PROGRAM
Data Compression Conference (DCC 2005)
Sponsored by Brandeis University.
Proceedings published by the IEEE Computer Society Press.
Snowbird, Utah
March 29-31, 2005

COMMITTEE:
A. Apostolico – Purdue U. / U. Padova
M. Cohn – Brandeis U.
M. Effros – California Institute of Technology
R. Gray – Stanford U.
S. Hemami – Cornell U.
J. Kovacevic – Carnegie Mellon U.
R. Ladner – U. Washington
T. Linder – Queen’s U.
H. Malvar – Microsoft
M. Marcellin – U. Arizona
A. Moffat – U. Melbourne
M. Rabbani – Eastman Kodak
S. Savari – U. Michigan
K. Sayood – U. Nebraska
G. Seroussi – Hewlett-Packard
D. Sheinwald – IBM
J. Storer – Brandeis U.
K. Zeger – U. California San Diego

SCHEDULE OVERVIEW:
Monday Evening, March 28:
Registration and Reception

Tuesday, March 29:
Morning: Technical Sessions
Mid-Day: Invited Presentation
Afternoon: Technical Sessions

Wednesday, March 30:
Morning: Technical Sessions
Mid-Day: Technical Sessions
Afternoon: Poster Session and Reception

Thursday, March 31:
Morning: Technical Sessions
MONDAY EVENING
Registration / Reception, 7:00-10:00pm (Golden Cliff Room)

TUESDAY MORNING

SESSION 1

8:00am: “Near Tightness of the El Gamal and Cover Region for Two Descriptions”. 3
 L. Lastras-Montano and V. Castelli
 IBM T.J. Watson Research Center

8:20am: “Distributed Source Coding in Dense Sensor Networks”........................... 13
 A. Kashyap, L. Lastras-Montano†, C. Xia†, and Z. Liu†
 University of Illinois at Urbana-Champaign, †IBM T.J. Watson Research Center

8:40am: “A Generalization of the Rate-Distortion Function for Wyner-Ziv Coding
of Noisy Sources in the Quadratic-Gaussian Case .. 23
 D. Rebollo-Monedero and B. Girod
 Stanford University

9:00am: “Towards Practical Minimum-Entropy Universal Decoding” 33
 T. Coleman, M. Medard, and M. Effros†
 Massachusetts Institute of Technology, †California Institute of Technology

 Y. Yang, V. Stankovic, Z. Xiong, and W. Zhao
 Texas A&M University

9:40am: “On the Performance of Linear Slepian-Wolf Codes
for Correlated Stationary Memoryless Sources” .. 53
 S. Yang and P. Qiu
 Zhejiang University

Break: 10:00am - 10:20am

SESSION 2

10:20am: “Real, Tight Frames with Maximal Robustness to Erasures” 63
 M. Puschel and J. Kovacevic
 Carnegie Mellon University

10:40am: “Adaptive Block-Based Image Coding with Pre-/Post-Filtering” 73
 W. Dai, L. Liu, and T. Tran
 The Johns Hopkins University

11:00am: “Optimized Prediction for Geometry Compression of Triangle Meshes” .. 83
 D. Chen, Y.-J. Chiang, N. Memon, and X. Wu
 Polytechnic University

11:20am: “TetStreamer: Compressed Back-to-Front Transmission
of Delaunay Tetrahedra Meshes” .. 93
 U. Bischoff and J. Rossignac
 Georgia Institute of Technology

11:40am: “A Point-Set Compression Heuristic for Fiber-Based Certificates
of Authenticity” .. 103
 D. Kirovski
 Microsoft Research

12:00noon: “Performance Comparison of Path Matching Algorithms
over Compressed Control Flow Traces” ... 113
 Y. Lin and Y. Zhang
 The University of Texas at Dallas

- 2 -
Lunch Break: 12:20pm - 2:30pm

TUESDAY MID-DAY
INVITED PRESENTATION

2:30pm - 3:30pm

"Some Open Problems in Source Coding in Biomedical Engineering"

