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ABSTRACT
The I/O performance of query processing can be improved
using two complementary approaches. One can try to im-
prove on the buffer and the file system management policies
of the DB buffer manager and the OS file system manager
(e.g. page replacement). Alternatively, one can assume the
above policies as fixed and instead improve the sequence of
requests that are submitted to a file system manager and
that lead to actual I/O’s (block request sequences). This pa-
per takes the latter approach. Exploiting common file sys-
tem practices as found in Linux, we propose four techniques
for permuting and refining block request sequences: Block-
Level I/O Grouping, File-Level I/O Grouping, I/O Order-
ing, and Block Recycling. To manifest these techniques,
we create two new plan operations, MMS and SHJ, each of
which adopts some of the block request refinement tech-
niques above. We implement the new plan operations on
top of Postgres running on Linux, and show experimental
results that demonstrate up to a factor of 4 performance
benefit from the use of these techniques.

1. INTRODUCTION
A Database Management System (DBMS) depends upon

two components to manage how data is transferred to and
from disk: the Database (DB) Buffer Manager, and the un-
derlying Operating System’s File System Manager. The File
System Manager manages the I/O requests concerning reads
and writes of files. It controls the OS I/O buffer that is
shared by all processes, and provides an interface for pro-
cesses to manage persistent data in files. The DB Buffer
Manager manages the dedicated DB buffer, whose content
is determined by reads (queries) and writes (updates) of
database objects (i.e., relations). Management here is exclu-
sively of a buffer that is independent of the OS I/O buffer,
and used only by the query processing engine of the DBMS.

Acting in concert though typically independently, the DB
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Buffer Manager and File System Manager together comprise
a policy for mapping a query-generated sequence of block
read and write requests (a “block request sequence”) to a
sequence of actual I/O’s that result in data transfer to and
from disk (an “I/O Sequence”). (Note that the I/O sequence
may not be exactly the same as the block request sequence
because some block requests in the sequence may be satisfied
by the (DB or File System) buffer and therefore, never result
in a disk I/O.) This combined policy can be characterized
as a function, f , that accepts a block request sequence, s,
as input and produces an I/O sequence, f(s) as output.

The effectiveness of f for a given block request sequence,
f , can be measured in numerous ways, including:

1. I/O Count: the number of blocks transferred to and
from disk in f(s),

2. Disk Seek Count: the number of disk seeks required
to process the I/O’s of f(s) (note that depending on
f , consecutive I/O’s of adjacent blocks can often be
processed with a single disk seek), and

3. I/O Time: the amount of time required to perform the
I/O operations in f(s).

These measures are listed in increasing order of the num-
ber of I/O performance factors they consider. I/O Count
measures the effectiveness buffer management. Disk Seek
Count measures both effective buffer management as well
as clustering of consecutively requested blocks in the block
request sequence. I/O Time more generally measures the
effectiveness of physical disk layout by accounting for con-
secutively requested sets of blocks that are a short disk seek
apart).

A traditional approach to improving I/O performance is
to alter f , either at the DB Buffer or File System levels. A
survey of buffer management strategies is presented in [3]. A
novel, complementary approach proposed in this paper as-
sumes that f is fixed, and instead permutes and refines the
block request sequences that are input to f , to better ex-
ploit buffer and file system management policies to achieve
better I/O performance during query processing. For the
purposes of this paper, we assume a fixed f which is the
combined buffer and disk management policies of the Post-
gres DB Buffer Manager and the Linux File System Man-
ager. While the results we present are specific to Linux
and Postgres, we believe that the approach of manipulating
block sequence requests to better exploit underlying buffer
management policies has general applicability to any DBMS
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Figure 1: Sorting Steps of EMS(a) and MMS(b)
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Figure 2: Block Request Sequences for EMS(a), MMS(b)

and File System combination.

1.1 A Simple Example
To demonstrate our approach, we show two example block

request sequences that both result in sorting a small file, R,
consisting of four initial runs that are merged two at a time1.
The first is that produced by a standard external merge sort.
The second is a refinement of the first produced using our
techniques.

Figure 1a illustrates the steps involved in sorting R using
a standard external merge sort (EMS) as described in most
introductory database texts [12]. The tree structured dia-
gram presents the levels of the algorithm: level0 involves
sorting individual runs, A, B, C and D into sorted runs A′,
B′, C′ and D′ respectively; level1 involves merging runs A′

and B′ into a new run E, and C ′ and D′ into a new run, F ;
and level2 involves merging E and F into the result run, G.
Each run in the diagram is annotated with an integer (1-7)
reflecting the order in which runs are constructed. Because
EMS is a lazy merge algorithm [5], level1 runs E and F are
only constructed after all level0 runs (A′, B′, C′, and D′)
have been constructed.

Figure 1b shows how R is sorted using an alternative
merge sort introduced in this paper (Multilevel Merge Sort,
or MMS) that permutes the block request sequence produced
by EMS. One of the major differences between MMS and EMS

is that MMS performs an eager rather than lazy merge sort.
As evidenced by the differing numbering scheme, this means
that the level1 run, E, is constructed immediately after the
level0 runs, A′ and B′, are constructed. Similarly, F is con-
structed immediately after C ′ and D′.

Figure 2 contrasts the block request sequences generated
by EMS and MMS. A block request sequence shows data re-
quests made by a process in the order these requests are is-
sued. (RX refers to a request to read block X.) For example,
the block request sequence for EMS shows that every level0
run (e.g., A) is read, and its sorted version (A′) is written
1To keep the example as simple as possible, we assume that
each of the initial runs occupies a single page, and that the
internal memory used for sorting runs (1 page) is distinct
from the internal memory used for merging (3 pages) as in
Postgres [14].
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Table 1: Process Block Request Sequences (LRU)

before any level1 runs are constructed. On the other hand,
the block request sequence for MMS shows that the writes
of A′ and B′ are immediately followed by the reads of the
same blocks for the purpose of generating the two pages
(E1 and E2) of the level1 run, E. These two block request
sequences result in different I/O sequences when processed
by the Linux file system. Assume the file system practices
applied by Linux are:

• LRU-Based Page Replacement,

• Delayed Buffer Flushing: Linux permits configuration
of buffer flushing policies. For example, it can be con-
figured to flush dirty pages only when these pages are
evicted from the buffer (as we assumed in the exam-
ple shown in Table 1 and r̃eftbl:emsmmsopt discussed
below).

Table 1a and 1b compare the I/O buffer contents and the
I/O sequences of the two block request sequences in Figure 2
assuming a 3-page I/O buffer. The first column of each
table (“Block Requests”) shows the block request sequence
for each sort algorithm. The shaded block requests are the
ones used for constructing level1 runs. The next 3 columns
of each table (”I/O Buffer”) show the contents of the buffer
after each block request is satisfied, and the last column of
each table (“I/O Sequence”) shows what (if any) disk input
(IX) or output (OX) operations must be executed for some
block X to satisfy the corresponding block request.

