Pre-Order Traversal of a Tree

Idea: To visit all vertices in the subtree rooted at v, *pre-order* traversal uses the rule: "Visit v and then (recursively) visit the subtrees of v."]

procedure PRE(v):

{visit v}

for each child w of v do PRE(w)

end

Example: Starting at the root, assuming children are visited in alphabetical order, pre-order visits: $a, b, d, c, e, f, h, i, g$
The Ordering Implied by a Traversal

Because the \texttt{for} loop does not specify the order children are visited, many traversals of the tree may satisfy the preorder and post-order definitions. In practice, a particular representation of the tree in memory will give rise to a natural "standard" order.

For example, if we are using the LMCHILD-RSIB representation, a unique traversal of the tree results from replacing the \texttt{for} loop by a \texttt{while} loop that follows the RSIB links from first to last; call this \texttt{first-to-lastPRE}:

\begin{verbatim}
procedure first-to-lastPRE(v):
 {visit \texttt{v}}
 w := LMCHILD(v)
 while (w is not \texttt{nil}) do begin
 first-to-lastPRE(w)
 w := RSIB(w)
 end
end
\end{verbatim}
Post-Order Traversal

Post-order traversal is a recursive traversal like pre-order traversal, except a vertex is visited after visiting its children.

Example: Starting at the root, assuming children are visited in alphabetical order, post-order does: \(d, b, e, h, i, f, g, c, a\)
Example: Height of a Vertex

The basic recursive traversal of a tree in pre-order or post order can be adapted to perform many data gathering tasks on the tree, such as its height (number of edges on a longest path from v to a leaf).

function HEIGHT(v):
 $h := 0$
 for each child w of v do $h := \text{MAXIMUM}(h, \text{HEIGHT}(w)+1)$
 return h
end
Level-Order Traversal

Idea: Visit the children of a vertex v before going deeper into the subtrees, so that vertices are visited from highest to lowest level.

procedure LEV(v)
 Initialize a queue to contain v.
 while queue is not empty do begin
 $v :=$ DEQUEUE
 {visit v}
 for each child w of v do ENQUEUE(w)
 end
end
Example: Assuming that children are visited in alphabetical order, level order starting at the root is $a, b, c, d, e, f, g, h, i$.

```
  a
 / \
 b   c
|   /|
|  d  e
| /   |
| i   f
|     /|
|     h
```

The Order Implied by A Level-Order Traversal

Like pre-order, the `for` loop does not specify the order in which children are visited. Again, if we are using the LMCHILD-RSIB representation, a natural unique traversal of the tree results from replacing the `for` loop by a `while` loop that follows RSIB links from left to right:

\[
\begin{align*}
w & := \text{LMCHILD}(v) \\
\textbf{while} \ (w \ \text{is not} \ \texttt{nil}) \ \textbf{do begin} \\
\quad & \ \text{ENQUEUE}(w) \\
\quad & \ w := \text{RSIB}(w) \\
\textbf{end}
\end{align*}
\]
Example: MIN-HEIGHT of a Vertex

The basic traversal of a tree in level order can be adapted to perform many data gathering tasks on the tree, such as its MIN-HEIGHT (number of edges on a shortest path from v to a leaf).

function MIN-HEIGHT(v)

$h := 0$

Initialize an empty queue.

while v is not a leaf do begin

for each child w of v do ENQUEUE($w,h+1$)

$v,h :=$ DEQUEUE

end

return h

end