Dr. Elvir Causevic
Founder and President Everest Biomedical Instruments
and
Ad. Assistant Professor, Yale Applied Mathematics

There are two basic types of measurements of quantities in physiologic systems: those that measure quantities that happen spontaneously in the course of normal operation of the system, and those in which we perturb the system with some "friendly" stimulus and record system output as a response, the latter being much more reliable and thus suitable for clinical use. In principle, this is not at all different than what we encounter in communication systems of various types, or target recognition systems, for example. The difference is that instruments in use in clinical practice largely use only the simplest of stimuli (clicks, pulses, sine waves), and rarely employ any of the "advanced" signal design techniques that will maximize signal-to-noise ratio, or otherwise aid in the detection of the response (improving accuracy, reducing acquisition time, covering a wider dynamic range of measurements, etc). Another problem is that complex stimuli, if used, produce an overwhelming amount of response data which needs to be cleverly compressed and mined. Typically measurements of biological systems are highly intercorrelated (in an unknown way) and thus usually low rank and low total information content, which makes them ideal candidates for exploration.

Examples will be drawn from various clinical measurements where known stimuli evoke responses from systems under test - neurologic auditory and visual evoked electrical responses, pulse oximetry for measurement of oxygen saturation of hemoglobin, non-invasive blood analyte detection (glucose, blood gases, electrolytes), and others. Opportunities for application of advanced signal design and signal coding for optimum stimulation and response detection will be presented (without adequate existing solutions), as well as open problems in data mining and compression in biological systems.

The next generation of advanced clinical instruments depends on adequate solutions of these problems.

Break: 3:30 - 4:00pm
TUESDAY AFTERNOON

SESSION 3

4:00pm: “Implementation Cost of the Huffman-Shannon-Fano Code” 123
 T. Tjalkens
 Eindhoven University of Technology

4:20pm: “Binary Codes for Non-Uniform Sources” ... 133
 A. Moffat and V. Anh
 The University of Melbourne

4:40pm: “Fast Decoding of Prefix Encoded Texts” ... 143
 E. Bergman and S. Klein
 Bar-Ilan University

5:00pm: “Efficient String Matching Algorithms
for Combinatorial Universal Denoising” .. 153
 S. Chen, S. Diggavi†, S. Dusad†, and S. Muthukrishnan
 Rutgers University, †Swiss Federal Institute of Technology

Break: 5:20pm - 5:40pm

SESSION 4

5:40pm: “Generalizing the Kraft-McMillan Inequality to Restricted Languages” 163
 M. Golin and H.-S. Na†
 The Hong Kong University of Science and Technology, †Soongsil University

6:00pm: “Asymptotics of the Entropy Rate for a Hidden Markov Process” 173
 O. Zuk, I. Kanter†, and E. Domany
 Weizmann Institute of Science, †Bar-Ilan University

6:20pm: “Efficient Alphabet Partitioning Algorithms for Low-Complexity Entropy Coding” ... 183
 A. Said
 Hewlett-Packard Labs
WEDNESDAY MORNING

SESSION 5

8:00am: “Design of VQ-Based Hybrid Digital-Analog Joint Source-Channel Codes for Image Communication”
Y. Wang, F. Alajaji, and T. Linder
Queen’s University

8:20am: “Hard Decision and Iterative Joint Source Channel Coding Using Arithmetic Codes”
L. Xu, M. Hoffman, and K. Sayood
University of Nebraska, Lincoln

8:40am: “Joint Source and Channel Coding Using Trellis Coded CPM: Soft Decoding”
Z. Lin and T. Aulin
Chalmers University of Technology

9:00am: “Using 2:1 Shannon Mapping for Joint Source-Channel Coding”
F. Hekland, G. Oien, and T. Ramstad
Norwegian University of Science and Technology

9:20am: “On the Entropy Rate of Pattern Processes”
G. Gemelos and T. Weissman
Stanford University