It can be seen from Tables 1a and 1b that the block request
sequence of MMS results in only 6 actual I/O’s versus the 14
I/O’s resulting from that of EMS. The better I/O behavior
exhibited by MMS attributes to how it permutes its block
request sequence to better exploit the following file system
practices:

LRU-Based Page Replacement: Note that the 4th-8th re-
quests of the MMS block request sequence involve reading runs
A′ (RA′) and B′ (RB′ ) prior to merging them to construct
run E (WE1

and WE2
). The reads of A′ and B′ occur im-
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Table 2: Process Block Request Sequences (OPT)

mediately after these runs have been constructed, meaning
that they are still contained in the I/O buffer when the read
requests are satisfied. Thus, MMS does not need to execute
actual I/O’s to satisfy these block requests. In contrast, EMS
constructs run E with the 9th-12th requests of its block re-
quest sequence, meaning that A′ and B′ are required long
after they have been constructed, and therefore after they
were evicted from the buffer. As a result, EMS must perform
actual I/O’s (IA′ and IB′ ) to bring A′ and B′ back into the
I/O buffer. The same phenomenon is exhibited in the con-
struction of run F using C ′ and D′. As a result, MMS has
no actual I/O’s corresponding to actual I/O’s, IA′ , IB′ , IC′

and ID′ , executed by EMS. This demonstrates the caching
benefits of eager merging resulting from better locality in
the block request sequence.

Delayed Buffer Flushing: Not only must EMS read runs A′,
B′, C′ and D′ into the buffer to construct runs E and F , EMS
must previously have output these runs to disk when they
were originally evicted from the I/O buffer. On the other
hand, MMS no longer has a need for A′ and B′ once run E

has been constructed, and thus need not ever flush A′ or B′

to disk! Of course, there is no way for a file system to know
that a dirty page is no longer needed by an application. So
MMS exploits delayed buffer flushing to trick the file system
into never writing the dirty page to disk. The technique in-
volves block recycling: fooling the file system into thinking
it is updating a page of one file when it is in fact, over-
writing this page with a page from a different file. This is
what MMS does in response to the block request, WE2

: page
E2 overwrites page A′ without the file system’s knowledge,
thereby circumventing the page replacement operation that
would have flushed A′ to disk. Delayed buffer flushing en-
ables this technique because A′ is not forced to disk when
it is constructed but only when it is evicted from the I/O
buffer. Because the construction of E is interpreted by the
file system as a write to A′, eviction of A′ never takes place.
This optimization accounts for the remaining 4 actual I/O’s

(OA′ , OB′ , OC′ , and OD′ ) that are performed by EMS but
not MMS.

It should be stressed that the block request sequence ma-
nipulation illustrated here is complementary to any algorith-
mic improvements to file system management. Even given
an optimal buffer management policy, f , the effectiveness of
f(s) can still be improved by permuting s. Table 2a and 2b
compare the I/O buffer contents and the I/O sequences of
EMS and MMS assuming that f uses optimal page replacement
(OPT) [9]. Still, the block request sequence of MMS results
in fewer actual I/O’s than that of EMS. Table 2 shows that
the block request sequence of MMS results in 5 actual I/O’s,
while that of EMS results in 6.

1.2 Our Contributions
This paper demonstrates the viability of permuting and

refining block request sequences as a technique for improving
the I/O performance of query processing. This technique
has two benefits:

• It offers a complementary research direction to the
work on developing new file system and DB buffer
management strategies (e.g., new page replacement
policies).

• It also provides a relatively uninvasive way to improve
the performance of existing DB systems. Instead of
altering the DB buffer manager or the file system man-
ager of the underlying DB or file system, it assumes
these are fixed, and exploits them at the operator level.

We will demonstrate these benefits in the context of Post-
gres running on Linux, and show how the block request se-
quences for temporary files constructed by Postgres’ block
operations (sort, hash join) can be permuted and refined
to better exploit the management strategies used by the
file system manager2. Thus, we assume a single fixed f ,
based on the file system management policies of Linux. We
effectively permute and refine the block request sequence
produced by Postgres sort and hash join operations by in-
troducing alternative versions of these operations that pro-
duce alternative block request sequences. The results shown
in this paper lay the groundwork for more general study of
how permuting and refining block request sequences can im-
prove the I/O performance for the management policies used
in any underlying DBMS and file system.

The remainder of this paper is organized as follows. In
Section 2, we discuss four common file system practices and
present techniques for permuting and refining block request
sequences in file systems to exploit these practices. In Sec-
tion 3, we introduce two new sort and join operations, MMS
and SHJ, that use the above techniques. In Section 4, we
show experimental results and illustrate the I/O benefits of
MMS and SHJ with file system tracing tools, and before dis-
cussing related work in Section 5 and concluding with future
research directions in Section 6.

2. MANIPULATING BLOCK REQUEST SE-
QUENCES

In this section, we describe four common file system tech-
niques that are used by Linux (Section 2.1) and four ways
2Postgres temporary file construction bypasses the DB
Buffer manager and instead directly interacts with Linux
file system manager to construct files.

3



RA, RB , WC , WA, WB , RC , RA, WD, RD, WB , RD, WC RA, WA, RB , RA, WB , WB , WC , WD, RC , WC RD, RD

(a) A Block Request Sequence (b) The Result of Block-Level I/O Grouping

RA, WA, RB , RA, WD, WB , WB , RD, RD, WC , RC , WC RA, WA, WA, WD, RD, RD, RB , WB , WB , WC , RC , WC

(c) The Result of File-Level I/O Grouping (d) The Result of I/O Ordering

Figure 3: A Block Request Sequence and its Permutations

to manipulate block request sequences to exploit them to
achieve better I/O performance (Section 2.2).

2.1 File System Management in Linux
Linux employs the following file system techniques which

can be exploited during query processing:

LRU-Based Page Replacement: LRU ([L]east [R]ecently [U]sed)
is the most commonly used page replacement policy for
managing the contents of a File System’s I/O Buffer. Be-
sides Linux, LRU-Based page replacements are also used in
FreeBSD, Solaris, and Windows NT. Linux chooses pages to
replace based on their page reference counters. Because it
decreases page counters exponentially, its page replacement
behavior approximates LRU.

I/O Merging: I/O bound applications issue continuous streams
of I/O requests that are collected in an I/O request buffer.
Disk scheduling policies (e.g., LOOK or SCAN) choose the
order in which these requests are satisfied. But indepen-
dently of the disk scheduling policy, Linux merges pending
requests for I/O’s over adjacent blocks into a single multi-
block request. This has the effect of reducing the number of
actual I/O’s (and hence, disk seeks) required to respond to
all I/O requests in the I/O request buffer.

Delayed Buffer Flushing: When a page in the I/O buffer is
changed (“dirtied”), an Operating System can flush its up-
dated contents immediately to disk (write-through) or delay
this operation until some condition is met or the page is
evicted (write-back). Write-through reduces the risk of fail-
ure and the cost of recovery, while write-back (by allowing
multiple writes to the same page to result in one rather than
multiple writes to disk) can improve I/O performance. Most
Operating Systems, including Linux, permit the configura-
tion of the buffer manager to enact either of these flushing
policies, though because of its performance advantages, de-
layed buffer flushing (write-back) is more common.

Block Grouping: This file system practice involves pre-allocating
a contiguous group of disk blocks to a file when a new block
is needed. For example, Ext2FS pre-allocates a group con-
sisting of up to 8 adjacent blocks by default when allocating
a new block [2]. The goal of block grouping is to make a
file as contiguous as possible so as to speed up sequential
access.

