Interactive Graphic System

Application Model
 - Represents data and objects to be displayed on the output device

Application Program
 - Creates, stores into, and retrieves from the application model
 - Handles user-inputs
 - Sends output commands to the graphics system:
 - *Which* geometric object to view (point, line, circle, polygon)
 - *How to view it* (color, line-style, thickness, texture)

Graphics System

 - Intermediates between the application program and the interface hardware:
 - Output flow
 - Input flow
 - Causes the application program to be *device-independent.*

Display Hardware

CRT - Cathode Ray Tube

- Westinghouse Type 2553
- Westinghouse Type 2554
- Raytheon Type 4120

- *Shadow mask* and phosphor coated screen
- Electron guns
- Phosphors on glass screen
Terminology

Pixel: Picture element.
- Smallest accessible element in picture
- Assume rectangular or circular shape

Aspect Ratio: Ratio between physical dimensions of a pixel (not necessarily 1)

Dynamic Range: The ratio between the minimal (not zero!) and the maximal light intensity a display pixel can emit

Resolution: The number of distinguishable rows and columns in the device. Measured in:
- Absolute values (1K x 1K) or,
- Density values (300 dpi [=dots per inch])

Screen Space: A discrete Cartesian coordinate system of the screen pixels

Object Space: The Cartesian coordinate system of the universe, in which the objects (to be displayed) are embedded

Scan Conversion

The conversion from a geometrical representation of an object to pixels in a raster display

<table>
<thead>
<tr>
<th>I</th>
<th>R</th>
<th>G</th>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Display Hardware

FED - Field Emission Display

- Anode
- Phosphor
- Microtips (Emitters)
- C adsode electrodes

Scan Conversion

The conversion from a geometrical representation of an object to pixels in a raster display

Raster Display

- Display commands
- Interaction data
- Keyboard
- Mouse

Terminology

Pixel: Picture element.
- Smallest accessible element in picture
- Assume rectangular or circular shape

Aspect Ratio: Ratio between physical dimensions of a pixel (not necessarily 1)

Dynamic Range: The ratio between the minimal (not zero!) and the maximal light intensity a display pixel can emit

Resolution: The number of distinguishable rows and columns in the device. Measured in:
- Absolute values (1K x 1K) or,
- Density values (300 dpi [=dots per inch])

Screen Space: A discrete Cartesian coordinate system of the screen pixels

Object Space: The Cartesian coordinate system of the universe, in which the objects (to be displayed) are embedded
Representations

Implicit formula:
Constraint(s) expressed as
\(f(x_1, x_2, ..., x_n) = 0 \)
A k-dimensional surface embedded in n-dimensions
\(f_i(x_1, x_2, ..., x_n) = 0 \); \(i = 1..n-k \)

Explicit formula:
For each \(x \) define \(y = f(x) \)
Good only for "functions".

Parametric formula:
Depending on free parameter(s)
\(x = f_x(t) \)
\(y = f_y(t) \)
For k-dimensional surface there are k free parameters

Line in 2 dimensions

- Implicit representation:
 \(\alpha x + \beta y + \gamma = 0 \)
- Explicit representation:
 \(y = mx + B \)
 \(m = \frac{y_1 - y_0}{x_1 - x_0} \)
- Parametric representation:
 \[P = \begin{pmatrix} x \\ y \end{pmatrix} \]
 \[P = P_0 + (P_1 - P_0) t \]
 \(t \in [0..1] \)

Scan Conversion - Lines

Incremental Algorithm

\[y_{i+1} = mx_{i+1} + B = m(x_i + \Delta x) + B = y_i + m \Delta x \]
if \(\Delta x = 1 \) then
\[y_{i+1} = y_i + m \]

Algorithm
\(y = y_0 \)
For \(x = x_0 \) to \(x_1 \)
 PlotPixel(\(x \), round(\(y \)))
 \(y = y + m \)
end;

