
√

1− n2 + n2c2
1)

We can now express the refracted array in terms of two components. The
component in the normal direction is −c2n and the other part is the component
in the plane P . To get this we must first project d1 into P to get a vector f1
and normalize it to get f1/s1 of length one:

f1 = d1 − (d1 · (−N))(−N)
= d1 − (d1 ·N)N
= d1 + c1N

and so

d2 = c2(−N) + s2f1/s1

= −c2N + s2/s1(d1 + c1N)
= −c2N + nd1 + nc1N

= nd1 + (nc1 − c2)N

This gives us our final formula for the refraction direction dd of a ray with
direction d1

d2 = nd1 + (nc1 − c2)n

8.3 Changes to RayTracer3D

Show the minimal changes we need to make to Ray Tracer3D to implement
reflections and refactions.



46 CHAPTER 8. REFLECTION AND REFRACTION



Chapter 9

Transforms

One of the most useful tools in computer graphics is the notion of a trans-
form and the observation that one can easily find the intersection of ray with
the transform of an object, by intersecting the original object with the inverse
transform of the ray, and then applying the transform to the resulting point. In
this section we show how to represent a wide class of transforms as 4x4 matrices.
In the next section, we’ll show how to compute the intersection of a ray with a
transform of an object, and to complete the normal at that point as well.

9.1 Fundamental Transforms

We will look at three classes of transforms: translations, rotations, and scal-
ings, and we will show how to represent all of these transforms as 4x4 matrices.
Composing these transforms can be done by multiplying their corresponding
matrices and this gives us a compact way of representing arbitrary combina-
tions of translations, rotations, and scales. The class of transforms that can be
represented by 4x4 matrices are called the affine transforms and they are heavily
used in Computer Graphics.

9.1.1 Translation

For any point p in 3D space, the translation Tp is a function that maps a point
q to p + q:

Tp(q) = p + q

or in terms of vectors if p = (a, b, c) then

Tp(x, y, z) = (x + a, y + b, z + c)
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We represent Tp by a 4x4 matrix:

Tp =


1 0 0 a
0 1 0 b
0 0 1 c
0 0 0 1


To apply this matrix to a point (x, y, z) we embed it in 4d space by adding a 1
in the fourth coordinate and then apply the 4x4 transformation matrix to this
4-tuple as usual:

Tp(x, y, z) =


1 0 0 a
0 1 0 b
0 0 1 c
0 0 0 1




x
y
z
1

 =


x + a
y + b
z + c

1


To apply this matrix to a direction (x, y, z) such as the direction d in a ray,

we embed it in 4d space by adding a 0 in the fourth coordinate and then apply
the 4x4 transformation matrix to this 4-tuple as usual:

Tp(x, y, z) =


1 0 0 a
0 1 0 b
0 0 1 c
0 0 0 1




x
y
z
0

 =


x
y
z
0


and we see that translating a direction in space does not change its value, which
is as we would expect.

9.1.2 Scaling

For any triple p = (a, b, c), the scaling matrix Sp is the following function

Sp(x, y, z) = (a ∗ x, b ∗ y, c ∗ z)

We represent Sp by a 4x4 matrix:

Sp =


a 0 0 0
0 b 0 0
0 0 c 0
0 0 0 1


9.1.3 Rotation

For any angle a, let s = sin(a) and c = cos(a). Then the rotation transformation
Rz,a that rotates the point q around the z-axis by the angle a is given by

Rz
a(x, y, z) = (c ∗ x− s ∗ y, s ∗ x + c ∗ y, z)
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which is represented by the following 4x4 matrix:

Rz
a =


c −s 0 0
s c 0 0
0 0 1 0
0 0 0 1


Similary we can rotate around the y and x axes:

Ry
a =


c 0 s 0
0 1 0 0
−s 0 c 0
0 0 0 1


and

Rx
a =


1 0 0 0
0 c −s 0
0 s c 0
0 0 0 1


9.1.4 Compound Transformations

A general 4x4 matrix T represents a transform on both points p = (x, y, z, 1)
in 3D space and directions p = (x, y, z, 0) as follows. First we apply T to the
point p = (x, y, z, w) where w is 1 for a point and 0 for a direction. This gives
us some vector q = (a, b, c, d). If d is non-zero then

T (x, y, z) = (a/d, b/d, c/d, 1)

otherwise T (p) is a direction which we can think of as the “point at infinity in
the direction (a, b, c, 0)”.