2.2 Block Request Sequence Refinement
We introduce four techniques for permuting and refining

block request sequences in ways that exploit the file system
practices discussed in Section 2.1. To illustrate these tech-
niques, we will refer to the example block request sequence
shown in Figure 3a involving four disk blocks: A, B, C, and
D.

2.2.1 Technique #1: Block-Level I/O Grouping

Block-level I/O grouping involves permuting a block re-
quest sequence so that block requests involving the same
block are in close proximity within the sequence.3 We saw
one example application of this technique in Section 1, where
MMS reordered block requests so that requests to read blocks
of level0 runs to construct level1 runs were made immedi-
ately after the level0 runs were constructed. As another ex-
ample, given the block request sequence of Figure 3a, block-
level I/O grouping might result in the block request sequence
shown in Figure 3b where all block requests involving pages
A and B occur before all block requests involving pages C

and D.
Block-level I/O grouping exploits two file system practices

to achieve better I/O performance for the same set of block
requests:

LRU-Based Page Replacement: Block-level I/O grouping
effectively reduces the block-reference working set given a
fixed window size. Because LRU attempts to maintain the
current working set in the file system buffer, this means
that the resulting block request sequence is likely to result
in more buffer hits and fewer actual I/O’s to satisfy a given
set of block requests (as was the case in the example pre-
sented in Section 1).

Delayed Buffer Flushing: If a page is only flushed to disk
when it is evicted from the file system buffer, block-level I/O
grouping improves the chance that a dirty page is flushed to
disk only once, even if it is written multiple times in a given
block request sequence.

2.2.2 Technique #2: File-Level I/O Grouping
File-level I/O grouping involves permuting a block request

sequence so that block requests involving blocks from the
same file are in close proximity within the sequence. For ex-
ample, if blocks A, B and D from the block request sequence
of Figure 3a were from one file, R, and block C was from
another file, S, then file-level I/O grouping of this sequence
might result in the block request sequence shown in Fig-
ure 3c where all block requests involving file R are grouped
together.

This technique exploits block grouping to achieve better
I/O performance for the same set of block requests. To
illustrate, suppose that an application generates the block
request sequence,

WA, WB , WC , WD ,

such that A, B and D belong to a new file, R and C belongs
to a new file, S. Suppose further that block groups pre-
allocated to a file can hold 2 pages. Then, the block request
sequence above would result in a block group being allocated
3Obviously, not all permutations of a block request sequence
are possible. For example, a read request and a write request
of the same block cannot be reordered without changing the
semantics of the requesting application. However, the plan
operations that we propose are constrained to permute block
request sequences in a semantics-preserving way.
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to file R and assigned pages A and B, followed by a block
group being allocated to file S and being assigned page C

(with the second block in the group unassigned), followed by
a second block group being allocated to file R and assigned
page D (with the second block in the group unassigned).
This is illustrated below:

Block #: 1 2 3 4 5 6

Page: A B C − D −

File: R
|{z}

S
|{z}

R
|{z}

Now suppose that file-level I/O grouping is applied to the
above block request sequence, resulting in the block request
sequence shown below:

WA, WB , WD, WC .

This block request sequence would produce the following
block assignments:

Block #: 1 2 3 4 5 6

Page: A B D − C −

File: R
|{z}

R
|{z}

S
|{z}

Observe that given the original block allocation, a file scan
of R requires the disk head to travel 5 blocks (from block 1 to
block 5), whereas the same file scan with the blocks allocated
as above requires the disk head to travel only 3 blocks (from
block 1 to block 3). This simple example illustrates that
file-level grouping can help reduce the cost of performing a
sequential scan of any file whose blocks are allocated from
disk as a result of executing a given block request sequence.

An alternative strategy to make files more contiguous is
to increase the sizes of block groups. However, this may
result in increased internal fragmentation (by increasing the
number of unused blocks at the end of a file) and therefore
may increase the disk head distance between files, making
algorithms that require alternating I/O’s between files (as
in a MERGE operation) more expensive.

As with block-level I/O grouping, arbitrary reordering of
a block request sequence is not possible without affecting the
semantics of the requesting applications. However, our SHJ

operator (Section 3) reorders independent page writes that
construct partition files, thereby preserving the semantics of
the join.

2.2.3 Technique #3: I/O Ordering
Suppose that blocks A, B, C and D from the block re-

quest sequence of Figure 3a lie on tracks 100, 150, 151 and
101 respectively. Then, it may pay to order the block re-
quest sequence so that block requests for blocks that lie on
adjacent tracks are themselves adjacent, as demonstrated in
the block request sequence of Figure 3d.

This reordering exploits I/O merging. Specifically, if ad-
jacent I/O requests for adjacent blocks both result in active
I/O’s, then the adjacent requests will be merged into a sin-
gle multi-block request. Take the block request sequence of
Figure 3d for example. If the 3rd and 4th requests in this
sequence (writing A and D) both go to disk, they will do
so with a single I/O. Similarly for the 9th and 10th requests
(writing B and C). As with block-level and file-level I/O
grouping, our operator that performs I/O ordering (SHJ)
does so in a semantics-preserving way.

2.2.4 Technique #4: Block Recycling
Suppose, given the block request sequence of Figure 3a,

that A belongs to a file that is temporary and no longer
needed after it is last referenced (i.e., after it is read as a
result of executing the 8th request of the sequence). Because
it belongs to a temporary file that is no longer needed, even
though it is dirty it is unnecessary to write this page to disk
when it is evicted from the I/O buffer. There is no way for
a file system to know that a dirty page belongs to a file that
is no longer needed by an application. However, a query
operator can “trick” the file system into throwing out the
dirty pages of a file that is no longer needed by recycling
those pages on disk, reassigning them to some other file of
the same size. For example, if A and D are both single
page files, A is temporary and no longer needed, and D is a
new file, then the write to D that follows the last read of A

does not require allocation of a new block but can instead
overwrite the block allocated for A. As a result, the dirty
contents of A never get written to disk. This benefit was seen
in the example application of MMS presented in Section 1,
where pages A′ and B′ (C′ and D′), used to construct run
E (F ) were overwritten by the pages of E (F ), and therefore
never written to disk.

A second benefit to disk block recycling is to allow an
operator to circumvent LRU in choosing a page to replace
in the buffer. For example, a page, A that belongs to a
temporary file that is no longer needed may have been the
most recently referenced page in the buffer at the time when
eviction is necessary. LRU will evict the oldest page in the
buffer, predicting that it will be the page that won’t be
referenced for the longest time. But an application can use
block recycling to instead overwrite A, knowing that A will
never be referenced again.

3. MODIFYING BLOCK REQUEST SEQUENCES
In this section, we present an alternative external sorting

algorithm (Multi-Level Merge Sort, or MMS), and an alter-
native hash join algorithm (Sort Hash Join, or SHJ) that
differ from traditional sorting and hash join algorithms in
the block request sequences they produce.
MMS and SHJ both adopt some of the block request se-

quence refinement techniques described in in Section 2.2.
First, we explain intuitively how they incorporate these tech-
niques. Then, we present the algorithms. Finally, we demon-
strate how these algorithms produce alternative block re-
quest sequences with examples.