Scan Conversion - Lines

Pseudo Code for Basic Line Drawing

Assume \(x_0 > x_0 \) and line slope absolute value is \(\leq 1 \)

\(\text{Line}(x_0, y_0, x_1, y_1) \)
begin
 float \(dx, dy, x, y, \text{slope} \);
 \(dx := x_1 - x_0 \);
 \(dy := y_1 - y_0 \);
 \text{slope} := dy/dx;
 \text{if} \(x = x_0 \) to \(x_1 \), do begin
 PlotPixel(\(x \), round(\(y \)));
 \(y := y + \text{slope} \);
 end;
end;
Basic Line Drawing

Symmetric Cases:

\[|m| \geq 1 \]

\[x = x_0 \]

For \(y = y_0 \) to \(y_1 \)

\[PlotPixel(round(x),y) \]

\[x = x + 1/m \]

end;

Special Cases:

\[m = \pm 1 \] (diagonals)

\[m = 0, \infty \] (horizontal, vertical)

Symmetric Cases:

if \(x_0 > x_1 \) for \(|m| \leq 1 \) or \(y_0 > y_1 \) for \(|m| \geq 1 \)

swap((x_0,y_0),(x_1,y_1))

Midpoint (Bresenham) Line Drawing

Assumptions:

- \(x_0 < x_1 \), \(y_0 < y_1 \)
- \(0 < \text{slope} < 1 \)

For each iteration:

- 1 addition, 1 rounding

Drawbacks:

- Accumulated error
- Floating point arithmetic
- Round operations

Midpoint (Bresenham) Line Drawing

Implicit form of a line:

\[f(x,y) = ax + by + c = 0 \]

Decision Variable:

\[d = f(x,y) = a(x + 1/2) + b(y + 1/2) + c \]

- choose NE if \(d > 0 \)
- choose E if \(d \leq 0 \)

Midpoint (Bresenham) Line Drawing

Initialization:

First point = \((x_0,y_0)\), first MidPoint = \((x_0+1,y_0+1/2)\)

\[d_{\text{start}} = d(f(x_0+1,y_0+1/2)) = a(x_0 + 1) + b(y_0 + 1/2) + c \]

\[= ax_0 + by_0 + c + a + b/2 \]

\[= f(x_0,y_0) + a + b/2 = a + b/2 \]

Enhancement:

To eliminate fractions, define:

\[f(x,y) = 2(ax + by + c) = 0 \]

\[d_{\text{start}} = 2dy - dx/2 \]

Midpoint (Bresenham) Line Drawing

Comments:

- Integer arithmetic (dx and dy are integers)
- One addition for each iteration
- No accumulated errors
- By symmetry, we deal with \(0 < \text{slope} < 1 \)
Pseudo Code for Midpoint Line Drawing

```pseudocode
Line(x0,y0,x1,y1)
begin
    int dx, dy, x, y, d, E1, E2;
    x := x0; y := y0;
    dx := x1 - x0; dy := y1 - y0;
    d := 2*dy - dx;
    E1 := 2*dy;
    PlotPixel(x,y);
    while(x < x1) do
        if (d < 0) then
            d := d + E1;
            x := x + 1;
        else
            d := d + E2;
            x := x + 1;
            y := y + 1;
        end;
        PlotPixel(x,y);
    end;
end;
```

Assume \(x > x_0 \) and \(0 < \text{slope} \leq 1 \)

Scan Conversion - Circles

Implicit representation (centered at the origin, radius R):
\[
x^2 + y^2 - R^2 = 0
\]

Explicit representation:
\[
y = \pm \sqrt{R^2 - x^2}
\]

Parametric representation:
\[
\begin{pmatrix}
 x \\
 y
\end{pmatrix} = \begin{pmatrix}
 R \\
 R
\end{pmatrix} \begin{pmatrix}
 \cos (t) \\
 \sin (t)
\end{pmatrix}, \quad t \in [0, 2\pi]
\]