This space consisting of both regular points p = (x, y, z, 1) and points at
infinity p′ = (x, y, z, 0) is called Projective 3 space. It can also be represented
as the equivalence classes of points in 4D space where two points are equivalent
if one is a non-zero multiple of another.

(x, y, z, w) ≡ (λx, λy, λz, λw)

for all real numbers λ 6= 0. The representation of a 3D point or direction as a
4-tuple of numbers is called homogeneous coordinates.

For example, lets consider the operation that rotates a point p through the
vector parallel to the z-axis that passes through the point q. We can represent
this as a composition of three operators. First translate by −q. This moves q
to the origin. Then rotate about the z − axis, then translate by q which moves
the origin back to q. Thus, this operation is

Mz
q,a = TqR

z
aT−q
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and if q = (u, v, w) and s = sin(a) and c = cos(a), then we have

Mz
q,a =


1 0 0 u
0 1 0 v
0 0 1 w
0 0 0 1




c −s 0 0
s c 0 0
0 0 1 0
0 0 0 1




1 0 0 −u
0 1 0 −v
0 0 1 −w
0 0 0 1



=


c −s 0 (1− c)u + sv
s c 0 −su + (1− c)v
0 0 1 0
0 0 0 1


and this gives a matrix representation for a fairly complex compound operation.

9.1.5 The general rotation around a vector v

Let v = (vx, vy, vz) be a non-zero vector and let a be an angle. We want to
find a matrix that rotates points around an axis specified by the vector v. For
example, when v = (0, 0, 1) this should just be the Rz

a matrix that rotates
around the z-axis.

There is a very clever way of constructing this matrix which we describe
below. Lets think of v as a column vector:

v =

 vx

vy

vz


and lets normalize v so that it has length 1. That is vT ∗ v = v2

x + v2
y + v2

z = 1.
Next let v[ be the matrix such that for any vector w, we have v[ · w = v × w,
that is

v[ =

 0 −vz vy

vz 0 −vx

−vy vx 0


Next, let R = v ∗ vT be the dense 3x3 matrix obtained by multiplying v with
itself

R = v ∗ vT =

 vx

vy

vz

 ∗ (vxvyvz) =

 v2
x vxvy vxvz

vyvx v2
y vyvz

vzvx vzvy v2
z


and let I be the identity matrix as usual (i.e. the matrix with 1’s down the
diagonal and 0’s elsewhere:

I =

 1 0 0
0 1 0
0 0 1


Finally, let c = cos(a) and s = sin(a) and define M to be the following matrix:

M = v ∗ vT + c(I − v ∗ vT ) + s ∗ v[
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and so M =

= v ∗ vT + c(I − v ∗ vT ) + s ∗ v[

=

 v2
x vxvy vxvz

vyvx v2
y vyvz

vzvx vzvy v2
z

 +

 c(1− v2
x) −cvxvy −cvxvz

−cvyvx c(1− v2
y) −cvyvz

−cvzvx −cvzvy c(1− v2
z)


+

 0 −svz svy

svz 0 −svx

−svy svx 0


=

 c + (1− c)v2
x (1− c)vxvy − svz (1− c)vxvz + svy

(1− c)vyvx + svz c + (1− c)v2
y (1− c)vyvz − svx

(1− c)vzvx − svy (1− c)vzvy + svx c + (1− c)v2
z


and this gives a relatively simple matrix representation for a general rotation
about a general non-zero vector v.