3.1 Multilevel Merge Sort (MMS)
MMS is a variation of eager merge sort [6] that recycles

blocks from runs that are no longer needed for use in new
runs. An eager merge sort differs from the lazy merge sort
of EMS by eagerly merging runs as soon as enough runs have
been constructed, and prior to the construction of all runs
of the same merge level. MMS performs an eager merge sort,
but also records the blocks of runs that have been merged
(which can be identified with file names and offsets) and
uses them to store blocks of newly constructed runs. By
merging runs “eagerly”, MMS reads runs shortly after writing
them and achieves Block-Level I/O Grouping. By replacing
the blocks of old runs with those of new runs, MMS achieves
Block Recycling. The effectiveness of MMS’ block request se-
quence refinement was demonstrated in Section 1. In Ta-
ble 1b, 4 actual disk reads, IA′ , . . . , ID′ are avoided because
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MMS achieves block-level I/O grouping, 4 actual disk writes,
OA′ , . . . , OD′ are also avoided because MMS achieves block
recycling.

Algorithm MMS (Table S)
Initialize run counter and run pointers,

set C0, ..., C
M

to 0,

set R0
0, ..., RN−1

0 , ..., R0
M, ..., RN−1

M
to NULL

REPEAT
CreateInitialRuns:

REPEAT

R
C0
0 := {load tuples from input and sort them}

C0 := C0 +1
UNTIL C0 = N or EOF (S)

MultiLevelMerge:

L := 0
REPEAT

R
CL+1

L+1
:= MergeWithRecycle(R0

L
...R

CL−1

L
)

C
L

:= 0
C

L+1
:= C

L+1
+1

L := L + 1
UNTIL (CL < N)

UNTIL EOF (S)
{merge runs level by level until all runs are merged}

Figure 4: Pseudocode of MMS

Figure 4 shows the pseudocode of MMS, and assumes that
the merge fan-out is N and the maximal merge level is M .
The counter, Ci, counts the number of runs at level i, and
the pointer, R

j
i , refers to the jth run at level i. MMS consists

of the following two phases:

• CreateInitialRuns: This phase reads tuples from the
input relation, S, until the memory is full, or until
there is no tuple left in S (EOF (S)). It then sorts
tuples in memory and stores them as an initial run,
and repeats this process until there are N initial runs
(C0 = N ), or until there is no tuple left in S. R0

0, . . . ,

R
C0−1
0 point to the newly created runs.

• MultiLevelMerge: This phase merges all runs of level
i into new runs at level i + 1, until it reaches a level,
L, containing fewer than N runs (CL < N). Function
MergeWithRecycle records the blocks of runs that are
no longer needed, and recycles them for blocks of new
runs.

MMS alternates between these two phases until the input
is exhausted. Then, starting from level 0, MMS merges runs
level by level until the final run is produced.

In short, by merging runs eagerly and writing new runs to
no longer needed runs, MMS achieves Block-Level I/O Group-
ing and Block Recycling, and exploits LRU-Based Page Re-
placement and Block Recycling.

3.2 Sort-Hash Join (SHJ)
SHJ is a variation of Hybrid Hash Join (HHJ) that performs

one pass replacement selection sort over tuples on their par-
tition numbers prior to their placement in partitions. HHJ

uses a separate output buffer to collect tuples that are stored
in partition files. Whenever an output buffer gets full, it
sends a block request to the file system to write the buffer
to the correspondent partition file. Thus, it is the order in
which the output buffers get full that determines the block
request sequence of HHJ. SHJ reorders tuples before writ-

Algorithm SHJ (Table R, Table S)
Create a buffer for each partition B0 ...B

N−1

Open partition files for R and S, R0 ...R
N−1

, S0 ...S
N−1

Build:

{Read tuples from R, insert them to heap H, until the

memory is full, or until all tuples in R are read}

REPEAT
to := HeapRemove (H)
IF (to 6= NULL) THEN

po := Partition (to)
Bpo

:= AddToBuffer (Bpo
, to)

IF (Bpo
is full) THEN

WriteBuffer (Bpo
, Rpo

)

ti := NextTuple (R)
IF (ti 6= NULL) THEN

pi := Partition (ti)
H := HeapInsert (H, ti, pi)

UNTIL (to = NULL)
{Write B0, ..., BN−1 to R0, ..., RN−1}

{Repeat the above procedure, sort and partition S

into S0 ...SN−1 }

Probe:

FOR i := 0 TO N − 1
CreateHashTable (Ri)
REPEAT

t := NextTuple (Si)
{Probe the hash-table and output join results}

UNTIL EOF (Si)

Figure 5: Pseudocode of SHJ

ing them to the output buffers, which changes the order in
which the output buffers fill, and as a consequence, changes
the order of the block requests. By sorting by partition num-
ber prior to partitioning, SHJ achieves both File-Level I/O
Grouping and I/O Ordering.
SHJ determines the number of partitions it creates in the

same way that HHJ does. Let R be the build relation (the
smaller of the join relations), M be the available memory,
|R| and |M | denote the size of R and M measured in memory
pages. The number of partitions SHJ creates is

N =

‰
|R| × F − |M |

|M | − 1

ı

+ 1 (1)

(F is a fudge factor, which in this paper, we assume to
be 1.) N is also the number of partition files SHJ creates
for each join relation. SHJ uses N memory pages to create
output buffers and the remaining |M |−N memory pages to
reorder tuples.

Figure 5 shows the pseudocode of SHJ. R and S are the
build and probe relations of the join. N is the partition
number calculated with Equation 1. We use a heap H to
reorder tuples based on replacement selection. SHJ consists
of the following two phases:

• Build: This phase reads tuples from the input, and
inserts them into a priority heap ordered by their par-
tition numbers. It then removes tuples from the top
of the heap and stores them into the output buffers of
their corresponding partition files. Function HeapInsert

(H, ti, pi) inserts tuple ti into a position in heap H

based on its partition number pi. HeapRemove (H) re-
turns the tuple at the top of H and removes it from H.
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Tuples: T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 T13 T14 T15 T16 T17 T18 T19

(a) Input Tuples
Block

Requests:
WT2

WT3
WT5

WT6
WT8

WT9
WT11

WT12
WT14

WT15
WT16

WT17
WT18

WT19

Block#: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

Page: T2 T5 T3 T6 T8 T11 T9 T12 T14 T16 T15 T17 T18 - T19 -

File: 1
| {z }

2
| {z }

1
| {z }

2
| {z }

1
| {z }

2
| {z }

1
| {z }

2
| {z }

(b) SHJ

Block
Requests:

WT1
WT4

WT2
WT5

WT8
WT3

WT6
WT9

WT12
WT7

WT10
WT13

WT11
WT14

WT16
WT18

WT15
WT17

WT19

Block#: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

Page: T1 T4 T2 T5 T8 T11 T3 T6 T9 T12 T7 T10 T13 - T14 T16 T18 - T15 T17 T19 -

File: 0
| {z }

1
| {z }

2
| {z }

0
| {z }

1
| {z }

2
| {z }

(c) SHJ

Table 3: Partitioning Input Tuples (a) with HHJ (b) and SHJ (c)

• Probe: Same as in HHJ, this phase creates an in-memory
hash-table, and populates the hash-table with all tu-
ples from a build partition file Ri. It then probes the
hash-table using tuples read from the corresponding
probe partition file Si to produce join results. Func-
tion CreateHashtable (Ri) creates a hash-table and
inserts all tuples into Ri to it.