Scan Conversion - Circles

Basic Algorithm

For \(x = -R \) to \(R \)
- \(y = \sqrt{R^2-x^2} \)
- PlotPixel(x,round(y))
- PlotPixel(x,-round(y))

Comments:
- Square-root operations are expensive
- Floating point arithmetic
- Large gap for \(x \) values close to \(R \)

Scan Conversion - Circles

Exploiting Eight-Way Symmetry

For a circle centered at the origin:
If \((x,y)\) is on the circle then
\(\text{(-x,-y) (-y,-x) (-y,x) (-x,y)}\)
\(\text{(x,-y) (y,-x) (y,x) (x,y)}\)
are on the circle as well.

Therefore we need to compute only one octant (45°) segment.

Circle Midpoint (for one octant)
(The circle is located at (0,0) with radius R)

- We start from \((x_0,y_0) = (0, R)\)
- One can move either **East** or **South-East**
- Again, \(d(x,y) \) will be a threshold criteria at the midpoint

Scan Conversion - Circles

CirclePoints(x, y)

```pseudocode
CirclePoints(x, y)
begin
    PlotPixel(x,y);
    PlotPixel(y,x);
    PlotPixel(y,-x);
    PlotPixel(x,-y);
    PlotPixel(-x,-y);
    PlotPixel(-y,-x);
    PlotPixel(-y,x);
    PlotPixel(-x,y);
end;
```
Circle Midpoint (for one octant)

Threshold Criteria:
\[d(x,y) = f(x,y) = x^2 + y^2 - R^2 = 0 \]

- \(f(x,y) = 0 \)
- \(f(x,y) < 0 \)
- \(f(x,y) > 0 \)

Threshold Criteria:
- At the beginning
 \[d_{\text{start}} = d(x_0+1,y_0-1/2) = (1,R-1/2) = 5/4 - R \]
- If \(d < 0 \) we move East:
 \[\Delta_E = d(x_0+2,y_0-1/2) - d(x_0+1,y_0-1/2) = 2x_0 + 3 \]
- If \(d > 0 \) we move South-East:
 \[\Delta_{SE} = d(x_0+2,y_0-3/2) - d(x_0+1,y_0-1/2) = 2(x_0-y_0) + 5 \]
- \(\Delta_E \) and \(\Delta_{SE} \) are not constant anymore
- Since \(d \) is incremented by integer values, we can use
 \[d_{\text{start}} = 1-R \]
 yielding an integer algorithm. This has no affect on the threshold criteria.

Pseudo Code for Circle Midpoint

```plaintext
MidpointCircle(R)
begin
int x, y, d;
x := 0;
y := R;
d := 5.0/4.0 - R;
CirclePoints(x,y);
while ( y > x ) do
    if ( d < 0 ) then            /* East */
        d := d+2*x+3; /* Multiplication! */
        x := x+1;
    else /* South East */
        d := d+2*(x-y)+5; /* Multiplication! */
        x := x+1;
y := y-1;
end;
CirclePoints( x, y ); /* Mirror to create the other seven octants */
end;
end;
```

Pseudo Code for Circle Midpoint

```plaintext
MidpointCircle(R)
begin
int x, y, d;
x := 0;
y := R;
d := 1-R; /* originally d := 5.0/4.0 - R */
CirclePoints(x,y);
while ( y > x ) do
    if ( d < 0 ) then            /* East */
        d := d+2*x+3; /* See Foley & van Dam pg. 87 */
        x := x+1;
    else /* South East */
        d := d+2*(x-y)+5; /* See Foley & van Dam pg. 87 */
        x := x+1;
y := y-1;
end;
CirclePoints( x, y ); /* Mirror to create the other seven octants */
end;
```