9.1.6 Proof of the general rotation formula

Now let p be any point, and let w be the projection of p into the plane perpen-
dicular to v. Then p = v + w and vT ∗ w = 0. Finally, let u = v × w. We will
see that

M(v + w) = v + cw + su

which shows that M rotates p by an angle a around v.
Proof: First observe that M(v) = v using v ∗ vT ∗ v = v ∗ 1 = v and

v[ ∗ v = v × v = 0. Indeed,

M(v) = (v ∗ vT + c(I − v ∗ vT ) + sv[) ∗ v

= (v ∗ vT ) ∗ v + c(I − v ∗ vT ) ∗ v + sv[ ∗ v

= v ∗ (vT ∗ v) + cI ∗ v − cv ∗ vT ∗ v + sv[ ∗ v

= v ∗ (v · v) + (cv − cv ∗ (v · v)) + s(v × v)
= v + (cv − cv) + 0
= v

Next observe that M(w) = cw + su using vT ∗ w = 0 and v[ ∗ w = v × w = u.
Indeed,

M(w) = (v ∗ vT + c(I − v ∗ vT ) + sv[) ∗ w

= v ∗ vT ∗ w + cw − cv ∗ vT ∗ w + sv[ ∗ w

= v ∗ (v · w) + cw − cv ∗ (v · w) + s(v × w)
= v ∗ (0) + cw − cv ∗ (0) + su

= cw + su

as we set out to show.
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9.2 Applying a transform to a ray

The use of 4x4 matrices allows us to represent translations, rotations, and scaling
operations as matrices provided we represent points in 3d space as 4-tuples where
the last coordinate is 1. This representation is called homogeneous coordinates.
It has another advantage and that is that by setting the last coordinate to 0,
we can represent directions, and these are then handled correctly by the usual
matrix operations, that is, rotations and scaling operations modify the direction,
but translations have no effect. We can then apply a transform to a ray by
simply representing the point p and the direction d of the ray in homogeneous
coordinates and then applying the transform directly to p and d respectively.

So if R = pt + d is a ray with p = (x, y, z, 1) and d = (a, b, c, 0), and T is
an affine transform, then T (R) = T (p)t + T (d).

9.3 Intersecting a ray with a transformed object

Given an object X and a ray R with origin p and direction d, let fX(R) = t be
the distance from p to the 1st intersection of R with X, and let nX(R) be the
normal to the surface of the object X at that intersection point.

If T is a transform, then T (X) is the set of all points {T (x) : x ∈ X}.
For example, if X is a sphere of radius 1 centered at the origin, then R(X) =

X for any rotation R. If T = Tp is a translation, then Tp(X) is the sphere of
radius 1 centered at p. If S(a,b,c) is a scaling operator, then Sp(X) is an ellipsoid
whose x,y, and z axes have lengths a, b, c respectively.

To compute the intersection of a ray R with T (X) we can generate the
transformed ray R′ = T (R) and calculate the distance t′ = fX(R′) but this will
not in general be equal to fT (X)(R).

For example, consider the scaling operator that multiplies all coordinates by
e, that is Se(x, y, z) = (ex, ey, ez). The inverse operation is S1/e. Let R be the
ray starting at the origin and extending down the z-axis. Let X be the plane
perpendicular to the ray which is 1 unit away from the origin. Then Se(X) is
the plane passing through (0, 0,−e), but S1/e(R) = R because scaling doesn’t
change the point (0, 0, 0) and it doesn’t change the direction (it just lengthens
the direction vector by a factor of e). Thus, fSe(X)(R) = e but fX(S1/e(R)) = 1.