We illustrate how SHJ achieves File-Level I/O Grouping
and I/O Ordering with a simple example. Assume a rela-
tion of 19 pages that is partitioned with 7 memory pages
(|R| = 19, |M | = 7). According to Equation 1, HHJ creates 2
partition files (N = 3). We also assume for simplicity that:

• the size of a disk block and a memory page are equal,

• the file system pre-allocates a group of 2 adjacent disk
blocks to a file when a new block is needed, and

• each tuple occupies one memory page (or disk block).

Table 3a shows all the tuples to be partitioned. (Tuples,
block requests and disk pages are in white if they belong to
partition 0, light gray if to partition 1, and dark gray if to
partition 2.) HHJ keeps the tuples of partition 0 (T1, T4, . . .)
in memory and writes the remaining 14 tuples to partition
files. The first row in Table 3b (“Block Requests”) shows
its block request sequence. The file system allocates block
groups to partitions 1 and 2 according to the block requests.
The result shows that both partition files 1 and 2 are stored
in 4 separate block groups (row “Page” and “File”). Thus,
accessing each of them sequentially requires 4 disk seeks. In
total, it requires 8 disk seeks to access the partition files of
HHJ.

To partition the same relation using the same amount
of memory, SHJ creates 3 partition files. Thus, SHJ writes
one more partition file to disk then HHJ does (partition 0).
However, though more data are written and read to and
from disk by SHJ, the costs of the reads and writes are offset
by the placement of blocks from SHJ resulting in fewer disk
seeks. Of the 7 memory pages, SHJ uses 3 as output buffers,
and the remaining 4 to sort tuples. Tuples are written to
their partition files with the block request sequence shown
in Table 3c. Unlike HHJ, SHJ writes the tuples of partition
0 to a file as well. Table 3c also shows how the disk blocks
are allocated to each partition file. Partition 0 is stored in
3 block groups, two of which are adjacent (the block groups
starting from block 11 and 13). Accessing it sequentially

requires 2 disk seeks. Partition 1 and 2 are both stored in 4
block groups. Accessing each of them sequentially requires
2 disk seeks. In total, it requires 6 disk seeks to access
the partition files of SHJ. This compares favorable to the
8 disk seeks required to access the partition files of HHJ.
This demonstrates the benefit brought by File-Level I/O
Grouping.

Table 3 also shows that SHJ achieves I/O Ordering. As
discussed in Section 2, consecutive block requests that re-
quire consecutive disk blocks are likely to be merged into
one actual I/O by the I/O scheduler. The block request
sequence of HHJ contains 7 block requests that are followed
immediately by requests demanding disk blocks that are not
adjacent to the blocks they demand (These are underlined
in Table 3a: WT2

, WT5
, . . . ). Meanwhile, the block re-

quest sequence of SHJ contains only 4 such block requests.
Again, although the request sequence of SHJ contains more
requests, it can be processed with fewer actual I/O’s and
therefore faster because the I/O scheduler is able to merge
more requests in it into one4. Thus, by sorting, SHJ also
achieves I/O Ordering. This reduces the number of seeks
required to write the partition files.

It should be pointed out that SHJ is beneficial versus HHJ
only in certain cases. Specifically, SHJ is beneficial if it pro-
duces block request sequences in which the number of con-
secutive block requests of the same file are greater than the
block group pre-allocation size of the file system. It can be
seen from Table 3c that it is the large number of consecutive
block requests of the same file that forces the file system to
allocate several adjacent block groups to the file. For exam-
ple, block requests, WT3

, WT6
, WT9

, and WT12
, force the file

system to allocate two adjacent block groups (block groups
starting from block 7 and 9) to partition 2. Therefore, the
average number of consecutive block requests belonging to
the same file indicates whether SHJ will be benificial, which
can be estimated from the partition number and the avail-
able memory using Equation 2.

G =

‰
2 × (|M | − N)

N

ı

(2)

4Note that a block request sequence reflects the order in
which blocks are written to the I/O buffer. If two blocks are
written to the I/O buffer closely, they are likely to be flushed
out together. To make this example simple, we leaved out
the part how the I/O buffer flushes dirty pages.
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When G is greater than the block group pre-allocation size
of the file system, SHJ is benefitial.

To summarize, SHJ’s strategy of partially sorting its input
during the build phase of the hash join achieves File-Level
I/O Grouping and I/O Ordering, and exploits I/O Merging
and Block Grouping.

4. IMPLEMENTATION AND RESULTS
To determine the benefits of performing block request re-

ordering in query processing, we implemented MMS and SHJ

on top of Postgres 8.0 running on Linux. In Section 4.1,
we compare the execution time of MMS against the Postgres
sort, Polyphase Merge Sort (PPMS) [7] and several other ex-
ternal sorting algorithms. In Section 4.2, we compare the
performance of SHJ with that of Postgres’ built-in Hybrid
Hash Join (HHJ). For each of these experiments, we also test
our theories about how their benefits derive from better ex-
ploitation of file system practices by tracing file system be-
havior during query processing.

We conducted all of our experiments on a system with a 2
Ghz Pentium 4 processor, (the machine has two processors,
but only one of them is in use in our experiments), 1 GB
RAM, and two IDE hard drives over Linux-2.4.31 compiled
with modules that enable tracing of disk I/O and file system
activity. One 120 GB hard drive is used to store the Linux
kernel, executables, and all user files. The other 300 GB
hard drive is dedicated to database files and all files gener-
ated by Postgres during query processing. The 300 GB hard
drive is formatted to the ext2 file system with a file system
block size of 4KB, and a block group pre-allocation size of
8 blocks. The database files use 11% of the hard drive and
are all stored contiguously.

The tracing code is executed only when certain tracing
modules are loaded into the system. All experiments are
run with and without loading these tracing modules. We
use the default I/O buffer flushing configuration of Linux;
pages are flushed to disk under the following conditions:

• dirty pages are flushed asynchronously when over 30%
of the whole memory contains dirty pages.

• dirty pages are flushed synchronously when over 60%
of the whole memory contains dirty pages, until the
dirty pages ratio drops below 20%.

• dirty pages which are older than 3 seconds are flushed
asynchronously.

The plan execution times were generated using Postgres’
EXPLAIN ANALYZE tool. Our testing data is generated
with DBGEN for TPC-H [15] with various scale factors. We
categorize tables by their sizes: tables less than 512 MB
are small, between 512 MB and 1.5 GB are medium, and
greater than 1.5 GB are large. We choose two tables from
each category in our experiments.

To make sure that the timing result of the algorithms were
not influenced by external processes (i.e., I/O workloads or
buffer page references from other processes), we reboot the
system immediately before a query is processed. Only kernel
processes and Postgres are running in the system during
query processing.

