Example: Find the k^{th} Largest Element in Linear Time
(That is, find the item that would be K^{th} is a list sorted from smallest to largest.)

Idea: First let’s consider an algorithm that has poor worst-case time. Choose an arbitrary element m of L, partition L into elements $<m$, $=m$, and $>m$, and then recursively look in one partition.

function KLARGEST(k,L)
 if $k<1$ or $k>|L|$ then ERROR (k is out of range)
 else begin
 • Let m be any element of L (e.g., pick m at random from L).
 • Form the lists A, B, and C of the elements in L that are $<m$, $=m$, and $>m$.
 • if $k \leq |A|$ then return KLARGEST(k,A)
 else if $k \leq (|A|+|B|)$ then return m
 else return KLARGEST($(k-|A|-|B|),C$)
 end
end

(Note: $|L|$ denotes the number of items in L.)
Idea: Find an m which is close to the median of L, partition L into elements $<m$, $=m$, and $>m$, and then recursively look in one partition.

function KLARGEST(k, L)
 if $k < 1$ or $k > |L|$ then ERROR (k is out of range)
 else if $|L| < 20$ then sort L and return the k^{th} element
 else begin
 1. Divide L into $\left\lfloor \frac{n}{5} \right\rfloor$ "mini-lists" of 5 elements each, and at most 4 leftovers.
 2. $M :=$ a list of the medians of the mini-lists
 3. $m :=$ KLARGEST($\left\lfloor \frac{|M|}{2} \right\rfloor$, M)
 4. Form the lists A, B, and C of the elements in L that are $<m$, $=m$, and $>m$.
 5. if $k \leq |A|$ then return KLARGEST(k, A)
 else if $k \leq (|A| + |B|)$ then return m
 else return KLARGEST($(|k| - |A| - |B|)$, C)
 end
end
Lists A and C must have $<3/4n$ elements:

- Divide and conquer algorithms typically work best when sub-problems have equal size.
- Although m may not be the median of L, neither A nor C gets too large a fraction of L.
- Since at least $\lceil |M|/2 \rceil$ of the mini-lists contain a median that is $\leq m$ and at least two other elements that are $\leq m$, at least $\lceil 3|M|/2 \rceil \geq \lceil 3n/10 \rceil$ of the elements of L are $\leq m$, and so $|C| \leq \lceil 7n/10 \rceil$.
- Similarly, since at least $|M| - \lceil |M|/2 \rceil + 1 = \lceil |M|/2 \rceil + 1 \geq \lceil |M|/2 \rceil$ of the mini-lists contain a median that is $\geq m$ and at least two others that are $\geq m$, it follows that $|A| \leq \lceil 7n/10 \rceil$.
- Hence, both $|A|$ and $|C|$ are $\leq (3/4)n$, since $n \geq 20$ implies:
 \[\lceil 7n/10 \rceil \leq (7n/10)+1 \leq (7n/10) + 0.05n = 0.75n = (3/4)n \]
Time and space used by KLARGEST:

- The space is $O(n)$.
- There is a c such that $T(n) \leq cn$ if $n<20$, and for $n>20$, since there is one recursive call in Step 3 on a list of size $\leq (n/5)$, one in Step 5 on a list of size $\leq (3/4)n$, and everything else is $O(n)$:

 $$T(n) \leq T(.2n) + T(.75n) + O(n)$$

 A proof by induction now shows that $T(n) \leq 20cn$. For $n<20$, $cn<20cn$, and for $n \geq 20$, by applying the inductive hypothesis, $T(n) \leq 4cn + 15cn + cn = 20cn$.

Practical considerations: Intuitively, the time is linear because $(1/5) + (3/4) < 1$. However, because the inequality is close, the constant is poor (choosing m randomly may give a more practical expected time algorithm).