The correct formula is

fT (X)(R) = fX(T−1(R)) ∗ |R.d|
|T−1(R.d)|

where R.d is the direction vector for the ray R.
The calculation of the normal is also somewhat complex

nT (X)(R) = ((T−1)t) ∗ nX(T−1(R))

where M t is the transpose of the matrix M . To see where this comes from,
let n be the normal to X at a point p and let v be a vector perpendicular
to n at p. Then v is in the tangent plane P and as one takes smaller and
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smaller neighborhoods near the point p, the surface X more and more closely
approximates that tangent plane. If T is a transform of the object, then T (P )
is the tangent plane to T (X) at T (p), but the normal to that plane is not T (n).
Indeed, since we know that the dot product of n and any vector v in P is zero
as the tangent plane is perpendicular to n, so

nt ∗ v = 0

From this it follows that

nt ∗ I ∗ v = nt ∗ T−1 ∗ T ∗ v = 0

as T−1 ∗ T = I and I ∗ v = v. Now, since nt ∗ T−1 =
(
(T−1)t ∗ n

)t we see that(
(T−1)t ∗ n

)t ∗ (T ∗ v) = 0

for all v in the tangent space to P . Thus, the normal to T (P ) must be given by

nT (X)(R) = (T−1)t ∗ nX(T (R))

9.4 Exercises

Let h =
√

2
2 , so h = sin(π/4).

1. Write out the transformation matrix Rz which rotates the world around
the z axis by 45 degrees.

2. Write out the transformation matrix R′
z which rotates the world around

the z axis by -45 degrees.

3. Write out the transformation matrix Ry which rotates the world around
the y axis by 45 degrees.

4. Write out the transformation matrix T which translates the origin to the
point (1, 2, 3)

5. Write out the transformation matrix S which scales (x, y, z) to (2x, 2y, 3z)

6. Compute the matrix product RzR
′
z.

7. Compute the matrix products RyRz and also RzRy? Are they equal? If
not, how are they different?

8. Compute the matrix products RzS and SRz? Are they equal?

9. Apply the matrix ST to the vector (−2, 3, 1)

9.5 Changes to RayTracer3D
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Chapter 10

Textures

Photorealism is greatly enhanced by adding textures to the geometric objects
and meshes in our raytracer. The approach described here is to associate a
texture coordinate with each intersection point of a ray and a surface. The
texture coordinate consists of a pair of floating point numbers which can then be
mapped to a color based on the particular texture associated with the material.

The standard approach is to defining a texture map on the plane which
associates an RGB color to any pair of floatin point numbers (x, y). We can
then get a texture on an object by mapping each point p on the object to a
point (x, y) in texture space, and using the texture color for that point.

10.1 Textures for a cube

The simplest way to create a texture map for a cube is to define the cube as
a group of transformed unit squares ([0, 1], [0, 1], 0) in the z = 0 plane. The
texture coordinate for a point (x, y, 0) is just (x, y)

10.2 Texture mapping for the plane

For the plane z = 0 we can easily map an intersection point (x, y, 0) to the
natural texture coordinate (x, y). For a general plane that passes through a
point q with normal n we can get the same effect by specifying two orthogonal
unit vectors in the plane (call them r for right and u for up and then mapping
a point p in the plane to its coordinates relative to the right and up vectors:

p 7→ ((p− q) · r, (p− q) · u)

We can construct r by projecting some vector, say (1, 0, 0) into the plane through
(0, 0, 0) with normal n to get r. We can then get u using the cross product

u = n× r
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as this will be orthogonal to n and hence in the plane, and will be orthogonal
to r so the texture will be applied without any slant! The one case where this
approach may fail is when (1, 0, 0) is nearlly perpendicular to the plane, but in
this case we can project (0, 1, 0) instead as the right vector.

10.3 Texture mapping for the cylinder

A cylinder is defined by the base plane (a point q and a normal n) together
with a radius R and a height H.

We can easily get a texture coordinate for an intersection point p on the
cylinder by projecting p into the base plane of the cylinder to get a point p′.

p′ = p− ((p− q) · n)n

Since the projection is in the plane, it has a texture coordinate (x, y) where

x = (p− q) · r
y = (p− q) · u

where r and u are the right and up vectors in the plane that define the texture
of the plane as in the previous section. We can use the atan2 Java method to
convert this into an angle α between −π and π radians.