4.1 Multilevel Merge Sort
In this Section, we describe experimental results that show:

Eager or Lazy Block Recycling

PPMS Lazy Yes
PPMS-NR Lazy No
MMS Eager Yes

MMS-NR Eager No

Table 4: Sort Algorithm Features

Table Scale Factor Size (MB)

Small-1 Partsupp 3.0 438.7
Small-2 Orders 2.0 492.3

Medium-1 Partsupp 5.0 731.3
Medium-2 Lineitem 1.0 1224.8
Large-1 Partsupp 13.0 1902
Large-2 Lineitem 2.0 2448.5

Table 5: Table Sizes (MMS experiments)

• the relative performance of MMS vs. Postgres’ built-in
sort (PPMS) over tables of varying sizes,

• the impact of Block-Level I/O Grouping on the per-
formance of MMS, and

• the impact of Block Recycling on the performance of
MMS.

We start by comparing the performance of four sort algo-
rithms:

• PPMS: Postgres’s Polyphase Merge Sort [7] (which is
lazy and performs block recycling)

• PPMS-NR: PPMS modified to do no block recycling

• MMS: as described in Section 3, and

• MMS-NR: MMS modified to do no block recycling.

These four algorithms cover the space of possibilities given
the choices between eager (MMS) vs. lazy merging (PPMS),
and block recycling or no block recycling (-NR), as shown
in Table 4. All sort algorithms were configured to use the
same amount of sort memory that is allotted by default to
Postgres’ PPMS (i.e., 1 MB)5.

In Section 4.1.1, we compare the performance of the sort
operators above on TPC-H tables ranging in size from .4
GB - 2.4 GB. In Section 4.1.2, we show how eager sort al-
gorithms get better I/O buffer behavior than lazy sorting
algorithms (thus proving the effectiveness of block-level I/O
grouping). Then in Section 4.1.3, we show how block re-
cycling algorithms result in fewer I/O’s (though sometimes
poorer performance) than non-block recycling algorithms.

4.1.1 Performance Results
Figure 6 compares the execution time of the four sort al-

gorithms described previously, as well as two additional vari-
ations of MMS: MMS (1) and MMS (2). These sort algorithms
were added to the experiments, because results showed that
for medium to large files, algorithms that do block recycling
(PPMS and MMS) performed worse than corresponding algo-
rithms that do not (PPMS-NR and MMS-NR). We speculated
that this had to do with the fact that block recycling results
in discontiguous allocations of blocks to runs, and that for
5The sort memory specifies the amount of private memory
each sort (or hash) operation in Postgres can have. If there
are n simultaneous sorts (or hashes), the total sort memory
will be n times the default. Therefore, common wisdom
dictating that the number should be kept fairly small to
avoid swapping. A detailed discussion about this issue can
be found in [8].
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Figure 6: A Comparison of Execution Times for Six Sorting Algorithms

very large runs, this results in poor scan performance due
to excessive seek movement. We tested this theory by look-
ing at hybrid algorithms that perform block recycling only
for small runs (i.e, only during the level0 and level1 merges
(MMS (1)) or during the level0, level1 and level2 merges (MMS
(2))6. For all six tables, the MMS-based algorithms con-
sistently performed better than the PPMS-based algorithms.
For example, for very large tables (Large-2), MMS (1) is over
400% faster than PPMS.
MMS-NR consistently performs better than PPMS-NR over

all size tables. The reason is that MMS-NR exploits the LRU-
based page replacement policy of Linux, and thereby gets
a higher I/O buffer hit ratio. For the same reason, MMS

performs better than PPMS.
When the table being sorted is smaller than the I/O buffer

(Small-1, Small-2 and Medium-1), PPMS, MMS and MMS (2)

all perform much better than PPMS-NR and MMS-NR. This is
because these algorithms perform block recycling.7 MMS-NR

and PPMS-NR do not recycle blocks from old runs and instead
write new runs to new disk blocks. Every time they write
a new disk block, an I/O buffer page needs to be allocated
to buffer the disk block. Although the table size is less than
the I/O buffer, the same amount of data is added to the I/O
buffer at each merge level. Once the number of I/O buffer
pages used to cache the output exceeds the buffer flushing
threshold, the I/O buffer flushes pages to disk to obtain more
clean buffer pages. By flushing pages they no longer need
to disk, these algorithms perform more writes than needed.
Also, after the I/O buffer is flushed, run blocks which will be
needed again soon are replaced by newly created run blocks
and need to be read back from disk, further increasing the
number of disk I/O’s required.

As tables get large, the cost of PPMS increases dramati-
cally. This is because block recycling results in intermedi-
ate sort runs that are highly discontiguous. For large files,
this results in poor I/O performance, as writing and read-
ing those runs require excessive disk head (seek) movement.
For the same reason, MMS does not do well for very large
files. MMS-NR and PPMS-NR always write runs to new blocks,
thereby storing intermediate runs contiguously. Therefore
they take less time to finish, even though they read and
write more data. We will compare the actual I/O’s executed
6Due to time constraints, we were not able to complete ex-
periments for MMS (3) or MMS (4). (For the largest tables
we sorted, MMS (5) = MMS.)
7The block recycling benefits of MMS (1) are negligible for
small tables, given that block recycling is performed only for
a single merge level.

by these algorithms in the following section.
As we speculated, MMS (1) and MMS (2) performed best

when sorting large tables. Compared to PPMS and MMS,
these algorithms access data sequentially after the first few
merge levels and thereby avoid excessive random disk I/O.
Compared to MMS-NR, these algorithms recycle blocks in the
first few merge levels and reduce the number of unnecessary
writes.

4.1.2 Exploiting LRU-Based Page Replacement
In this section, we compare the read requests and actual

data read by each of the sorting algorithms to test the hy-
pothesis that eager sort algorithms such as MMS benefit from
exploiting LRU-based page replacement, and therefore needs
to perform fewer actual I/O’s to read data from disk. We
tested this measure by estimating the I/O buffer hit ratio
for every run described in Section 4.1.1.

For these experiments, we used the Linux tools STRACE
and IOSTAT to log all system calls and disk I/O’s. The read
requests comes from STRACE. We use STRACE to trace all
read system calls of the process and sum up their request
sizes. The actual I/O calculations come from IOSTAT. We
use it to report the blocks read from disk as the query is
processed. The actual I/O percentage is the actual I/O di-
vided by the read requests. We compare the I/O requests
and actual I/O percentages of the sorting algorithms in Ta-
ble 6. Note that because these tools measure the amount of
data requested, and actually transferred to/from disk, the
“actual I/O percentage” results serve as an estimate of the
I/O buffer miss ratio rather than an actual measure of such.

For small tables (Small-1, Small-2 and Medium-1), the
actual I/O percentage for PPMS-NR, MMS-NR and MMS (1) is
higher than that for the other sort algorithms. This is be-
cause these algorithms do not perform disk block recycling
(PPMS-NR and MMS-NR) or do not perform enough disk block
recycling to make a difference to performance (MMS (1)).
Merging adds new blocks to the I/O buffer, which causes
blocks which will be used soon to be evicted from the I/O
buffer. These run blocks are read back later in the merg-
ing phase, which results in more actual I/O’s and a higher
actual I/O percentage. PPMS reads less data because it per-
forms disk block recycling. By doing so, PPMS is able to use
a limited set of buffer pages to cache all the runs it needs
when table is small. The number of buffer pages it requires
to cache runs is the table size.