Break: 9:40am - 10:00am

SESSION 6

10:00am: “Optimal Quantizer Performance and the Wasserstein Distortion”
S. Matloub, D. O’Brien, and R. Gray
Stanford University

10:20am: “Short-Block Variable-Rate Trellis Quantization”
T. Eriksson, M. Novak, and J. Anderson
Lund University

10:40am: “A Lagrangian Fomulation of Fixed-Rate Quantization and Entropy / Memory Constrained Quantization”
R. Gray and J. Gill
Stanford University

11:00am: “Optimal One-Bit Quantization”
A. Magnani, A. Ghosh, and R. Gray
Stanford University

11:20am: “Minimum Distortion Color Image Retrieval Based on Lloyd-Clustered Gauss Mixtures”
S. Jeong and R. Gray
Stanford University
Lunch Break: 11:40am - 2:00pm

WEDNESDAY MID-DAY

SESSION 7

2:00pm: “When Is Bit Allocation for Predictive Video Coding Easy?” 289
 Y. Sermadevi, J. Chen, S. Hemami, and T. Berger
 Cornell University

2:20pm: “MINMAX Bit Allocation for Quantization-Based Video Coders” 299
 G. Shavit, R. Ladner, and E. Riskin
 University of Washington

2:40pm: “Very Low Frame-Rate Video Streaming for Face-to-Face Teleconference”309
 J. Wang and M. Cohen‡
 University of Washington, ‡Microsoft Research

3:00pm: “Error Concealment for Dual Frame Video Coding with Uneven Quality”319
 V. Chellapa, P. Cosman, and G. Voelker
 University of California, San Diego

3:20pm: “JPEG2000 and Motion JPEG2000 Content Analysis Using Codestream Length Information” .. 329
 A. Tabesh, A. Bilgin, K. Krishnan, and M. Marcellin
 The University of Arizona

Break: 3:40pm - 4:00pm

WEDNESDAY AFTERNOON

POSTER SESSION AND RECEPTION

4:00-7:00pm
In the Golden Cliff Room

(Titles are listed later in this program;
abstracts of each presentation appear in the proceedings.)
THURSDAY MORNING

SESSION 8
8:00am: “Of Lempel-Ziv-Welch Parses with Refillable Gaps” 338
 A. Apostolico
 University of Padova, Purdue University

8:20am: “Lossless Data Compression Using Optimal Tree Machines” 348
 G. Korodi, J. Rissanen, and I. Tabus
 Tampere University of Technology

8:40am: “The Performance of Linear Time Suffix Sorting Algorithms” 358
 S. Puglisi, W. Smyth†, and A. Turpin‡
 Curtin University of Technology, †McMaster University, ‡University of Melbourne

Break: 9:00am - 9:20am

SESSION 9
9:20am: “Quantization of Multiple Sources Using Integer Bit Allocation” 368
 B. Farber and K. Zeger†
 Fair Isaac Corporation, †University of California, San Diego

9:40am: “n-Channel Symmetric Multiple-Description Lattice Vector Quantization” 378
 J. Oestergaard, J. Jensen, and R. Heusdens
 Delft University of Technology

10:00am: “On Global Optimality of Gradient Descent Algorithms for Fixed-Rate Scalar Multiple Description Quantizer Design” 388
 S. Dumitrescu and X. Wu
 McMaster University

10:20am: “Staggered Lattices in Multiple Description Quantization” 398
 C. Tian and S. Hemami
 Cornell University

Break: 10:40am - 11:00am

SESSION 10
11:00am: “Fast Precomputed VQ with Optimal Bit Allocation for Lossless Compression of Ultraspectral Sounder Data” ... 408
 B. Huang, A. Ahuja, H.-L. Huang, T. Schmit†, and R. Heymann‡
 University of Wisconsin-Madison, †NOAA, National Environmental Satellite, Data, and Information Service

 H. Wang, S. Babacan†, and K. Sayood
 University of Nebraska-Lincoln, †Northwestern University

11:40am: “A Block-Based Inter-band Lossless Hyperspectral Image Compressor” 427
 M. Slyz and L. Zhang†
 Bitfone Corporation, †McMaster University