α = Math.atan2(y, x)

To get the natural texture coorindates for the cylinder, we can also compute
the distance

h = (p− q) · n

between the two points p and p′, and then we get the texture coordinate map

p 7→ (h/H, 1/2 + α/(2π))

which has the effect of unrolling the cylinder onto the plane and rescaling so it
fits in the rectangle [0, 1]× [0, 1].

10.4 Texture Coordinates for a sphere

For simplicity, lets first consider a sphere centered at the origin. The easiest
way to get texture coordinates for the sphere is to circumscribe the sphere with
a cylinder parallel to the y-axis and then project the sphere onto the cylinder
using rays perpendicular to the y-axis. For example, let S be a sphere with
center q = (0, 0, 0) and radius R and let p = (x, y, z) be a point on S. Then
x2 + y2 + z2 = R2 and the projection of this point onto the cylinder of radius
R perpendicular to the y axis is

(x/d, y/d, z)
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where d =
√

x2 + y2/R as then we have

(x/d)2 + (y/d)2 = (x2 + y2)/d2 = R2

We can then compute the texture coordinates for this point on the cylinder.
Another approach is to enclose the sphere in a box and project the sphere

on the box using the normal vectors of the sphere (actually this works with any
geomatric shape that can be enclosed in a box). A texture for the box then
maps to a texture for the sphere.

10.5 Texture transforms

We have shown how to define an initial texture mapping for an object, but
in practice one often wants to transform the texture mapping. For example,
shifting it, rotating it, scaling it, shearing it. This can easily be implemented
by defining a texture transform object which is a 2D affine transform that is
applied to the texture coordinates before the color is computed.
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Chapter 11

Scene Graphs

11.1 JScheme as a Scene Description Language

11.2 Sample Scenes
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Appendix A

Solutions to Exercises

A.1 Chapter 2

Consider the following three points

a = (1, 2, 2)
b = (7,−2, 4)
c = (0, 4,−2)
d = (1, 1, 1)

Let u be the vector from b to a, and let v be the vector from b to c. Let P be
the plane that passes through d and is normal to a.

1. How long is the vector u?

u = a− b = = (1, 2, 2)− (7,−2, 4) = (−6, 4,−2)

|u| =
√
|u · | =

√
36 + 16 + 4 =

√
56

2. Is the angle between u and v less than 90 degrees, equal to 90 degrees, or
greater than 90 degrees? How do you know?
Let θ be the angle between u and v, and recall tha the dot product formula
expresses the dot product of two vectors in term of their lengths and the
cosine of the angle between them:

u · v = |u| |v| cos(θ)

If cos(θ) > 0, then θ must be less than 90 degrees and if cos(θ) < 0 then
θ is greater than 90 degrees. So we compute:

u = (−6, 4,−2)
v = c− b = (0, 4,−2)− (7,−2, 4) = (−7, 6,−6)

u · v = 42 + 24 + 12 = 78 > 0
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and see that the angle is less than 90 degrees.

3. Calculate the normalization of the vector a, i.e. the unit vector pointing
in the same directions as a.
Since a = (1, 2, 2), |a| =

√
1 + 4 + 4 = 3 so the normalization ã is

ã =
a

3
= (

1
3
,
2
3
,
2
3
)

4. How far away is the point b from the plane P?
To do this, we take the dot product of w = b− d with ã

w = (7,−2, 4)− (1, 1, 1) = (6,−3, 3)

So
w · ã = (6,−3, 3) · (1

3
,
2
3
,
2
3
) = 2 + (−2) + 2 = 2

So b is 2 units above P .

