Trees

A *tree* is a hierarchy. At the top is the *root*, the root can have *children*, the children can have children, and so on.

unordered trees: The order in which siblings are attached to a vertex is arbitrary (just an artifact of the data structure).

ordered trees: For example, in a *binary tree*, a vertex can have a right child but no left child.
A tree can be defined recursively as a set of vertices consisting of a root for which no other vertex is designated as its parent, together with a (possibly empty) set S of disjoint trees, where r is the parent of each of the roots of the trees in S. In the figure, vertices are labeled a through i, a is the root, a is the parent of b and c, b is the parent of d, c is the parent of e, f, and g, and f is the parent of h and i.
(tree terms continued)

child: \(v \) is the parent of \(w \) if and only if \(w \) is a *child* of \(v \).

internal vertex: A vertex that is not the root and has at least one child; in the figure, \(b, c, \) and \(f \) are *internal vertices*.

leaf: A vertex with no children; in the figure, \(d, e, h, i, \) and \(g \) are *leaves*.

sibling: If two vertices are children of the same vertex, then they are *siblings*. In the figure, \(b \) and \(c \) are siblings, \(e, f, \) and \(g \) are siblings, and \(h \) and \(i \) are siblings.

ancestor: A vertex \(v \) is an *ancestor* of a vertex \(w \) if \(v = w \) or \(v \) can be reached from \(w \) by following the parent relationship; if \(w \neq v \), then \(w \) is a *proper ancestor* of \(v \).

descendant: \(w \) is a *descendant* of \(v \) if and only if \(v \) is an ancestor of \(w \); if \(w \neq v \), then \(w \) is a *proper descendant* of \(v \).

subtree: The children of a vertex \(v \) are the roots of the *subtrees* of \(v \). In the figure, removing the root \(a \) leaves two subtrees (one subtree rooted at \(b \) and one subtree rooted at \(c \)).
Tree Dimensions

DEPTH(v):

The number of edges on the path from the root to vertex v (the depth of the root is 0).

HEIGHT(v):

The number of edges on a longest path from vertex v to a leaf (leaves have height 0).

MIN-HEIGHT(v):

The number of edges on a shortest path from vertex v to a leaf (leaves have min-height 0).

LEVEL(v):

$\text{LEVEL}(v) = \text{HEIGHT}(root) - \text{DEPTH}(v)$