12:00noon: “Efficient Inter-band Prediction and Wavelet Based Compression for Hyperspectral Imagery: A Distributed Source Coding Approach” 437
 C. Tang, N.-M. Cheung, A. Ortega, and C. Raghavendra
 University of Southern California
Poster Session
(listed alphabetically by first author)

“A Fast and Efficient Post BWT-Stage for the Burrows-Wheeler Compression Algorithm” ... 449
 J. Abel
 University of Duisburg-Essen

“Off-Line Compression by Extensible Motifs” .. 450
 A. Apostolico‡, M. Comin‡, and L. Parida
 ‡Purdue University, ‡University of Padova, *IBM T.J. Watson Center

“An Improved Method for Lossless Data Compression” 451
 Y. Bai and T. Cooklev
 San Francisco State University

“The Use of Average Mutual Information Profile as a Species Signature” 452
 M. Bauer, S. Schuster†, and K. Sayood
 University of Nebraska-Lincoln, †Claremont Colleges

“Distributed Joint Source-Channel Decoding for Correlated Markov Sources” ... 453
 Q. Chen and K. Subbalakshmi
 Stevens Institute of Technology

 J. Cheng and M. Mitzenmacher
 Harvard University

“Coding the Wavelet Spatial Orientation Tree with Low Computational Complexity” ... 455
 Y. Cho, A. Said†, and W. Pearlman
 Rensselaer Polytechnic Institute, †Hewlett-Packard Labs

“Bounded Size Dictionary Compression: Relaxing the LRU Deletion Heuristic” ... 456
 S. De Agostino
 La Sapienza University

“On the Block Size of Trellis Quantizers” .. 457
 T. Eriksson, S. Hellerbrand†, J. Anderson, and M. Novak
 Lund University, †Munich University of Technology

“Real-Time Traversal in Grammar-Based Compressed Files” 458
 L. Gasieniec, R. Kolpakov, I. Potapov, and P. Sant
 University of Liverpool
“QLFC – A Compression Algorithm Using the Burrows-Wheeler Transform” ... 459
 F. Ghido
 University Politehnică of Bucharest

“Compression Algorithm for Infrared Hyperspectral Sounder Data” 460
 I. Gladkova, L. Rojtman, and M. Goldberg
 City College of New York

“Source Coding for a Multihop Network” ... 461
 W.-H. Gu and M. Effros
 California Institute of Technology

“Segmenting for Wavelet Compression” ... 462
 M. Gupta and A. Stroilov
 University of Washington

“Bandwidth Adaptive Quality Smoothing for Unequal Error Protected
Scalable Video Streaming” ... 463
 L. Huo, W. Gao, and Q. Huang
 Chinese Academy of Sciences

“Algorithms for Construction of Optimal and Almost-Optimal
Length-Restricted Codes” ... 464
 M. Karpinski and Y. Nekrich
 University of Bonn

“Parameter Analysis for the Generalized LZ Compression of Audio” 465
 D. Kirovski and Z. Landau†
 Microsoft Research, †The City College of New York

“Compressed Pattern Matching in JPEG Images” ... 466
 S. Klein and D. Shapira†
 Bar-Ilan University, †Ashkelon Academic College

“AXECHOP: A Grammar-Based Compressor for XML” 467
 G. Leighton, J. Diamond, and T. Müldner
 Acadia University

“Applying LVQ Techniques to Compress Historical Information
in Sensor Networks” ... 468
 S. Lin, C. Gunopulos, S. Lonardi, and V. Kalogeraki
 University of California, Riverside

“An Extension of the Burrows Wheeler Transform to k Words” 469
 S. Mantaci, A. Restivo, and M. Sciortino
 University of Palermo
“An Instruction Set Architecture Based Code Compression Scheme for Embedded Processors” ... 470
 S. Menon and P. Shankar
 Indian Institute of Science