5. Find the point p which is the projection of b onto the plane P .
We have already calculated that b is 2 units above P where the notion of
up and down is specified by the normal ã. Thus if we subtract t times the
normal to P from b we will move it directly into the plane, and this is the
projection:

p = b− ((b− d) · ã)ã = (7,−2, 4)− 2(
1
3
,
2
3
,
2
3
) = (6

1
3
,−3

1
3
, 2

2
3
)

6. Use the cross product to find a vector w which is perpendicular to u and v.

u = (−6, 4,−2)
v = (−7, 6,−6)

u× v = (uyvz − uzvy, uzvx − uxvz, uxvy − uzvx)
= (−24−−12, 14− 36,−36−−28) = (−12,−22,−8)

and we can then check that (4, 2,−50) is perpendicular to u and v:

(−6, 4,−2) · (−12,−22,−8) = 72− 88 + 16 = 0
(−7, 6,−6) · (−12,−22,−8) = 84− 132 + 48 = 0

7. Find the point e that you get by rotating the point c around the x axis
by 90 degrees.
Rotating c = (0, 4,−2) around the x axis will keep the x coordinate the
same but will move the y axis onto the z axis, and the z axis onto the −y
axis, thus it should go to (0, 2, 4).
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A.2 Chapter 9

Let h =
√

2
2 , so h = sin(π/4).

1. Write out the transformation matrix Rz
45 which rotates the world around

the z axis by 45 degrees.

Rz
45 =


h −h 0 0
h h 0 0
0 0 1 0
0 0 0 1


2. Write out the transformation matrix Rz

−45 which rotates the world around
the z axis by -45 degrees.

Rz
−45 =


h h 0 0
−h h 0 0
0 0 1 0
0 0 0 1


3. Write out the transformation matrix Ry

45 which rotates the world around
the y axis by 45 degrees.

Ry
45 =


h 0 h 0
0 1 0 0
−h 0 h 0
0 0 0 1


4. Write out the transformation matrix T which translates the origin to the

point (1, 2, 3)

T =


1 0 0 1
0 1 0 2
0 0 1 3
0 0 0 1


5. Write out the transformation matrix S which scales (x, y, z) to (2x, 2y, 3z)

S =


2 0 0 0
0 2 0 0
0 0 3 0
0 0 0 1


6. Compute the matrix product Rz

45R
z
−45.

Rz
45 ∗Rz

−45 =


h −h 0 0
h h 0 0
0 0 1 0
0 0 0 1

 ∗


h h 0 0
−h h 0 0
0 0 1 0
0 0 0 1


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=


h2 + h2 h2 − h2 0 0
h2 − h2 h2 + h2 0 0

0 0 1 0
0 0 0 1



=


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1


since h2 = 1

2

7. Compute the matrix products Ry
45R

z
45 and also Rz

45R
y
45? Are they equal?

If not, how are they different?

Ry
45 ∗Rz

45 =


h 0 h 0
0 1 0 0
−h 0 h 0
0 0 0 1

 ∗


h −h 0 0
h h 0 0
0 0 1 0
0 0 0 1



=


h2 −h2 h 0
h h 0 0
−h2 h2 h 0
0 0 0 1


while

Rz
45 ∗Ry

45 =


h −h 0 0
h h 0 0
0 0 1 0
0 0 0 1

 ∗


h 0 h 0
0 1 0 0
−h 0 h 0
0 0 0 1



=


h2 −h h2 0
h2 h h2 0
−h 0 h 0
0 0 0 1


The diagonal values are the same but the off diagonals are transposed and
possibly negated..

8. Compute the matrix products Rz
45S and SRz

45? Are they equal? They are
both equal to 

2h −2h 0 0
2h 2h 0 0
0 0 3 0
0 0 0 1


9. Apply the matrix ST to the vector (−2, 3, 1)
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Lets first compute the matrix ST :

S ∗ T =


2 0 0 0
0 2 0 0
0 0 3 0
0 0 0 1

 ∗


1 0 0 1
0 1 0 2
0 0 1 3
0 0 0 1

 =


2 0 0 2
0 2 0 4
0 0 3 9
0 0 0 1


Next, we apply this matrix to (−2, 3, 1)

2 0 0 2
0 2 0 4
0 0 3 9
0 0 0 1

 ∗


−2
3
1
1

 =


−4 + 2
6 + 4
3 + 9

1

 =


−2
10
12
1


Equivalently, we could translate the point (−2, 3, 1) by (1, 2, 3) to get
(−1, 5, 4) and then scale it by (2, 2, 3) to get (−2, 10, 12).
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