For larger tables (Medium-2, Large-1, and Large-2), MMS-NR
and MMS read much less data than PPMS and PPMS-NR. This
is because they all exploit the LRU-based page replacement
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Read Requests (MB) Actual I/O Pct
Sorted Table

PPMS PPMS-NR MMS-NR MMS PPMS PPMS-NR MMS-NR MMS

Small-1 2641 2641 2671 2673 16.7% 62.7% 41.3% 16.5%

Small-2 3070 3070 3004 3010 18.5% 72.5% 41.3% 16.4%

Medium-1 4641 4641 4485 5222 27% 88.4% 46.9% 15.2%

Medium-2 8225 8225 8030 8745 63% 92.2% 57.7% 36.4%

Large-1 13548 13548 13872 13871 100% 100% 56.9% 40.2%

Large-2 17743 17743 17775 17827 100% 100% 59.3% 44.1%

Table 6: Percentage of the Actual Data Read and Read Requests

Write Requests (MB) Actual I/O Pct
Sorted Table

PPMS PPMS-NR MMS-NR MMS (1) MMS (2) MMS PPMS PPMS-NR MMS-NR MMS (1) MMS (2) MMS

Small-1 2202 2202 2201 2201 2201 2201 4.1% 90% 92.2% 52.3% 22.4% 24%

Small-2 2578 2578 2476 2476 2476 2478 47.2% 66% 91% 51.2% 25.8% 24.5%

Medium-1 3910 3910 3669 3669 3669 4401 77.6% 100% 100% 56.6% 33.4% 27.1%

Medium-2 7001 7001 7338 7338 7338 7341 100% 100% 100% 66.8% 50.2% 46.9%

Large-1 11646 11646 11442 11443 11443 11443 100% 100% 100% 66.5% 50.2% 46.1%

Large-2 15294 15240 14673 14680 14673 14680 100% 99% 100% 66.8% 50.9% 50.3%

Table 7: Percentage of the Actual Data Written and Write Requests

policy of Linux, and access run blocks from the I/O buffer
before they are evicted. When the table size is larger than
the I/O buffer, PPMS is not able to cache all of its runs in
the I/O buffer.

With large tables, PPMS run blocks have to be written
to disk before they are used again. MMS reads the smallest
amount of data in all six cases because it maximizes the
buffer hit ratio by both grouping block requests and recy-
cling blocks. MMS-NR, MMS, MMS (1) and MMS (2) differ only
by their block recycling level and their relative performance
confirms that more block recycling results in smaller actual
I/O percentages.

Note that when tables get large, the actual I/O percentage
does not correspond to the execution time. For example, the
actual I/O percentage of PPMS-NR is about the same as PPMS
but its execution time is much smaller. This is the effect of
the random disk I/O’s introduced by recycling blocks, which
was discussed in Section 3.

4.1.3 Exploiting Delayed Buffer Flushing
MMS exploits delayed buffer flushing and prevents dirty

pages which are no longer required from being written to
disk by performing disk block recycling. This results in less
data being actually written to disk. Table 7 compares the
actual I/O percentage of the sorting algorithms. Again, we
use STRACE and IOSTAT to get the write requests and the
actual I/O, tracing the write system calls and actual block
written to disk.

Compared to PPMS, PPMS-NR has a higher actual I/O per-
centage for small tables. This is because PPMS is able to
cache all of the runs it needs in the I/O buffer and perform
disk block recycling effectively. When the table gets large,
PPMS-NR writes the same amount of data as PPMS does. For
MMS-NR, MMS (1), MMS (2), and MMS, their actual I/O per-
centages reflect how much block recycling they do (more
block recycling leads to lower actual I/O percentages).

4.2 Sort-Hash Join
In this section, we compare the execution times of HHJ and

SHJ measured over joins of tables from TPC-H with various
scale factors. In Sections 4.2.2 and 4.2.3, we show how SHJ

benefits from performing I/O ordering and file-level block

Scale Table Size (MB)
Factor Supplier Partsupp

Small-1 2.0 4 292
Small-2 3.0 6 439

Medium-1 6.0 12 877
Medium-2 9.0 18 1316
Large-1 13.0 26 1902
Large-2 14.0 28 2048

Table 8: Table Sizes (SHJ experiments)

grouping to exploit the file system practices of I/O merging
and block grouping.

4.2.1 Performance Results
Table 8 lists the sizes of tables joined in our experiments.

We chose the Supplier and Partsupp tables from TPC-H,
varying their sizes by changing the DBGEN scale factors.
Those two tables are chosen because the Supplier table,
which is the build relation and therefore it determines the
number of partitions, is not large in comparison to the Post-
gres sort memory. We have done experiments on larger ta-
bles with larger number of partitions, and for these, SHJ still
outperforms HHJ but requires more memory.

Figure 7 compares the performance of SHJ with HHJ. For
small tables, SHJ does slightly worse than HHJ. This is be-
cause when the tables are small, the I/O buffer is sufficiently
large that neither of the two algorithms actually read par-
tition files from disk. Therefore, SHJ is not able to get any
benefit from I/O merging or block grouping, but incurs CPU
overhead because it sorts tuples, thereby writing more data
to and reading more data from the I/O buffer than HHJ. As
tables get larger, partition files are actually written to disk
and read back, and the savings SHJ gets from faster disk I/O
outweighs the CPU overhead it incurs. Therefore, for large
tables SHJ performs better than HHJ. But when the build
relation gets too large (Large-2), more partition files must
be created and in this case, SHJ is not able to benefit from
block grouping and starts to perform worse than HHJ.

4.2.2 Exploiting I/O Merging
I/O merging produces fewer but larger I/O requests. We

tested to see if SHJ benefits from I/O merging by comparing
the average size of I/O requests for SHJ and HHJ. If the aver-
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Figure 7: Execution Time of Joining Tables Using
HHJ and SHJ (memory = 1MB)

age size of an I/O request differs for the two algorithms over
the same input, this implies that I/O merging was more suc-
cessful for the algorithm with the higher average I/O request
size.

For this experiment, we used a disk request tracing tool,
DCM, to trace all I/O requests of a particular partition sent
to the IDE disk controller. DCM reports the type (read or
write), location and size of each I/O request. We average
the size of all requests reported during query processing.

Table 9 compares the average size of I/O requests for SHJ
and HHJ. We used one table from each category (Small-1,
Medium-1, Large-1) in our test set. The average I/O size of
SHJ is greater than that of HHJ in all three cases.

It is worth mentioning that for table, Large-1, the aver-
age read size of SHJ and HHJ is about the same, but the
average write size of SHJ is larger than that of HHJ. This
benefit comes mostly from the ordered and better merged
write requests.

Actual I/O’s Average I/O Size (KB)
Table

HHJ SHJ HHJ SHJ

Small-1 7130 5061 57.7 60.3

Medium-1 44376 37654 42.3 49.9

Large-1 179683 172835 32.0 33.5

Table 9: Average Sizes of I/O’s of HHJ and SHJ

4.2.3 Exploiting Block Grouping
In this section, we present experiments that determine

how well SHJ performs file-level I/O grouping. In an extent-
based file system, each file is stored on disk with one or
more contiguous regions, such that a contiguous region is a
set of one or more block groups from the same file that are
adjacent on disk. The number of contiguous regions of a
file reflects the minimal number of seeks required to access
the file sequentially. The basic idea is that file-level I/O
grouping results in block groups assigned to a file tending
to themselves be contiguous, leading to a file that is broken
up into a smaller number of larger contiguous regions, rather
than a larger number of smaller contiguous regions.

