We’ve discussed how to represent Boolean values in the untyped λ-calculus, and integers, and lists of integers, and binary trees, etc. The approach was: look at the constructors for the data type, and λ-abstract over them. The same approach has to work for representing the λ-calculus inside the calculus itself.

Here’s what I mean. For a λ-term \(t \), let’s write \(\lceil t \rceil \) for its representation. Let’s give the name \(\text{LC} \) the data type of untyped λ-terms. The informal declaration of this data type is:

\[
\text{type LC=} \\
\text{Var: Int -> LC} \\
\text{App: LC -> LC -> LC} \\
\text{Abs: LC -> LC}
\]

We represent variable occurrences by lexical addresses that say how many λs to “skip over” to get to the right λ-binder—for example, we’d code \(\lambda x. x \) as \(\text{abs (var \ 0)} \), \(\lambda x. \lambda y. xy \) as \(\text{abs (abs (app (var \ 1) (var \ 0)))} \), coding binding addresses as numerals of type \(\text{Int} \), and \(\lambda x. x (\lambda y. xy (\lambda z. xyz (\lambda w. xyzw))) \) as

\[
\text{abs (app (var \ 0))} \\
\text{(abs (app (app (var \ 1) (var \ 0))) (var \ 0))} \\
\text{(abs (app (app (var \ 3) (var \ 2)) (var \ 1)) (var \ 0))})
\]

To code this representation in the λ-calculus itself, we λ-abstract over the constructors \(\text{app, abs, and var} \), so that (for example) the above small example \(\lambda x. x \) is coded as \(\lambda \text{app.} \lambda \text{abs.} \lambda \text{var.} \text{abs (var \ 0)} \), and \(\lambda x. \lambda y. xy \) as \(\lambda \text{app.} \lambda \text{abs.} \lambda \text{var.} \text{abs (abs (app (var \ 1) (var \ 0)))} \). Numerals are now Church numerals, also abstracting over its constructors.

Dispensing with our informal data type \(\text{LC} \), write \(\lceil t \rceil \) for the representation of \(t \) in the untyped λ-calculus. For example, for the term \(t \equiv \lambda w.w \), we have (expanding the Church numerals \(\overline{k} \) appropriately):

\[
\begin{align*}
\lceil t \rceil & \equiv \lambda \text{app.} \lambda \text{abs.} \lambda \text{var.} \text{abs (var (\lambda s.\lambda z.s))} \\
\lceil \lceil t \rceil \rceil & \equiv \lambda \text{app.} \lambda \text{abs.} \lambda \text{var.} \\
& \quad \text{abs (abs (app (var (\lambda s.\lambda z.s))) (app (var (\lambda s.\lambda z.z))(abs (abs (var (\lambda s.\lambda z.z)))))))} \\
\lceil t \lceil t \rceil \rceil & \equiv \lambda \text{app.} \lambda \text{abs.} \lambda \text{var.} \\
& \quad \text{app (abs (var (\lambda s.\lambda z.z)))} \\
& \quad \quad \text{abs (abs (app (var (\lambda s.\lambda z.s))) (app (var (\lambda s.\lambda z.z))(abs (abs (var (\lambda s.\lambda z.z)))))})}
\end{align*}
\]
Exercise 0. Define an appending or juxtaposing operator \star for coding applications, so that $\star [t] [\![t]\!] = [t \! [t\!]$—or, more generally, $\star [t] [u] = [t u]$.

Exercise 1. Define a quotation operator that works only on representations of λ-terms, so that $\text{quoteit} [t] = [\![t]\!]$. (This is a little tricky, but worth the thinking.) A hint: confusing the λ-abstracted variables in $[t]$ and $[\![t]\!]$ is easy, so clear your head by renaming them, for example

\[
[t] \equiv \lambda app'. \lambda abs'. \lambda var'. \lambda s'. \lambda z'. (\lambda s. \lambda z. z')
\]

\[
[\![t]\!] \equiv \lambda app. \lambda abs. \lambda var. \lambda s. \lambda z. (\lambda s. \lambda z. z) (\lambda s. \lambda z. z)
\]

Or pick names that are even more disjoint: $\lambda Fred. \lambda Wilma. \lambda Barney. \ldots$ A further hint: try and see precisely what it is in $[\![t]\!]$ that is simulating what structure in $[t]$.

For the above exercises, you might find it useful to do some programming for experimental purposes in your favorite functional programming language, as a testbed for your ideas. Neither of the solutions to Exercises 0 and 1 should use recursion, or any feature from the programming language other than function application, as in many codings shown in class.

Exercise 2. System F lets us code Booleans as terms of type $\textbf{Bool} \equiv \forall P. P \to P \to P$, Church numerals of type $\textbf{Int} \equiv \forall P. (P \to P) \to P \to P$, and lists of Church numerals as $\forall P. (\textbf{Int} \to P \to P) \to P \to P$. What is the System F type for the representation of λ-terms described above?

Exercise 3. Take the untyped λ-terms that are your solutions to Exercises 0 and 1, and type them as System F terms.

Exercise 4. Show that $\lambda w. ww$ can be given the type $\sigma \equiv (\forall P. P \to P) \to (\forall P. P \to P)$. Explain why the same is true of $\lambda w. www$ and $\lambda w. wwwww(wwwww)ww(wwww)www(wwwww)www(wwwww)$.