Pseudo Code for Circle Midpoint

```plaintext
MidpointCircle(R)
begin
int x, y, d;
x := 0;
y := R;
\[ d := 3; \]
\[ \Delta_E := 0; \]
\[ \Delta_{SE} := 5; \]
CirclePoints(x,y);
while ( y > x ) do
    if ( d < 0 ) then            /* East */
        \[ d := d + \Delta_E; \]
        \[ \Delta_E := \Delta_E + 2; \]
        \[ x := x+1; \]
    else /* South East */
        \[ d := d + \Delta_{SE}; \]
        \[ \Delta_E := \Delta_E + 2; \]
        \[ x := x+1; \]
y := y-1;
end;
CirclePoints( x, y ); /* Mirror to create the other seven octants */
end;
```
Polygon Fill

Representation:
- Polygon = $V_0, V_1, V_2, .. V_n$
- $V_i = (x_i, y_i)$ - vertex
- $E_i = (V_i, V_{i+1})$ - edge
- $E_n = (V_n, V_0)$

Scan Conversion - Polygon Fill

Problem: Given a closed 2D polygon, fill its interior with a specified color, on a graphics display

Assumption: Polygon is simple, i.e. no self intersections, and simply connected, i.e. without holes

Solutions:
- Flood fill
- Scan Conversion

Flood Fill Algorithm

- Let P be a polygon with n vertices, $v_0 .. v_{n-1}$
- Denote $v_n = v_0$
- Let c be a color to paint P
- Let $p = (x, y)$ be a point in P

```
FloodFill(P, x, y, c)
if (OnBoundary(x, y, P) or Colored(x, y, c))
then return;
else begin
PlotPixel(x, y, c);
FloodFill(P, x+1, y, c);
FloodFill(P, x, y+1, c);
FloodFill(P, x, y-1, c);
FloodFill(P, x-1, y, c);
end;
```

Scan Conversion – Basic Algorithm

```plaintext
ScanConvert(P, c)
For j := 0 to ScreenYMax do
  I := points of intersection of edges from P with line y = j;
  Sort I in increasing x order and fill with color c alternating segments;
end;
```

Question: How do we know if a given point is inside or outside a polygon?

Fill Polygon

Question: How do we find the intersecting edges?
Scan Conversion – Fill Polygon

What happens in with these cases?

Intersections at pixel coordinates

Rule: In the odd/even count, we count y_{min} vertices of an edge, but not y_{max} vertices

Vertex B is counted once because y_{min} of (A,B)
Vertex E is not counted because y_{max} of both (D, E) and (E, F)
Vertex H is counted twice because y_{min} of both (G, H) and (H, I)

Fill Polygon – Optimized Algorithm

Uses a list of “active” edges A (edges currently intersecting the scan line)

$$\text{ScanConvert}(P, c)$$

Sort all edges $E = \{E_i\}$ in increasing $\text{MinY}(E_i)$ order.
$A := \emptyset$;
For $k := 0$ to ScreenYMax do
 For each $E_i \in E$,
 if $\text{MinY}(E_i) \leq k$ then
 $A := A \cup E_i$;
 $E := E - E_i$
 For each $E_i \in A$,
 if $\text{MaxY}(E_i) \leq k$ then
 $A := A - E_i$
 $I := \text{Points of intersection of members from } A \text{ with line } y = k$;
 Sort I in increasing x order and draw with color c alternating segments;
end;

Implementation with linked lists

Flood Fill vs. Scan Conversion

<table>
<thead>
<tr>
<th>Flood Fill</th>
<th>Scan Conversion</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Very simple.</td>
<td></td>
</tr>
<tr>
<td>• Requires a seed point</td>
<td></td>
</tr>
<tr>
<td>• Requires large stack size</td>
<td></td>
</tr>
<tr>
<td>• Common in paint packages</td>
<td></td>
</tr>
<tr>
<td>• More complex</td>
<td></td>
</tr>
<tr>
<td>• No seed point is required</td>
<td></td>
</tr>
<tr>
<td>• Requires small stack size</td>
<td></td>
</tr>
<tr>
<td>• Used in image rendering</td>
<td></td>
</tr>
</tbody>
</table>