We assume for this experiment that the distance on disk
between contiguous regions is independent of the size of con-
tiguous regions, and therefore, a file broken up into fewer,
larger contiguous regions will be faster to scan than a file of
the same size that is broken up into more, smaller contigu-
ous regions. (The seek distance between 1st and last block
of a file will be less in the former case.) Thus, our experi-
ments test to see which of SHJ or HHJ creates hash partitions
consisting of larger (on average) contiguous regions.

We trace the blocks allocated to each file with an ext2
inode tracing tool of our own. Once the tracing module

Table HHJ SHJ

Small-1 8 48

Medium-1 8 18

Large-1 8 8

Table 10: Contiguous Region Sizes of HHJ and SHJ

is loaded, every time the file system allocates a new block
to an inode, the block number and the inode number are
logged together. Block numbers are mapped directly to log-
ical block addresses (logical block address = block number
× 8). We then compute the average contiguous region size
by dividing the total blocks used for all partition files by the
total block group number in all partition files.

We chose one table from each category in our test set. The
average block group size of HHJ and SHJ in our experiments
are shown in Table 10. The average block group size of HHJ
is 8, which is the block group size of the file system. For
Small-1 and Medium-1, SHJ is able to perform file-level I/O
grouping effectively and stores files in blocks groups six and
twice the system default size respectively. As a consequence,
the I/O requests of sequentially retrieving the files created
with SHJ can be better merged. This has been verified in
the previous section by the average request size.

4.3 Discussion
The results above demonstrate the effectiveness of per-

muting and refining (with block recycling) block request se-
quences in a manner that exploits the underlying Postgres
and Linux buffer and file system management policies. This
is the first step in showing that block request sequence re-
finement can be used to improve the I/O performance of
query processing assuming the DB buffer and file system
management policies are fixed.

The effectiveness of permuting block requests inside a plan
operation is limited by both the amount of resources the plan
operation possesses (e.g. private memory) and the seman-
tics of the plan operation (e.g. hash join has to partition
both relations before joining them). But the good news
is from outside, we can force plan operations to produce
refined block request sequences. Take hash join as an ex-
ample, SHJ intends to refine its block request sequence by
partially sorting tuples by their partition numbers so as to
group block requests at file-level. However, if the tuples a
hash join operation receives are “grouped” by their parti-
tion numbers already, it is able to produce file-level grouped
block requests even without sorting. Therefore, refining the
block request sequence of a hash join operation can also be
done by supplying it tuples that are “grouped”. There are
many ways to produce grouped tuples, e.g. blocks of a rela-
tion can be retrieved based on their contents so that tuples
appear to be grouped. Without the restrictions imposed by
plan operations, block request sequence refinements can be
done more effectively and will bring more substantial bene-
fits.

5. RELATED WORK
Database management systems are implemented on top

of operating systems. Stonebraker studied the operating
system supports for database systems basing on UNIX and
Ingres [13]. He argued that many operating system sup-
ports are slow or inappropriate for database systems and
suggested a small efficient operating system be built for
database systems. In contrast, we approach this issue from
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the opposite direction – changing the plan operations to ex-
ploit the practices used by operating systems.

Our work resembles in spirit, the cache-aware query pro-
cessing work done independently by Ailamaki [1], Ross [16]
and others. Like cache-aware query processing, our work is
about formulating query processing techniques that exploit
the characteristics of the underlying hardware or software
system over which the DBMS operates.

Some DBMS’ storage managers control their own disk
I/O’s. (e.g. Larchesis [11].) Block request sequence re-
finements could potentially exploit the policies used by such
storage managers just as we have shown them to exploit the
file system policies of Linux. Thus, we believe this work
complements the research on DB-specific storage manage-
ment.

DB2 sorts block reads in its list prefetching [4] to minimize
the cost of disk seeks. Our I/O ordering and grouping tech-
niques go further in two respects. First, we sequence writes
of new files so that logically consecutive blocks (blocks be-
longing to the same file) are physically positioned in close
proximity on disk (thus making future file scans cheaper).
Secondly, we group writes of blocks across multiple files by
disk location so as to minimize seek time during writing.
Thus, DB2 reduces the cost of randomly accessing existing
files, our I/O ordering and grouping techniques reduce the
cost of writting new files as well as the cost of accessing them
sequentially.

Graefe discussed “eager merge” and “lazy merge” for ex-
ternal merge sort in [6]. MMS chooses to perform “eager
merge” for the purpose of grouping block requests instead
of reducing the number of runs.

Patel et al. [10] noticed the interference between the reads
of join relations and the writes of partition files in Hybrid
Hash Join and built a more accurate model to estimate the
cost of Hybrid Hash Join. But they did not consider the
interference between the writes of different partition files.
This kind of interference affects the partition file layouts
and makes the cost of accessing partition files sequentially
less predictable. SHJ reduces the interference between the
writes of different files in a semantics-preserving way.

6. CONCLUSIONS AND FUTURE WORK
In this paper, we propose to improve the I/O perfor-

mance of query processing by permuting and refining the
block request sequences of plan operations based on the
underlying management policies of the DB buffer and the
file system. We studied some common file system practices
used in Linux: LRU-Based Page Replacement, I/O Merging,
Delayed Buffer Flushing, and Block Grouping, and devel-
oped four block request refinement techniques: Block-Level
I/O Grouping, File-Level I/O Grouping, I/O Ordering, and
Block Recycling.

To manifest these techniques, we created two new plan
operations, a variation of external merge sort, Multilevel
Merge Sort (MMS), and a variation of hybrid hash join, Sort
Hash Join (SHJ). Both of these operations adopt some of the
block request refinement techniques above while correctly
performing sorts and joins .

Experimental results show that the best sorting perfor-
mance occurs with versions of MMS that perform block recy-
cling during early merge levels, but not during later merge
levels. This is shown to be due to the benefits of Block-Level
I/O Grouping on I/O buffer performance, and the benefits

of Block Recycling to exploit delayed buffer flushing when
constructing short intermediate runs. We also show that SHJ
outperforms HHJ in most cases, due to its use of I/O Order-
ing to exploit I/O Merging, and File-Level I/O Grouping to
exploit Block Grouping. The only exceptions are for joining
extremely small tables (where the I/O buffer is sufficiently
large to make it unnecessary to flush hash table partitions to
disk) and for extremely large tables (where too many parti-
tion files are created and block requests can not be grouped
effectively).

Block request sequence refinement is a complementary ap-
proach to techniques that improve the management of the
DB buffer and the underlying file system. We have demon-
strated its viability as a technique for improving query I/O
performance by showing the benefits of performing block re-
quest sequence refinement inside plan operations. In future
work, we plan to refine block request sequence outside plan
operations – forcing plan operations to produce refined block
request sequences from outside. Without the limitation im-
prosed by plan operations, more effective block request se-
quence refinement can be achieved. Therefore, as a way of
improving query I/O performance, block request sequence
refinement has the potential to bring even more substantial
benefits.
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