“Partially Decodable Compression with Static PPM” 471
 D. Okanohara
 University of Tokyo

“Vector Quantization for Classification in a Simple Network” 472
 K. Ozonat and R. Gray
 Stanford University

“A Fast Trellis-Based Rate-Allocation Algorithm for Robust Transmission of Progressively Coded Images over Noisy Channels” 473
 X. Pan, A. Banihashemi, and A. Cuhadar
 Carleton University

“Fast Index Assignment for Balanced N-Description Scalar Quantization” ... 474
 I. Radulovic and P. Frossard
 Ecole Polytechnique Fédérale de Lausanne

“Asymptotic Properties of Sample-Based Entropy, Information Divergence, and Related Metrics” ... 475
 Y. Reznik
 RealNetworks, Inc.

“On the Inadequacy of Golomb-Rice Codes for Adaptive Coding” 476
 A. Said
 Hewlett-Packard Labs

“Distributed Source Coding in Wireless Sensor Networks Using LDPC Codes: A Non-uniform Framework” ... 477
 M. Sartipi and F. Fekri
 Georgia Institute of Technology

“Recent Advances in Object-Based Image Compression” 478
 M. Schmalz
 University of Florida

“Investigating Lossy Image Coding Using the PLHaar Transform” 479
 J. Senecal†‡, P. Lindstrom†, M. Duchaineau†, and K. Joy‡
 †Lawrence Livermore National Laboratory, ‡University of California, Davis

“Video Coding for a Time Varying Tandem Channel with Feedback” 480
 Y. Shen, P. Cosman, and L. Milstein
“Two-Level Directory Based Compression” .. 481
 P. Skibinski
 University of Wroclaw

“Multiple-Pattern Matching in LZW Compressed Files
Using Aho-Corasick Algorithm” ... 482
 T. Tao and A. Mukherjee
 University of Central Florida

“Progressive Low Bit Rate Coding of Simple 3D Objects
with Matching Pursuit” .. 483
 I. Tosic, P. Frossard, and P. Vandergheynst
 Ecole Polytechnique Fédérale de Lausanne

“JPEG2000 Compliant Lossless Coding of Floating Point Data” 484
 B. Usevitch
 University of Texas System

“Accuracy-Optimized Quantization for High-Dimensional Data Fusion” 485
 S. Vucetic
 Temple University

“Parallelization of VQ Codebook Generation by Two Algorithms:
Parallel LBG and Aggressive PNN” .. 486
 A. Wakatani
 Konan University

“BWT Based Universal Lossless Source Controlled Channel Decoding
with Low Density Parity Check Codes” ... 487
 L. Wang and G. Shamir
 University of Utah

“Modelling Chinese for Text Compression” .. 488
 P. Wu and W. Teahan
 University of Wales Bangor

“Joint Source/Channel Coding for Multiple Video Sequences
with JPEG2000” .. 489
 Z. Wu, R. Jandhyala, A. Bilgin, and M. Marcellin
 The University of Arizona

“Decoding of Non-systematic Turbo Codes for Stationary Memoryless
and Piecewise Stationary Memoryless Sequences” 490
 K. Xie and G. Shamir
 University of Utah
“Distributed Joint Source-Channel Coding of Video Using Raptor Codes”............. 491
 Q. Xu, V. Stankovic, and Z. Xiong
 Texas A&M University

“A Compression-Boosting Transform for 2D Data”... 492
 Q. Yang and S. Lonardi
 University of California, Riverside

“A Flexible Compressed Text Retrieval System Using a Modified LZW Algorithm” ... 493
 N. Zhang, T. Tao, R. Satya, and A. Mukherjee
 University of Central Florida

“Prediction by Partial Approximate Matching for Lossless Image Compression” ... 494
 Y. Zhang and D. Adjeroh
 West Virginia University

“A New Approach of DCA by Using BWT” .. 495
 B. Zhao, K.-I. Iwata, S. Itoh, and T. Kato
 University of Electro-Communications